CORRECTIONS

LARGE DEVIATION PROBABILITIES FOR SAMPLES FROM A FINITE POPULATION

By J. Robinson

Annals of Probability (1977) 5 913-925.

The results of Section 5 of this paper, while formally correct, do not refer to the statistic appropriate for one sample nonparametric tests as stated there. The statistic should be

$$Y_n = 2\Sigma (V_k - \frac{1}{2})a_k$$

where $p=q=\frac{1}{2}$ and a_k are all positive. Then, if G(x) is defined as the limit of the empirical distribution functions with jumps of $\frac{1}{2}n$ at points $\pm n^{1/2}a_k$, the results stated in that section hold for this statistic.

DEPARTMENT OF MATHEMATICAL STATISTICS UNIVERSITY OF SYDNEY NEW SOUTH WALES, AUSTRALIA 20006

Received March 1983.

APPROXIMATING IMRL DISTRIBUTIONS BY EXPONENTIAL DISTRIBUTIONS, WITH APPLICATIONS TO FIRST PASSAGE TIMES

By Mark Brown

Annals of Probability (1983) 11 419-427.

On page 425 a printer's error caused expression (4.23) to be repeated twice. The second expression (4.23) should have read:

$$(4.24) M(t) \le \frac{t}{\mu} + \frac{\mu_2}{2\mu^2}.$$

67 TINTERNE LANE SCARSDALE, NEW YORK 10583

Received July 1983.