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INDEPENDENCE VIA UNCORRELATEDNESS UNDER CERTAIN
DEPENDENCE STRUCTURES'

By KumMaR Joac-DEvV
University of Illinois

A characterization of independence via uncorrelatedness is shown to hold
for the families satisfying positive and negative dependence conditions. For
the associated random variables, the bounds on covariance functions obtained
by Lebowitz (Comm. Math. Phys. 28 (1972), 313-321) readily yield such a
characterization. An elementary proof for the same characterization is also
given for a condition weaker than association, labeled as “strong positive
(negative) orthant dependence.” This condition is compared with the “linear
positive dependence,” under which Newman and Wright (Ann. Probab. 9
(1981), 671-675) obtained the characterization.

1. Introduction and summary. Among various notions of positive dependence, that
of association has proved to be quite useful. Esary, Proschan and Walkup (1967),
introduced this concept to obtain bounds related to coherent (co-ordinatewise increasing)
functions occurring in the theory of reliability. The defining property for a random vector
X=(Xy, +-+,X,) (or more appropriately, its distribution) to be associated is that for f, g
co-ordinatewise nondecreasing

(1.1) cov[f(X), g(X)] = 0.

In a completely different context, namely, the Ising model of statistical physics, Fortuin,
Kasteleyn and Ginibre (1971) proved a similar inequality, which is well known now as the
FKG inequality.

Since association represents a strong positive dependence, weaker concepts have been
considered in the literature. As pointed out by Shaked (1982) many of these can be viewed
as variations of the classes from which f, g are chosen and then (1.1) is imposed. There is
also a negative analogue of the concept of association, (see Definition 2.3), for example, as
in Joag-Dev and Proschan (1982).

The classes of multivariate distributions defined by these notions of positive or negative
dependence for (Xi,  + - , X,.), invariably contain those where X; are mutually independent.
It is of some interest to see whether, in such classes, the simple condition of uncorrelat-
edness characterizes mutual independence.

Newman and Wright (1981) obtained certain bounds which implied such a characteri-
zation. In fact, their dependence condition, which can be described as “linear positive
dependence” (see Definition 2.2), is weaker than the association. However, their proof is
based on characteristic functions and is not elementary. An even more involved proof of
the characterization for independence among the associated random variables was given
by Wells (1977).

In this note, we point out a proof based on very elegant bounds (not so well known to
probabilists and statisticians) obtained by Lebowitz (1972). These bounds readily provide
the desired characterization of mutual independence for the class of associated or nega-
tively associated random variables. Another notion of positive (negative) dependence
weaker than association, called “strong positive (negative) orthant dependence” (see
Definition 2.1), is shown to yield an elementary proof for the required characterization. It
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is shown that this concept of dependence is neither weaker nor stronger than linear positive
dependence considered by Newmann and Wright (1981).

In what follows, a function defined on R" — R will be said to be “increasing”
(“decreasing”) if it is co-ordinatewise nondecreasing (nonincreasing). The conditions of
dependence, such as association etc. really apply to distributions, however, whenever
convenient, we might express this by saying that X is associated or X; are associated.

2. Concepts of dependence. Let X = (Xy, ---, X,,) be a random vector with 7 real
components. In the following definitions, A will denote an arbitrary proper subset of the
indexset 1,2, ---, n, A its complement and ¢ = (ci, - - -, ¢,), a vector of constants.

DEFINITION 2.1. A vector X is said to be strongly positively orthant dependent
(SPOD) if for every A and e, the following three conditions hold.

(2.1) P[X=c]=zP[X;=c,i€ AIP[X;=c¢,jE A].
(2.2) PX=c]zP[X;=c,i€ AJP[X; = ¢,jE A].
and

23) PlXizc,i€A, X;=<¢,jEAl=P[X;= ¢, i€ AIP[X;< ¢,jE€ A].

The vector X on the other hand, is said to be strongly negatively orthant dependent
(SNOD) if the reverse inequalities between the left and right sides of (2.1), (2.2) and (2.3)
hold for every c.

REMARK. For n = 2, the inequalities (2.1), (2.2) and (2.3) are all equivalent and a pair
of random variables satisfying such a dependence condition is said to be Dpositively
quadrant dependent (PQD). Its negative analog is known as NQD. Also note that the
conditions (2.1) — (2.3) are variations of (1.1) where f, g are indicators of upper or lower
orthants. The condition (2.1) clearly implies “positive upper orthant dependence” (PUOD)
which requires

PX=c]= H;;l PlX; = ¢].
In the same way (2.2) implies “positive lower orthant dependence”, (PLOD). Thus SPOD

implies PUOD and PLOD. A similar statement can be made for the negative dependence
conditions.

DEFINITION 2.2. A vector X is said to be linearly positively quadrant dependent
(LPQD) if for every pair of non-negative vectors r, s, and for every A, the pair Yiear:X;,
ZjeASj.Xj is PQD.

DEFINITION 2.3. A vector X is said to be negatively associated if for every pair of
increasing functions f and g, and for every A,

(2.4) cov[f(X;,i€ A), g(X;,je A)]=0.

REMARK. The concept LPQD is somewhat similar to one of those introduced by
Shaked (1982) while that of negative association has been introduced by Joag-Dev and
Proschan (1983).

LeEMMA 1. Neither of the two conditions SPOD and LPQD implies the other.

Proor. Throughout this proof p (x:x2x3) will denote P[X; = x;, i = 1, 2, 3]. Consider
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a vector (Xi, Xz, X3) with the following joint distribution:
p(000) = p(121) = %4,
p(021) = p(100) = %s,
p(011) = p(020) = p(101) = p(110) = %4.

It can be checked that (X, X;, X3) is SPOD. The number of inequalities to be verified is
reduced substantially by observing that (X;, Xz, X3) has the same distribution as (1 — X,
2 - X5, 1 — X;). However,

Yu=PXi=z1,X+X:=22]<P[Xi =2 1]P[Xz: + Xs=2] =%,

establishing that (X;, X5, X;) is not LPQD.
To show that LPQD does not imply SPOD, again we consider a trivariate distribution.
Note that LPQD condition is equivalent to

(2.5) PrX;+rX;=c|Xe= ] = P[rX; + riX;= c1]

holding for arbitrary r; > 0 and each pair (ci, cz). Here, (i, j, k) are permutations of (1, 2,
3).

At this stage it should be noted that a bivariate distribution having four or six atoms on
a lattice, as in the above example, has the following property. For every upper (lower)
quadrant containing one or more atoms, there corresponds an upper (lower) half plane,
defined by a line with a negative slope, which contains exactly the same atoms. For a
trivariate distribution, the SPOD conditions (2.1) — (2.3) could be given the conditional
form as in (2.5). In view of the above observation, failure of SPOD condition for some
quadrant would imply the failure of (2.5). Thus to produce the required example, we are
forced to look at the trivariate distributions where at least one set of the conditional
bivariate distributions has nine or more atoms.

Consider the following distribution described by conditional distributions of (X;, X)
given X;. The entries in the two tables are probabilities. Those on the left are multiplied
by 72 and on the right by 48.

Given X; =0 Given Xz =1
21 3 5 10 2|6 4 8

1| 6 6 5 116 0 4
X2olos 6 3 X018 6 6
01 2 01 2

X1 Xl

Further, P[X; = 1] = %, P[X; = 0] = %.

It can be verified (by a somewhat tedious process) that (Xi, X;, X5) is LPQD. Notice
that (X1, X2, X5) has the same distribution as (X2, X1, X5) and this symmetry considerably
reduces the number of verifications. However,

%s=P[X;=1,i=1,2,3]<P[Xj=1,j =1, 2] X P[Xs = 1] = %o,
and hence (X;, Xz, X3) is not SPOD.
3. Characterization of independence. Let X be a random n-vector with real
components X; and Z; be the indicators of the events X; = c;, where c; are arbitrary

constants. Let A, B be proper disjoint subsets of the index set {1, 2, ---, n}. Using the
notation,

UA) = HieA Zi, V(A) = YieaZ;,
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define
H(A, B) = cov[U(A), U(B)].
It follows that
cov[V(A), V(B)] = Yica Y jes H(, j),

where H(i,j) = H({i}, {j}).
Note that if X is associated then every pair (X;, X;) is PQD and hence H (i, j) = 0.
Similarly, for negatively associated X, the covariances H (i, j) < 0.

THEOREM 1 (Lebowitz). IfX is associated then
(3.1) 0=<H(A, B) < Yiea Y jes H(i, j).

For negatively associated X the above inequalities are reversed.

Proor. Note that V(4) — U(A), U(A), V(A) are increasing functions of Z;. Further,
due to inheritance of association of Z from X, it follows that

(3.2) cov[V(A) — U(A), V(B)] = 0,

(3.3) cov[V(B) — U(B), UA)]=0

so that

(3.4) cov[U(A), U(B)] = cov[U(A), V(B)] = cov[V(A), V(B)].

The first term in (3.4) is non-negative due to the association property of Z and thus (3.1)
follows from (3.4). The assertion for negatively associated X follows by observing that the
inequalities (3.2) — (3.4) are reversed.

CoroLLARY. IfXi, ..., X, are associated (negatively associated) and uncorrelated
then X; are mutually independent.

Proor. It was shown by Lehmann (1966) that if a pair of random variables is PQD
(NQD) and uncorrelated then the random variables in the pair are independent. Thus it
follows that X,’s are pairwise independent which in turn implies that H (i, j) = 0 for i # j.
From Theorem 1, it follows that H(A, B) = 0, for every pair of disjoint sets. Since c;,
+++, ¢, which defined Z; were chosen arbitrarily, it follows X;’s are independent.

THEOREM 2. If (X, ..., X,) is SPOD (or SNOD) with X;, X; uncorrelated, then the
X; are mutually independent.

Proor. We use the same notation for Z, as in Theorem 1. Recall that the assumption
SPOD (SNOD) implies PQD (NQD) for every pair X;, X;, i # j and hence uncorrelatedness
would imply pairwise independence for X; and hence for Z;,i =1, ..., n.

First the result for n = 3 will be established. The general result would then follow by
induction. Let p; = P[Z; = 1] and as in Section 2, p(110) be the probability of Z; = Z, = 1,
Z3 = 0 etc.

From (2.2) and the pairwise independence, it follows that

(3.5) p(101) < p: (1 — p2)ps.

In general, a similar inequality holds whenever a triplet contains both 0 and 1. For
example.

(3.6) p(001) = (1 — p1)(1 — p2)ps.

However, these have to be equalities, because if not, combining (3.5) and (3.6) it would
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follow that
(3.7) P[Zz = 0, Z3 = 1] < (1 —pz)p3,

violating the pairwise independence.
The only terms with possible reverse inequalities (apply (2.1) and (2.2)) are

(3.8) p(111) = p1psps
and
(3.9) p(000) = (1 — p1)(1 — p2)(1 — ps).

But again these have to be equalities since the sum of the right and left sides of all
these expressions has to be 1.

For the induction step, one may assume that every subset of cardinality (2 — 1) has
random variables which are mutually independent. This will lead to inequalities similar to
(3.5) and (3.6), for every k-tuple having both a 0 and a 1. The rest of the argument is
identical.

The assertion with SNOD condition follows by reversing all the inequalities.

REMARK. For any notion of positive dependence which transmits those .conditions to
the indicators Z; defined above, the characterization of independence will have to hold for
these binary variables. If the inequalities such as (3.5) or (3.6) do not go in the same
direction, one could assign probability mass such that all others are equalities while the
mutual independence fails because of those terms. In this sense, the inequalities defining
the positive (negative) dependence seem to be necessary.

Finally, consider the classical Bernstein example where a tetrahedron has 3 sides with
3 distinct colors and the fourth has stripes of all three. If X; denotes the indicator of the
presence of the ith color at the bottom of the tetrahedron (after a toss) then it is well
known that the X;’s are pairwise independent but not mutually independent. It is interest-
ing to note that the X;’s are (strictly) PUOD as well as NLOD. This illustrates that weak
positive and negative dependence may hold at the same time, and in spite of the pairwise
independence, the mutual independence might fail.
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