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A MULTIDIMENSIONAL CLT FOR MAXIMA OF NORMED SUMS

By CHARLES HAGwooD AND HENRY TEICHER"®
University of Virginia and Rutgers University

It is shown that if S,; = Y%, X;,, 1 <j<d, k = 1 where (Xa, -+, X.a),
i = 1 are ii.d. random vectors with positive mean vector (u1, ---, pa) and
finite covariance matrix Z, then for any choice of @, in [0, 1), 1 = j < d the
random vector whose jth component is n%~"*(maxi<z<.Sk;/kY — wn'"%)
converges in law to a multinormal distribution with mean vector zero and
covariance matrix =, thereby extending a result of Teicher when d = 1.

1. Introduction. In [7], it was proved that if S, = Y i-1 Xi, n = 1 where {X;, i = 1}
are ii.d. random variables with mean p > 0 and finite variance o? then for any « in [0, 1)

S
) na_1/2(maxlsksn k_: _ ‘unl—a) —o Noo?

where Ny.> denotes a normal random variable with mean zero and variance ¢® and 2
signifies convergence in distribution. Note that (1) remains true trivially when ¢ = 0 if the
right side is interpreted in customary fashion as zero. ’

Here, it will be shown that (1) is susceptible of the following multivariate generalization.
To say that a vector is positive will signify that all of its components are positive.

THEOREM 1. IfSp= (Su, -+, Sk) =21 X, k=1 where X; = (Xu, -+, Xu),i=1
are i.i.d. random vectors with positive mean vector p. = (u1, - - - , la) and finite covariance
matrix X, then for any constant vector a = (ay, + -+ , aq) whose components lie in [0, 1)
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where N& 5 signifies a d-dimensional normal random vector with mean vector zero and
covariance matrix Z.

Note that the only moment constraints are that the means be positive and the variances
finite. If exactly r of the variances vanish then (2) is effectively a statement about a vector
of dimension d — r. Even in the case of primary interest r = 0, the covariance matrix need
not be positive definite.

2. Mainstream. In the course of establishing the theorem, a multivariate analogue
of a central limit theorem of Siegmund [5] will be proved and this, in turn, necessitates a
multivariate generalization of a result of Anscombe [2]. Define the stopping rules

@) T.;(a) =inf{n = 1:S,; > cn’}, ¢>0,0=a<L
Then, as is well known [4] when p, > 0, setting T, = T.,(a;) where 0 = aj < 1,1 <j=d.
1/1-a,
c
4) Tq/(;) —acel as co o, 1=j=d.
J
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THEOREM 2. Under the hypothesis of Theorem 1 if min;<j<ac; — % and
®) (/)™ ~ (e /pe) /™%, 1=j<k=d
then the random vector whose jth component is

(1 = a)[Te,; — (¢i/w) "]
(cj/uj)l/Z(l—aj)

converges in distribution to N§ 5.

As alluded to, the proof ultimately rests upon a multivariate version of a central limit
theorem for a sum of a random number of random variables.

THEOREM 3. Foreachj=1,2,---,dlet0<b. 1 ®as0<c! o andlet T, be
positive integer valued random variables such that as c;— ©,1<j=<d

(6) Te,j/be,j—prl, 1=j=d
where
(7) be,i/ber—1, 1=j<k=d.

Then, if Yi = (Yu, ++-, Yi), i = 1 are iid. random vectors with mean vector zero and
covariance matrix X,

4

—1/2 VT, —1/2 T, d
(8) (Tcl,{ Zi:l" Yi, oo, To )4 ,:’1“” Yid) —9 Nis.

Proor. It suffices to consider the case that all variances are positive. If k., ; = greatest
integer =< b, j, then k¢ — » as ¢;— o, 1 < j = d. In view of (7), m = ke,1 ~ ke, jy 1 S j <
d as min;<j<4¢; — © and so (6) ensures that as min; ¢; — «

(9) T, ;/m—pl, 1=j=d.
Now, setting V(m,j) = Y7, Y;;

V(T i) _ ( m )1/2[V(m,j) L V(T ) = V(m,j>]
T; \Toy) [T " '

(10)

Forj=1,2, ..., d, via Kolmogorov’s inequality and (9), the second term within brackets
converges in probability to zero as min;c; — «. Moreover, the vector whose jth component
is the first term within brackets converges in distribution to N¢ 5. It follows that the same
is true for the vector whose jth component is the left side of (10). O

A condition such as (7) is needed if the covariance matrix of the limit distribution is to
remain unchanged [6].

ProoF oF THEOREM 2. To reduce the level of subscripts, denote S,; by S(n, ).
According to (4) and Theorem 3, the random vector whose jth component is

{T (El >l/l_a’}l/2[S(Tc,,j’j) —(Hch,,j):] _ S(Tq,j,j) - Q’T:)',j CjT:{J - [J,ch]’j
"o T @/m) T g ) T

c
conve.‘ges in distribution to N s. However, for 1 <j < d as ci— ®

S(TJ, s J) — C‘T:’,‘ Xr, ] N\ Vi-a1/2
0=—r T = o | Tes(2 —ac. 0
(cj/w) 20 T2 py

in view of Y5-1 P{X}, > ne} < », ¢ > 0. Hence recalling (4), the vector whose Jjth
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(¢i/) E—a) (/1) 172(1—a,)

_ =1 — o) Ty — (/)" *1(1 + 0(1))
(ci/m) 720

component is

converges in distribution to N§ s as minjc; — o which is tantamount to the conclusion of
Theorem 2.
We are now in a position to proceed with the

ProOF OF THEOREM 1. For x;# 0,1 <j =< d, define
(11) ¢ =ci(n)=n"w + xn'2.
Then, setting g; = (¢;/w) /20-4) /u; (1 — o),

(12) (G/w)""™—n~gqx, 1=j=d

as n — o and, in particular, (5) holds as n — . Consequently, Theorem 2 is applicable
and so

Sk, _ _ Sk.j
P{n}il [maxlsksn L — 'Y= 4n'?7Y | b = PANGL| maxicren——= < ¢

k% kY
(e ) Yy — e\ V1,
= P{NLi[Te;>n]} =P{ﬂ}”=1 [T”“’ (c;/"’) > ("’2“’) ]}
J J

- q)d(xly cecy Xds 2)

as n — o where ®;(x;, - - -, x4; 3) denotes the normal distribution with mean vector zero
and covariance matrix X. [
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