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CONVERGENCE OF A CLASS OF EMPIRICAL DISTRIBUTION
FUNCTIONS OF DEPENDENT RANDOM VARIABLES!

By B. W. SILVERMAN

University of Bath

A class of empirical processes having the structure of U-statistics is
considered. The weak convergence of the processes to a continuous Gaussian
process is proved in weighted sup-norm metrics stronger than the uniform
topology. As an application, a central limit theorem is derived for a very
general class of non-parametric statistics.

1. Introduction. Let X;, X;, .- - be a sequence of independent identically distributed
random elements of some space S and let £ be a function (not necessarily symmetric) from
S™ to R. Consider the empirical distribution function H, constructed from the set of
n(n —1) --- (n — m + 1) random variables A(Xj, --., X,) obtained by every possible
choice of ordered set (J, - - -, 2) of m distinct integers drawn from {1, - - -, n}. Suppose that
h(Xi, .-, X,») has distribution function Hr.

The main object of this paper is to study the weak convergence of the empirical process
n'?(H, — Hr) to a Gaussian process, in various weighted metrics on D[—o, ]. The case
m = 1 corresponds to the standard empirical process of independent random variables, for
which weak convergence results in weighted sup-norm metrics have been obtained by
Chibisov (1964), O’'Reilly (1974) and Shorack (1979). In the case of general m, the function
H, is an empirical distribution function of identically distributed, but dependent, random
variables. The weak convergence of n'/*(H, — Hr) in the unweighted Skorohod topology
was considered by Silverman (1976a), who considered a slightly more general class of
random variables, to which the results of the present paper carry over directly.

Serfling (1981) has discussed how a very wide range of non-parametric statistics can be
expressed as functionals of the empirical process H,, for suitable choice of the kernel
h(x1, + -+, Xm). Given a real function JJ defined on (0, 1), and constants a;, - - -, @4, p1, * -,
pa with p; in (0, 1), the statistic

1
T, = T(H,) -=—j H;'(#)J(t) dt + Y51 a;Hy' (py)
0

is called a GL-statistic. For a discussion of the extremely wide scope of GL-statistics and
of the interest in considering them as a unified class, see Serfling (1981). In Section 3
below, the result of Section 2 will be used to derive a central limit theorem for GL-statistics
under mild conditions, extending the central limit theorems given in Serfling’s paper.

We close this section with some technical remarks concerning weak convergence, which
may be omitted on a first reading. In contrast to the conventional treatment of empirical
processes, the main result below is formulated (following Dudley, 1978) using the supre-
mum metric rather than the Skorohod topology discussed by Billingsley (1968). To avoid
measure-theoretic difficulties, we endow D[—o, ] with the sigma-field (Dudley’s %)
generated by the open spheres in the supremum metric, and we interpret weak convergence
in Dudley’s sense. A useful introduction to this notion of weak convergence is given by
Pollard (1982). Readers who prefer to work in the Skorohod topology should substitute
O’Reilly’s (1974) d, for p, below and replace the supremum metric by the Prohorov metric
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746 B. W. SILVERMAN

throughout. The proof then goes through in the same way, at least for Hr the uniform
distribution function.

2. The main result. Given a function ¢ on [—wx, ], define a distance p, on

D[—o, «], following O’Reilly (1974), by
pq(x, y) = sup; | {x(t) — ¥(£)}/q(®) |.

The main theorem of this paper is as follows:

THEOREM A. Suppose q(s) = q(1 — s) for 0 < s <%, and let v(t) = t'*/q(t). Assume
that
(1) q is increasing, continuous and non-negative on [0, %];
(2) v is increasing on (0, 2] and v(t) = 0 as t — 07;
(3) J3 {log(1/8)}'* du(t) < o.

Define y(x) = q{Hr(x)} for all x. Then, defining H, and Hr as above, n**(H, — Hr)
converges weakly in the py metric on D[—o, ©] to a zero-mean Gaussian process W*.
The covariance function of W* is given in (5) below, and W* is continuous at all
continuity points of Hr.

It is an immediate consequence of the tail condition (3) that, as ¢ — 0%,
v(t) = o({log(1/2)} /%),
while a sufficient condition for (3) is
v(t) = o({log(1/¢)}"**%) for some &> 0.
Thus the condition (3) is very slightly stronger than the condition
@ v(t) = o({log log(1/2)} %)

shown by Shorack (1979) to be necessary and sufficient for the i.i.d. case m = 1. It would
be interesting to know whether the conclusion of Theorem A still holds with (3) replaced
by (4); since the i.i.d. case is a special case for any m (set A(x1, « -+ +, X») = x;) it will never
be possible to improve (3) further than Shorack’s condition without imposing additional
conditions elsewhere.

ProorF oF THEOREM A. For each ¢, H,(t) is a U-statistic, and hence, by Hoeffding
(1948), the finite dimensional distributions of n'/*(H, — Hr) converge to those of a zero-
mean Gaussian process W* with

(5) EW*(s)W*(¢) = Xy Yx P{R(Xy) < s, h(Xx) < t} — m*Hy(s)Hr (2),

where the sum is over all J = (Ji, - - -, j») Which are cyclic rearrangements of (1, 2, - - -, m)
and all K = (ky, .-, k») which are cyclic rearrangements of (1, m +1,m + 2, .-+, 2m —
1). The notation A(X}) is shorthand for A(Xj,, - - -, X ).

Thus it only remains to prove tightness. Given any permutation a of {1, - -+, n}, follow
(5.1.6) of Serfling (1980) and define H(¢) to be the empirical distribution function of the
[n/m] (= integer part of n/m) random variables

h(Xaimjs), Xatmjr2rs + * +5 Xaimjsm) ;
for j=0,1, ..., [n/m] — 1. Write u(¢) = q(t)* here and subsequently and define
Z,(t) = n'*u(Hp(t)) {(Ha(t) — Hr(t)}
and
Z3(t) = n'u(Hr(t)) {H3(t) — Hr(2)}.
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For 0 < y < 1, define generalized moduli of continuity £, and Q5 by
Qu(y) = supacy | Zn(s) — Zn(?) |
and
Q5(y) = supacy | Za(s) — Z3(?) |
where
A(y) = {s, t:| Hr(s) — Hr(t) | = y}:

It is immediate that €, is the ordinary modulus of continuity (defined as in (8.1) of
Billingsley, 1968) of Z, - Hz' over the set Hp(—», o).

As in (5.1.6) of Serfling (1980), it is easy to see that, summing over all permutations a
of {1, M | n},

Zn=(n")"'YuZs
and hence that, for all y,
(6) () = (n!) 7' Ta Q3().

For any r, suppose F, is the empirical distribution function of r independent random
variables uniformly distributed on [0, 1]. Set Y(¢) = r/%u(t){F.(t) — ¢t} and let w} be the
(ordinary) modulus of continuity of Y, over [0, 1]. The process Hj is constructed from
[rn/m] independent random variables with distribution Hr and therefore the processes
Z%o Hp' and [n/m] *>n/2Y,/m) restricted to the set H o(—o, ) have the same distribution.
From the definitions of Q¢ and w/ it now follows easily that

EQi(y) = [n/m]™*n' *Ewfy/m(y)
with equality if Hr is continuous. Substituting the inequality (6) gives
(7) EQ.(y) = [n/m] *n* > Ewi/m(y).

In Proposition 1 below, the asymptotic behavior of w; will be investigated.
Substituting the result of Proposition 1 into (7) gives

(8) lim,_,olim sup,.«EQ,(x) = 0.

By using the expectation to give a bound on the tail probability, this implies, given ¢ > 0,
that there exists § > 0 such that

©) lim SUp,o P {R(8) > €} <.

Tightness of the family {Z,.} now follows by exactly the argument used to prove Theorem
(1.2) of Dudley (1978); compare Billingsley’s Theorem 15.5 and condition (4.1) of Pollard
(1981). The continuity of the limit process at continuity points of Hr follows by the same
argument as used in Billingsley’s theorem; see also the remarks on page 47 of Pollard
(1980) for a discussion of the continuity properties that the limit process will satisfy.
(Readers working in the Skorohod topology with uniform Hr can apply Billingsley’s
theorem directly; condition (15.17) is trivially satisfied.) This argument completes the
proof of Theorem A.[

The reason why our proof requires slightly more stringent conditions than those
required by Shorack (1979) seems to be that the condition (8), which we establish, is
sufficient but not necessary for condition (9), which is what is required for tightness.

It only remains to state and prove Proposition 1.

PROPOSITION 1. Defining wy as above, and assuming that q obeys the conditions of
Theorem A,

lim,_,olim sup, .. Ews (x) = 0.
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Proor. Define F, and Y, as above, and let w; and w; be the moduli of continuity of
Y, over [0, %] and [%, 1] respectively. Since w; and w; are identically distributed and w,;
< w1 + we, it suffices to prove the proposition with w. replaced by w;. As in most papers
dealing with || -/q || metrics, we shall consider the empirical process separately over
intervals [0, 6] and [6, %], for suitably chosen 6, depending on n. We first deal with the
interval [, %].

Similarly to (7) of Shorack (1979) and (24) of Silverman (1976a), apply Theorem 3 of
Komlos, Major and Tusnady (1975) to obtain suitable versions of F, and the continuous
Brownian bridge W? such that, for any 6 in (0, %), .

(10) E suppi<i2| Ya(t) — u(®) W(t) | < Cou(6)n *log n

where C, is an absolute constant for n = 2.

This bound is obtained by using Komlos, Major and Tusnady (1975) to give a bound on
the tail probabilities of sup | Y, — uW?°|. Expressing the expectation as an integral of tail
probabilities then gives the result (10); in terms of Komlos, Major and Tusnady’s constants,
the value obtained for C, by performing the integration is C + K/(A log 2).

The next lemma gives a limiting result for the modulus of continuity of u(t) WO(t).

LEMMA 1. Let ws be the modulus of continuity of u(t) W°(t) over [0, %]. Provided q(t)
= u(t)™! satisfies the conditions of Theorem A.
Ews;(x) >0 as x—0.
ProoF. The proofrests on a general result about the modulus of continuity of Gaussian
processes. Let W be a standard continuous Brownian motion such that
(11) u(t) WO (t) = u(t) W(t) — tu(t) WQ).

Let w# and w} be the moduli of continuity over [0, 1] of u(t) W(¢) and tu(t) respectively,
so that, from (11),

Ews(x) < Ew} (x) + wi(x)E| W(1)|.

By assumption tu(t) = t?v(t) is continuous on [0, %], and hence w(x) — 0 as x — 0. Thus
it suffices to prove that Ew3(x) —» 0 as x — 0.

Given s and ¢ with 0 < s < ¢ < !, use standard properties of W, and the assumptions
(1) and (2) that u(x) is decreasing and v(x) = x?u(x) is increasing on [0, %] to obtain

E{u(s)W(s) — u(t) W(t)}? = su(s)® + tu(t)® — 2su(s)u(t)

v(s)? + v(t)? — 2su(s)ul(t) < 2u(t)? — 2su(t)?
2t — s)u(t)® = 2(t — s)u(t — s)*

= 2u(t — s)* < 2u(y)*

if t — s < y. By the trivial generalization of Theorems 1 and 2 of Garsia (1972) given as
Lemma 2 of Silverman (1976b), w3 satisfies

w#(x) < Bov(x) + ¢ J {log(1/8)}' du(?),
. 0

where B, is a random variable with finite expectation and ¢, is a constant. The proof that
Ew#(x) tends to zero follows at once from the assumptions in Theorem A.[

The second lemma deals with the behavior of the standard empirical process on [0, §].

LEMMA 2. Defining F, as the empirical distribution function constructed from n
independent standard uniform random variables, and provided u(x) is non-negative and
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decreasing and xu(x) is increasing on (0, ‘%), it follows that

9

E supose=on? | u(t) {Fo(t) — t} | = 2n1/2f u(t) dt
0

for 8 in (0, %4).

Proor. Following page 475 of Wellner (1977), for 0 < ¢ < 4,

t

| (@) {Fu(t) — £} | < tu(t) + u(t)Fn(t) < 0u(@) +f u(s) dF,(s)

0

9

0
SJ'_ u(s) ds+j u(s) dF,(s).
0

0

Taking the supremum over ¢ and using the fact that

0 )
EJ u(s) dF,(s) = J u(s) ds
0 0

completes the proof. [

It is now possible to complete the proof of Proposition 1. Use (10) and Lemma 2 to
write
Ew.(x) =2E supgstsl/2| Yn(t) - u(t) Wo(t)l + Ewa(x) + 2E sup05¢50| Yn(t)l

0

(12) = O(n"?log n)u(f) + Ews(x) + 4n1/2f u(t) dt

0
1
< Ews(x) + O(n""*log n + n'/?0) f u(@s) ds
0

since u is decreasing. For any 8 < 1, it will be the case that

1 1
J (8s)"2log(1/6s)"'/* ds = 6"*log(1/8) ™/ J' s72{1 + log(1/s) /log(1/8)} ~* ds
0 0

1
= 0'1/2log(1/0)‘1/2J’ s7V% ds = 207*log(1/6) "/
0
and hence, since u(t) = o{t*log(1/t)""/?}, it follows that
1
(13) f u(fs) ds = o{60*log(1/6)"*} as 6— 0.
0

Now set § = n~'log n, so that n'/26 = n""*log n and
6710g(1/8) "% = n*(log n)~*(log n — log log n)™*/* ~ n'/*(log n) .
Substituting these results and (13) into (12) then gives
Ew:i(x) < Ews(x) + o(1) as n— oo,
so that, for each x,

lim sup,.-~Ew: (x) < Ews(x).
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Now apply Lemma 1 to complete the proof of Proposition 1.

Notice that, in the case of constant g, it is possible to put § = 0 and deduce the result
direct from (8) and Lemma 1. This gives a simpler proof of Theorem B of Silverman
(1976a).

It can turn out in certain special cases that the covariance in (5) is identically zero and
that the U-statistic H,, is, for all ¢, of the form discussed in Section 5.5.2 of Serfling (1980).
Theorem A will then give a degenerate limit. An example of such behavior is given in
Silverman (1978), where it is shown, for the case m = 2 and ¢ constant, that n(H, — Hr)
is tight. The extension of this result to general orders m and weight functions q is a subject
for possible future investigation.

3. An application to GL-statistics. The GL-statistics defined by Serfling (1981)
and in the introduction above are a generalization of L-statistics as discussed in Chapter
8 of Serfling (1980). In his 1981 paper, Serfling provides generalizations to GL-statistics of
the asymptotic normality results given in Theorems 8.2.4A and 8.2.4C of his 1980 book,
but no analog of his Theorem 8.2.4B. The following theorem fills this gap.

THEOREM B. Suppose the GL-statistic T, is as defined in the introduction above,
and that the following conditions are satisfied:
(i) o is bounded and continuous a.e. Lebesgue and a.e. Hz';
(ii) Hpr has positive derivatives at its pj-quantiles, for1 < j < d;
(ili) for some q satisfying the assumptions of Theorem A,

J q(Hr(x)) dx < oo

Then
n'*(T, — T(Hr)) — N(0, o*(T, Hr))
:in distribution, where o*(T, Hy) is as defined in (3.3) of Serfling (1981).

To prove the theorem, extend the proof of Serfling’s (1981) Theorem 3.1 in exactly the
same way as he proves his (1980) Theorem 8.2.4B; instead of using the result of O’Reilly
(1974) to deduce Serfling’s (1980) Lemma 8.2.4C, Theorem A above is used to deduce that
sup | (H, — Hr)/q ° Hr| = Op(n""?).

The remaining details of the proof are omitted.
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