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TIGHTNESS OF PROBABILITIES ON C([0, 1]; ") AND D([0, 1]; &’)

By ITaArRUu MitoMa

Kyushu University

Let Cy - = C([0, 1]; &’) be the space of all continuous mappings of [0, 1]
to &', where &%’ is the topological dual of the Schwartz space & of all rapidly
decreasing functions. Let C be the Banach space of all continuous functions
on [0, 1]. For each ¢ € & I1, is defined by Il;:x € Cs - — x.(p) € C. Given a
sequence of probability measures {P,} on Cs. such that for each ¢ € ¥,
{P.I1;'} is tight in C, we prove that {P,} itself is tight in Cs . A similar result
is proved for the space of all right continuous mappings of [0, 1]
to &L’

1. Introduction. Recently some types of limit theorems for % ’-valued stochastic
processes connected with the system of infinite particles have been studied by several
authors [3], [4], [6], [10] and others. In this paper, motivated by their works, we will give
a simple sufficient condition for the tightness of a certain class of %’-valued stochastic
processes. We will discuss our purposes in a context of E’-valued stochastic processes,
where E’ is the topological dual of a nuclear Fréchet space E. Of course .%’-valued
stochastic processes are typical examples of them.

Let Cgz- = C([0, 13; E’) be the space of all continuous mappings of [0, 1] to E’. For
¢ € E, we denote by I1; the mapping of Cg' to C(= the space of real continuous functions)
defined by

IL:x€Cr— (x.,¢) EC,

where (x, £) denotes the canonical bilinear form on E’ X E. We are concerned with the
tightness of a sequence of probability measures {P,} on Cz.. We will prove in Section 3
that if for each ¢ € E, the sequence {P,I1;'} is tight in C, {P,} itself is tight in Cz-. In the
course of the proof, the nuclear property of the space E plays an essential role like in the
case of the Minlos-Sazonov theorem. A similar result will be discussed for the space of all
right continuous mappings of [0, 1] to E".

As an application of these results, we will discuss the convergence of sequences of E’-
valued stochastic processes (Theorem 5.3).

2. Spaces of C([0, 1]; E") and D([0, 1]; E’). Let E be a Fréchet space whose
topology is defined by an increasing sequence of Hilbertian semi-norms |- | < | - ||
<...=|.||p=---.Let E, be the completion of E by | - | », E, the topological dual of E,
and || - ||, the dual norm of E,. The space E is called nuclear if for each n € N (natural
nifmbers) there exists a natural number m > n such that the canonical mapping 1 mn; En
— E, is nuclear (Schaefer [8]). We always assume that E is a nuclear Fréchet space.

Since E is separable, there exists a countable dense subset {£;} of E. For each n € N,
we choose a complete orthonormal system {e}} of £, by the Schmidt orthogonalization of
{&} successively. Then it is evident that

2.1) & =YD g (i)e? + 07, where m(n, i) < i
and || 67|, = 0.

Let Cz = C([0, 1); E’) and CE,; = C([0, 1]; E},) be the spaces of all continuous mappings
of [0, 1] to E’ with the strong topology and of [0, 1] to E, with the | - |-,-topology
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990 ITARU MITOMA
respectively. Let {| - x; A € A} be the set of semi-norms defining the strong topology of E’.
Set

[ %[l = supe| x:|x, x € C-.

(Except for the case where we write the index set of £, the supremum is taken over [0, 1].)
We will introduce on Cz- the projective limit topology of {]|| - ||[x; A € A}. Then Cz becomes
a completely regular topological space. Of course Cg; is the Banach space with the uniform
norm topology.

To characterize the compact sets of Cr, we prepare the following moduli. Let C be the
Banach space of all real continuous functions on [0, 1].

The modulus of continuity of f € C is defined by

W(8) = sup,e-si<s| F(£) — f(s)], 0<d8<L1.
For g € Cr and h € Cg;, the moduli are defined similarly as follows;
We(8; ) = supji—si<s| (8, §) — (&, €)|, 0<S<LEEE,
Wh(8; p) = sup) e—s|<sllhe — Asl|-», 0<S8<1.
Now we will show:

ProPOSITION 2.1. If A is compact in Cg, then there exists a p € N such that A is
compact in Cg;.

ProoF. For each ¢in E the set {(x., £); x € A} is compact in C by the assumption. By
the Ascoli-Arzela theorem, the following properties hold:
(2.2) Supxeasupe| (x:, £)| < +oo.
(2.3) lilns—mSllpxeA Wx (8; g) =0.

Then the Banach-Steinhaus theorem and (2.2) tells us that there exist a ¢ € N and an
L > 0 such that

supxeasupe| (xe, £)| =< L||£|,-

Since E is nuclear, there exists a natural number r > ¢ such that ¥, || e/||3 < +, so that
we have
o4 SUpxeasup| x:||%, = supseasup:(¥F-1 (x:, €j)?)

' = S5 LYeflf = 1< +o.

Since sup.ca W:(8; e])? < 4L?|| ¢}||%, then by (2.3) and the Lebesgue convergence theorem
we get )

lims_,o8upxea W (8; r) = lims_,0SupseaSUp | e—s|<s (X 7=1 (% — x5, €5)%) 2
(2.5) < lims_,o (Y51 supzea W (5; €7)%) '/
= (71 limsosupsea We(5; €/)%) /2 = 0.

Again since E is nuclear, there exists a natural number p > r such that Y%, || e?||Z < +oo.
Then it follows from (2.4) that

limy e Y-~ SUpPzeasup (X, €f ) < limy_. 35~ I ef[|7 = 0,
so that
(2.6) the set {x;; x € A} has compact closure in E}, for each ¢t € [0, 1].
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Since ||  [|-- = || - ||-», by (2.5) we get
2.7 lims_,osupxeca Wx(8; p) = 0.

Therefore by (2.6), (2.7) and the Ascoli-Arzela theorem, we obtain that A has compact
closure in Cg;. But A is automatically closed in Cg, by definition of the toplology on Cg.
Thus the proof is completed.

Let Dz = D([0, 1]; E’) be the space of all mappings of [0, 1] to E’ that are right
continuous and have left-hand limits in the strong topology of E’, and Dg, = D([0, 1]; E})
be the complete separable metric space with the Skorohod topology of all mappings of
[0, 1] to E}, that are right continuous and have left-hand limits in the || - |,-topology. Let
® be the set of all strictly increasing continuous mappings of [0, 1] onto itself. Following P.
Billingsley [2], (page 112), set

o(t) — ¢(s)

1
o8 t—s

}, x,y € Dg.

d(x,y) = inf¢e¢>{8upt| X = Yooy |\ + SUDzss,g,s€(0,1]

We will introduce on Dz the projective limit topology of {di(:, :); A € A}. Then Dg also
becomes a completely regular topological space.
To characterize the compact sets of Dz we prepare the following moduli. Let D be the
usual Skorohod space of all real right continuous functions with left-hand limits on [0, 1].
For f € D, a modulus corresponding to the role of the modulus of continuity in C is
defined by

W;(8) = inf,,ymaxi<i<.sup{|f(t) — f(s)|; t,sE [t.-1, t:)}, 0<d <1,
where the infimum is taken over the finite sets {¢;} of points satisfying
O=t<t<--<t=1 t—t.1>6, i=12 ---,n.
For g € Dg, the moduli are defined similarly as follows;
We(8; €) = infy,ymaxi<izasup{| (g, §) — (&, §)|; £, s € [t-1, 1)},
0<é<1, ¢(€E,
Wi (&1, &, -+, ém)) = infi,y maxicicnsup{(T1 (& — &, £) )% 8, S € [6i-1, 1)),
0<é<lL§€EEj=1,2,--4,m.

ProPOSITION 2.2 If A is compact in Dy, then there exists a p € N such that A is
compact in Dg;.

Proor. For each {in E the set {(x., £); x € A} is compact in D by the assumption.
Then by Theorem 14.3 of [2], we have

(2.8) SuprAsuptl (xt, 5) | <+
and
2.9) lims_,osupzea W% (8; £) = 0.

Therefore by (2.8) and the argument quite similar to the above proof we get that there
exists a p € N such that

(2.10) Supxeasupe|| x¢[|-, < +oo,

(2.11) Hmy_w 35~ Supceasup:{x:, e?)% =0,
By making use of (2.9) we will prove that for each m € N,

(2.12) lim,_,osup.ca Wi(5; (ef, ef, - -+, er)) = 0.
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For g € De we will define the following moduli;
We (8; §) = sup{min(| (&, §) — (&4, §) |, | (84, &) — (&, ) |);
Osth<t=tb=<1,|t—6|<8},0<8<L{(EE,
W5 (85 (b1, &, -+, én)) = sup{min((T7e1 (& — &, £)D)Y% CFr (8, — &, 6D
Ostist=st=<1l|t—t| =<8},
0<8<1,§{€EE j=1,2---,m.

Then by Lemma (A.28) (page 391) of R. Holley and D. W. Stroock [3], for each m € N
there exist 7*,i=1, 2, ..., by such that

(2.13) Wz (5; (ef, eb, -+, en)) < 28upi—1z,....k. Wg (8; 7T'),

where 77 = Y7, a%e? and a7, j = 1, 2, -+ -, m are real numbers. Since Wg(§; §) =
W5 (8; £) (page 119 of [2]), then for each m € N, by (2.9) and (2.13) we have

lim, ,oSupzca W7 (8; (eP, ep, -+, eh)) =0,
(2.14) liInsﬁosupxeA Sup{(z;';l (xt - Xs, ejp>2) 1/2; t’ s€E [0’ 8)} = 0’
lims_,osupxeasup{ (X 71 (x: — x5, eF)) V% t,s€[1 -6, 1)} =0..

Hence by the argument similar with the proof of Theorem 14.4 (page 119) of [2] and (2.14),
we get (2.12).

Now we will prove that A is totally bounded with respect to the metric d(-, -) defined
by

d(x, y) = infseo {sup:|| x: — yo0|l-» + supe| 6 (¢) — |}, x,yE Dpg,.

For any ¢ > 0, by (2.11) there exists an N € N such that
2
€

(2.15) Y= N, SUpzeasup:(x:, €8 )% < 6

If we change ¢, « and W (8) in the proof of Theorem 14.3 of [2] for ¢/4N, supxe 4 sup:|| x¢||-»
and W%(8; (el, e5, ---, e¥,—1)) and follow that proof, we see that there exists a finite
subset B C D and for each x € A there exists a ¢ € ® satisfying the following property:
(2.16) For each (x.,e?),(j=1,2, ---, No — 1), there exists a y; € B such that
3e
supe| () — (xp, €7 ) | + supe| () — t| <.
4N,

Let {x?} be a sequence of elements in E}, such that (x7?, e?) = §;;, where §;; = 1ifj =

iand 8; = 0if j % i. Set y =Y 7! y;x%, then y EDg, and by (2.15) and (2.16) we have

d(x, y) < sup: (T (3(8) — (Xovr, €2))% + T 7=ny (Xst0, €7)7)/2 + supe|o (t) — ¢]
= Yo7 (supe| yi(8) — (%o, €7 ) | + supe|$ (£) — t|) + CF=n, sup: (% , €F Y22

3e &
< (No—1) 4N0+Z<£'
This shows the totally boundedness. The rest of proving that A has compact closure in Dg;
is quite similar to that in the proof of Theorem 14.3 of [2], which completes the proof
similarly as before.

Before we proceed to the following sections we give the definitions of weak convergence
and tightness of probability measures P,, n € N and P on %, which denotes the Borel field
on a topological space Z. Let X", n € N and X be Z-valued random variables.

If [z fdP, — [z fdP for every bounded continuous real function f on Z, we say that P,
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converges weakly to P and write P, = P. If the distribution P, of X" = the distribution
P of X, we say that X" converges in law to X and write X" —» X. The sequence {P,} is
said to be tight in Z if for any ¢ > 0 there exists a compact set K of Z such that P,(K) =1
—¢foralln=1.

3. Tightness in C([0, 1]; E’). Let {P.} be a sequence of probability measures on
(Cg, %c,.). For each £ in E we denote by II; the mapping of Cz to C defined by
IIizx € Cr— (x.,¢) €C.
Then we have
THEOREM 3.1. Suppose that for each ¢ in E the sequence{P,I1;'} is tight in C. Then
the sequence {P,} itself is tight in Cg.

ProoF. Since the sequence {P,I1;'} is tight in C, by Theorem 8.2 of [2] the following
two conditions hold:

(3.1) For each ¢ > 0 there exists an a@ = a; such that
PI;NfE C;sup:| f(t)| > a)
= Pu(x € Cg/;sup:| (x:,§)| >a)<e, n=1.

(3.2) Foreach e>0and p > 0, there exist a § = §, (0 < 8 < 1) and an no = no(¢) € N such
that

PILGNfEC;, Wi8) =€) = Po(x € Crr; Wal8;€)=¢) <p, n=no.
By (3.1) we get

LEMMA 3.2. For any e > 0 there exist an r € N and an M, (0 < M < +») such that
(3.3) P.x € Cg; sup; || x| -r=M)=1—-¢/2, n=1.

This lemma is proved along the same line of the proof of Theorem 1 of [7] so that we
give a sketch of the proof.

To prove this lemma we use

LeEMMA 3.3. For any p > 0 there exist a ¢ € N and a 8 > 0 such that

HE
8

(34) supnj sup;|1 — e | dP,<p + 2
C,

o
ProoF. To prove the lemma we will introduce the following;

M(®) = supn f sup (20 1 yp e,

o 1T supe | (xz, £) |

Then M(£) has the following properties.

1) M(¢) =0 and M(—¢§) = M(£).

2) M(¢+ 1) = M) + M(n) for any £ nin E.

3) M(¢) is a lower semi-continuous function on E.
4) lim,..M(¢/n) =0.

Properties 1), 2) and 3) are proved by a manner similar to that of [7]. For the proof of 4),
we proceed as follows. For any ¢ > 0, by (3.1) there exists an mo = mo(¢£) € N such that
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Sup. Pn(x € Cg; sup;| (x:, &) | >x/nTo) <& Then if m > my,

M( ¢ ) _ Supn< J sup |z, &/m) |

(XECx-;sup| (x,8)|= Vm) 1+ sup.| (x, §/m) |

+ j sup | (x, §/m) | dPn)
(xECE';SUptl(xl,§)|>‘/77L} 1+ Sup‘l <xt’ g/m> I

1 1
= + sup, Pr(x € Cg; sup;| (x¢, &) >~/ﬁ)<———-+e.
I s supe] 3 8| I
Letting m — o, 4) is proved.
Therefore Lemma 1.2.3. (page 386) of D. Xia [11] tells us that the properties 1), 2), 3)
and 4) imply that M(£) is continuous at 0 in E. Thus the rest of the proof is similar to that
of Lemma 1 of [7].

PrOOF OF LEMMA 3.2. For ¢ > 0 set p = (Ve —1)/8Ve)e in Lemma 3.3. Since E is
nuclear, there exists a natural number r > ¢ such that ¥7; || e} |2 < +o. Then by the first
half of the proof of Lemma 2 of [7], it holds for any n € N that

Ve 1 | e
P,(x € Cg; sup; Y51 (%1, €7)2 > h?) < Te:—l (p + = 57 (2; 1}|L|2 ¥ "q))

Letting £ tend to sufficiently large M, we get

v

3.5) Sup, Pn(x € Cg; sup: Y31 (x¢, €7)2 > M?) < 2 ¢ p==.
Ve—1" "4

By changing e for 6] in the above estimation, we have

(3.6) inf, Po(x € Cg:; sup, Y751 (X, 07)2 = 0) = 1 — (¢/4).

By (3.5) and (3.6) we have
inf, P,(x € Cg; sup; | ¢ |- = M) = 1 — (¢/2).

This completes the proof of Lemma 3.2.

We will now return to the proof of Theorem 3.1. Let ¢, » and M be the same as those in
Lemma 3.2. Take a natural number p > r such that Y71 || e? || 2 < +o. For each e?, by (3.2)
choose K; C Cg such that

37 PAK)Z1-55m, n=1,
(3.8) lims_,osup.ex; Wx(8; e?) = 0.
Put K = {x € Cg; sup; || || - = M} N {N%1 K;}. Then we get
(3.9) P,K)=1-—¢ n=1.

Then by the argument similar with the proof of Proposition 2.1, we get
SUpPxexsup: || ¢ || - = M < +oo
and
limSaosuprK W.(8; p) =

Thus K has compact closure in Cg;. Since the injection of Cg; into Cg is continuous, the
closure of K in Cg; is compact in CE This, together with (3 9), completes the proof of
Theorem 3.1.
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4. Tightness in D([0, 1]; E’). Let {P.} be a sequence of probability measures on
(Dg', #Bp,.). For each £ in E we also denote by II; the mapping of Dz to D defined by

Il;:x € Dgr— (x.,£) € D.

Then we have

THEOREM 4.1. Suppose that for each ¢ in E the sequence {P,I1;'} is tight in D. Then
the sequence {P,} itself is tight in Dg-.

ProoF. By the assumption of the theorem and by Theorem 15.2 of [2], the following
two conditions hold:

(4.1) For each ¢ > 0 there exists an a = a; such that
P,II;(f€ D;sup:| f(t)| > a) = Pu(x € Dg/; supe| {x:,£)| >a)<e, n=1

(4.2) For each e >0 and p > 0, there exist a § = &, (0 < § < 1) and an no = ne(£¢) € N such
that

PII;'(fED; Wi(8) =¢) = Pu(x €E Dp; Wi(8;€) =€) <p, n=no.

By making use of (4.2), for each j € N we choose K; C Dz which plays the role of K;in
the proof of Theorem 3.1 as it satisfies the following properties;

lim,;_,osup»ez?, Wi(; e?) =0,
lims osupseg Wi(8; 71) =0, i=1,2, ---, k;.

Then the proofs of Proposition 2.2 and Theorem 3.1 tells us that the sequence {P,} is
tight in Dz, which completes the proof.

5. Application. For elements &, &, -+ - , &, in E and points ¢, ¢z, -+ , £, in [0, 1], let
l'I"'l 52 “&n be the mapping that carries the point x of Cz: or Dg to the point ({(x:, 1),

(xtz, $2), <+, {x:, &n)) of R™ where R™ is the m-dimensional Euclidean space. Then we
have

PROPOSITION 5.1. Let {P,} be a sequence of probability measures on Cg-. If for each
¢in E the sequence {P,I1;"} is tight in C and for any finite elements ¢, &, «++ , énin E
and points t,, ta, + -+ , tn in [0, 1],

P, (ITévéee - ém)™ :Qflfz ----- £
1

ttaye -y tm oy es tm ®

where @}

measure P on CE such that P, = P.

é'" is the probability measure on R™, then there exists a unique probability

Proor. By the assumption that {P,II;'} is tight in C and by Theorem 3.1, we get
{P,} is tight in Cg-. Proposition 2.1 implies that compact subsets of the completely regular
topological space Cg- are all metrizable, so that by Theorem 2 of Section 5 of Smolyanov
and Fomin [9], each subsequence of {P,} contains a further subsequence converging
weakly. Take two subsequences {P,:} and {P,:} of {P.}. Then {P,:} contains a subse-
quence {P,:} converging weakly to @; and {P,:} contains a subsequence{P}:} converging
weakly to @.. By the hypothesis that

p(n£1$2 £,,,) —__—)Q§|§2v"':§m

tilyy o otm
for any finite elements &1, &, -+ -, & in E and points ¢, te, -+, £, in [0, 1], we have

QUi i)™ = Qu(ITérfe )™
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Taking Cgr = U%-1 Cg,, which is easily derived from the argument in the proof of
Proposition 2.1, into account, it is easily seen that the class of all cylinder sets having the
form {x € Cr; (x4, &1), (xe, &), ++ -, (%, &n)) € A, A € Bp-} generates Bc,. Thus we
have @, = @, which completes the proof together with Theorem 2.3 of [2].

By Theorem 4.1, similarly we have

PROPOSITION 5.2. Let {P,} be a sequence of probability measures on Dg-. If for each
¢in E, the sequence {P,I1;'} is tight in D and for any finite elements &1, &, -++ , émin E
and points ty, tz, -+ , bty in [0, 1],

[ SUEEN £ Epégpees fm
P(]’Inz m) =>Q12 o

titye .

~where Q{7 "in is a probability measure on R™, then there exists a unique probability
measure P on Dg such that P, = P.

Now we will give the theorem of convergence in law for a sequence {X" = {X};
t € [0, 1]}} of E’-valued stochastic processes. For each ¢ in E we denote by X? the real
stochastic process {(X7, £); ¢ € [0, 1]}. Then we have

THEOREM 5.3. 1) Suppose that the sample paths of X" are elements in Cg for every
n € N. Further suppose that for each £ in E the sequence of distributions of X} is tight in
C and for any finite elements &1, &, ++ -, & in E and points t, ty, « -+, tn in [0, 1], the
distribution of ((X?, &), (X%, &), -+ -, (X%, &m)) converges in law to some m-dimensional
probability distribution. Then there exists the limit process X whose sample paths are
elements in Cg- such that X" — 4 X.

2) Suppose that the sample paths of X" are elements in Dg- for every n € N. Further
suppose that for each ¢ in E the sequence of distributions of X¢ is tight in D and for any
finite elements &, &, «++ , & in E and points t, tz, -« -, tn, in [0, 1] the distribution of
((XE, &), (X%, &), +++, (X7, &n)) converges in law to some m-dimensional probability
distribution. Then there exists the limit process X whose sample paths are elements in
Dg such that X" - X.

Proor. By Propositions 5.1 and 5.2 the distribution of X" converges weakly to the
limit @, (resp. @) on Cg- (resp. Dg-). If in Case 1) we take (Ck, %c,, @1) as the fundamental
probability space (£, % P) and put X = {X,(w) = w; ¢t € [0, 1]} and if in Case 2) we take
(Dg', #Bp,, @) as (R, % P) and define X similarly, then X has the desired properties. This
completes the proof.

Finally we will apply this theorem to a limit theorem in K. It5 [4].

ExaMPLE. Independent Brownian motions. Let {B(¢); t €[0,1]},2=1,2, .- be a
sequence of independent 1-dimensional Brownian motions with B.(0) = 0 for every k €N.
We shall define a sequence of measure-valued stochastic processes X, (¢, -) as follows:

For a Borel subset A € %

Ni(t, A) = Y i1 xa(Be(t))
and
X.(t, A) = nT*(Na(¢, A) — E[Na(t, A))),

where E[ ] denotes the mathematical expectation and x4(x) the indicator function of A.
Let & be the 1-dimensional Schwartz space. We can consider X,,(¢, ) as an %’-valued
stochastic process X" = {X7; t € [0, 1]} by setting

Xi(p) = f PX)Xa(t, dx) = n72 Ti1 (@(Be(?) — Elp (Be(t))]), ¢ € &.
Rl
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Then we have

PROPOSITION 5.4. There exists an <’-valued stochastic process X whose sample
paths are elements in Cy such that X" — o X.

Proor. First we prove the following inequality.
(5.1) E[|XMe) — XL(@)F| Xip) — Xb@)]= a@)lti — &I, 9€F

for t; = t < t;, where a(p) is a positive constant.
For each % € N set Fi(t, ¢) = ¢(Br(t)) — E[p(Bk(t))].
Obviously ‘

(5.2) E[F:(t,9)] =0.
Further we have
| Fr(t, @) — Fi(s, @)| =| @(Be(t)) — @(Bi(s))| + E[| ¢ (B:(t)) — @(Bx(s))|]

Bi(t) By(®)
J ¢'(x) dx +E[ J @’(x) dx ]

By, (s) B,,(s)
< Bi(@) | B(t) — Bi(s) | + Bu(p)E[ | Be(t) — Be(s) |*]"*

= Bu@)(| B(t) — Bu(s) | + |t — s[""*), where Bi(p) = sup.er? |@'(x) |.
Using the above inequality we get
53 {max{E[|Fk(t, @) — Fi(t1, 9)[°], E[| Fe(t, @) — Fi(tz, @)1} < B2 (@)| 6o — 2|,
E[|Fi(t, ) — Fi(ts, )| Fr(t, @) — Fr(tz, @)’ 1= Bsl@)| &1 — 8.,

where B2(p) and Bi(p) are positive constants independent of k2. Hence by making use of
(5.2), (5.3) and the independence of the sequence Fi(¢t, ¢), 2 = 1,2, ..., we obtain (5.1).
Therefore by Theorem 15.6 of [2] the sequence of distributions on D induced by Xg =
{X%(@); t € [0, 1]} is tight in D. However, since the sample paths of X belong to C, the
sequence of distributions of X is tight in C. This, together with (C) of Theorem 6.1 of
[4], shows that the conditions of 1) of Theorem 5.3 are satisfied, which completes the proof.

6. Remarks.

(R.1). Tightness in C([0,1]; E;) and D([0, 1]; E,). Let {P,} be a sequence of probability
measures on (Cg, Bc,.) or (Dg', Bp,.). We say that {P,} is uniformly k-continuous if for
any ¢ > 0 and p > 0 there exists a § > 0 such that

P,(x € Cg/(or Dg’); sup:|(x:, E)|>e) <p if [&|e<d, n=1

If {P.} is uniformly k-continuous, then M({) defined in the proof of Lemma 3.3 is
| - l--continuous at 0 in E. Therefore, if we add the uniformly %-continuous conditions to
Theorems 3.1 and 4.1 and Propositions 5.1 and 5.2, it follows from the proof that those
theorems hold if £’ is replaced by E,.

(R.2). Interval [0, ). Let C[j], Ce{j] and Cg,[j] be the spaces of continuous mappings
of [0, ] to R', E’ and E, respectively. The topologies on these spaces are defined similarly
as in Section 2. Let C[], Cg[] and Cg[] be the spaces of continuous mappings of
[0, ) to R', E’ and E, respectively. Further let D[], D[] and D[] be the spaces of
right continuous mappings with left limits of [0, ®) to R', E’ and E, respectively.
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(R.2.1). Case C. We will introduce on C[x], Cg[] and Cpg;[«] the projective limit
topologies of {C[j];j € N}, {Ce[j];j € N} and {Cg,[/]; j € N} respectively. Then it is
shown along the line of W. Whitt [12] that Theorems 3.1 and 1) of 5.3, Propositions 5.1 and
5.4 hold even if the interval [0, 1] is replaced by [0, »). We will also say that a sequence
{Pn} of probability measures on Cg{c] is uniformly %-continuous if for each j € N and for
any ¢ > 0 and p > 0 there exists a § > 0 such that

P,(x € Cp[]; suposi=;| (%1, £} >e) =p if ||£k=8, n=1
Then (R.1) holds similarly for the interval [0, ).

(R.2.2). Case D. Following T. Lindvall [5] we will introduce on Dg[>] a certain
topology. Of course we will introduce on D[] and Dg,[] the Lindvall metrics.
For each j € N define g;(¢) by

1 if t=j,
g)y=4j+1—-¢t if j<t=j+1,
0 if ¢t>j+1.
For 0 = ¢ < 1 define y/(t) by

\[/(t)={o—°log(l—t) g ?ff<1’

For each j € N we denote by ¢; the mapping of Dg[«] to Dz by

éj:x € Dgfo] — x4 8i(¥(t)) € D
Set

1 A A A A
di(x,y) =Y 37 di(jx, Ey)/1 + dr(é;x, &), %,y € Dg [].

We will introduce on Dg-[] the projective limit topology of{(d% (-, -); A € A}.
Define I1; and ¢; by

ﬁg! xe DE'[°°] - (x-, g) € D[oo]’ ge E’
and
¢: x € D[w]— x(¥(t))g(¥(¢) €D, jEN.

Let {P.} be a sequence of probability measures on (Dg[],%p, ). The if for each ¢ in E,
{P.I17"} is tight in D[], we have that {P,[1;* ¢;'} is tight in D for each j € N. So taking
¢/ll;x = T1,éx for x € Dy [»] into account, we have{P,¢é;'II;"} is tight in D for each £ in
E, so that {P,¢é;"} is tight in D' by Theorem 4.1. Therefore {P,} is tight in Dg[»]. Of
course it is shown similarly as before that Dg-[«] is a completely regular topological space
whose compact subsets are all metrizable.

Thus Theorems 4.1 and 2) of 5.3, Proposition 5.2 and (R.1) hold similarly as in (R.2.1).
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