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COUNTABLE STATE SPACE MARKOV RANDOM FIELDS AND
MARKOV CHAINS ON TREES

By STAN ZACHARY

Heriot- Watt University

Let S and A be countable sets and let 4(I1) be the set of Markov random
fields on S* (with the o-field generated by the finite cylinder sets) correspond-
ing to a specification I1, Markov with respect to a tree-like neighbour relation
in A. We define the class .#(IT) of Markov chains in %(II), and generalise
results of Spitzer to show that every extreme point of %(II) belongs to .#(II).
We establish a one-to-one correspondence between .#(II) and a set of
“entrance laws” associated with I1. These results are applied to homogeneous
Markov specifications on regular infinite trees. In particular for the case | S|
= 2 we obtain a quick derivation of Spitzer’s necessary and sufficient condition
for | 4(IT) | = 1, and further show that if | #(IT)| > 1 then |.#(IT)| = oo.

1. Introduction. Let S and A be countable sets, and % the o-field in S* generated
by the finite cylinder sets. Our aim is to characterise those probability measures on (S,
&) corresponding to a given “conditional probability structure”, or specification (Follmer,
1975, Dynkin, 1978), Markov with respect to a “tree-like” neighbour relation in A. This
problem is considered by Spitzer (1975a) and Preston (1974, 1976) for the case S = {0, 1}.
The somewhat different approach used here enables results to be obtained for a general
countable state space S, and yields additional results for the binary state space.

For any subset B of A let &5 be the natural projection function S* — S and x5 = £5(x4)
the corresponding projection of a generic point x4 € S*; xz will also represent a generic
point of S%; let #(B) be the o-field in S* (or S®) generated by the sets of the form {£ =
x:}, x; €S, 1 € B. Let ¥ be the set of finite non-empty subsets of A.

Let ~ be a neighbour relation (a symmetric non-reflexive binary relation) in A such
that the graph (A, ~) is a tree, i.e. a connected graph which becomes disconnected when
any one of its edges is removed. For any V € 7" let aV be the set of all elements of S\V
which have neighbours in V; let AV = V U aV. We also require ~ to be such that aV is
finite for all V € ¥ A probability measure P (on (S4, %)) is a Markov random field (with
respect to ~) if for all V€ ¥,

(1.1) Pty = xv/F(A\V)} is #(8V)-measurable, xv € S".

If P is positive, i.e. has positive density on the finite cylinder sets (where both here and
elsewhere “positive” means “strictly positive” rather than simply “non-negative”), it is
known to be sufficient to verify (1.1) for those V such that V = (i}, i € A.

We define a Markov specification to be a collection IT = {mv} vey- of stochastic kernels
7v: 8% X #(V) — R, (where R, is the set of non-negative real numbers, and where for
each V € ¥ xsv € 8%, mv(xov, -) is a probability measure) which satisfy the natural
consistency condition: for each V, W& ¥ with VC W,

(1.2) Tw(Xow, éw = xw) = Aw,v(xaw \V)Tv(xav, &v = xv), xaw € SV,

for some “normalising” function Aw,v:S*"\V — R.. We say that I is positive if, for each
Ve ¥ mv(., v = -) is a positive function. A probability measure P is said to correspond
toIlif forall Ve 7,

P{¢y= xv/g’—(A\V)} =av(&v, év=xv) as. P, xVG'SV.
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Let %(II) be the set of all such probability measures. (Note that when A is finite %(IT)
has exactly one member.) Each member of %(II) is a Markov random field. (Conversely,
at least every positive Markov random field corresponds to some unique Markov specifi-
cation.)

The set %(II) is convex, i.e. if P;, P, € 9(II) and 0 < & < 1, then 2P; + (1 — k)P, €
%(I1); indeed %(II) is a simplex in the sense of Choquet or of Dynkin (1978). Let & (II) be
the set of extreme points of %(II). It is known that & (II) is precisely the set of probability
measures in % (IT) with respect to which the tail o-field % = Nyey F (A\V) is (almost)
trivial, and also that %(IT) may be put into a natural (one-to-one) correspondence with the
set of probability measures on & (IT), with an appropriate o-field; (see, for example, Dynkin,
1978).

In Section 2 we define Markov chains on the tree (4, ~). These are a natural
generalisation of Markov chains in the usual sense, with the integers as parameter set, and
were originally introduced for trees by Preston (1974) and Spitzer (1975a) with state space
S = {0, 1}. Markov chains are Markov random fields, though the converse is in general
false. However, let .#(II) be the set of Markov chains in %(II); we generalise results of
Spitzer (1975a, 1975b) to show that &(II) C .#(I). It follows in particular that the
cardinality | (I1) | of %(II) is equal to 0, 1 or % according as | .#(II)| is equal to 0, 1, or is
greater than 1. Thus “phase transition” occurs if and only if |.#(II)| > 1.

In Section 3 we establish the key result that provided I satisfies certain mild conditions,
weaker than the requirement that it be positive, there is a one-to-one correspondence
between .#(I1) and a set of “entrance laws” associated with IT. This result is applied in the
subsequent sections where we take (4, ~) to be the regular tree of “dimension” d, i.e. each
element of A to have exactly d + 1 neighbours, and I to be homogeneous in the sense of
being invariant under graph isomorphisms of the tree. Let .#,(II) be the set of correspond-
ing Markov chains which are themselves similarly homogeneous.

In Section 4 we show how to identify the members of .#,(II). We also consider a
(sometimes strictly) wider class of Markov chains lying between .#,(II) and .#(I1).

In Section 5 we consider further the case S = {0, 1}. In particular we give a quick
derivation of Spitzer’s necessary and sufficient condition for | (II)| = 1. We also give a
new result: for each Markov specification II the set .#(I]) consists of either exactly one, or
else infinitely many, Markov chains. In Section 6 we consider a further example with
| S| =3.

2. Markov chains. Given B C A, let (B, ~) denote the graph obtained by the
restriction of ~ to B. If this graph is connected it is a tree. Let ¥"* denote the set of
V € ¥ such that (V, ~) is connected.

For any probability measure P on (S4, %), and for each V € ¥, let Py denote the
marginal, or cylinder, probability measure induced by P on (S", #(V)); Py will be said to
be a Markov random field if it is so with respect to (V, ~). We define a Markov chain to
be a probability measure P on (S*, %) such that for each V € ¥ *, Py is a Markov random
field. Then P is itself a Markov random field: this follows easily by considering any
sequence in 7~ * which increases to A.

In the important special case where (A, ~) is the one-dimensional lattice Z', given by
taking A to be the set Z of integers and defining consecutive pairs of these to be neighbours,
a probability measure P on (S, #) is a Markov chain if and only if it satisfies the more
usual condition:

21) Pl =x/F({--,n—1n})] = Pl = 2/F({n})], x€S, neZ

For if (2.1) holds then for any V= {m,m + 1, ..., n}, m,n € Z, m < n, Py is a Markov
random field (see for example Kelly, 1979, page 186), and so P is a Markov chain.
Conversely, if P is a Markov chain then (2.1) follows straightforwardly.

For the general tree (4, ~) we have the following theorem.
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THEOREM 2.1. Let the Markov random field P on (S4, %) have trivial tail o-field.
Then P is a Markov chain.

Proor. We must show that foreach VE v *, WC V, xw e SY,
(2.2) P{éw = xw/F(VA\W)} = P{éw = xw/F(V N aW)}.

Consider any U € ¥ such that V C U. We show first that there is a set W (depending on
U) such that WC W C Uand aW C (VN aW) U (A\U) C (V\W) U (A\U). Define the
sequence {W,}=0 of subsets of Uby Wo = W, W, = W,_; U (dW,—; N U\V). For all n
= 1 we have that VN aW,, C V N dW,_;: for if there exists somei € VN oW,,i € VN
dW,_1, then there is a path in (U, ~) from { € V to some j € W C V which does not lie
entirely within (V, ~), in contradiction to the requirement that (V, ~) be a connected
subgraph of the tree (A, ~). Further because U is finite, there is some W C U and some no
such that for all n = ng, W, = W. Thus UN W =V NaW C VN oW and W is as
required. Since P is a Markov random field and {¢{w = xw} € F(W), it follows that

23)  Pléw = xw/F{(V\W) U (A\U)}] = P[éw = xw/F{(V N aW) U (A\D)}].

Now replace U by any sequence {U,}»=0 in " which increases to A. Then #{(V\W) U
(A\U,)} - F(V\W) v % and F{V N aW) U (A\U,)} » F(V N aW) v £ (These
results are a consequence of the following observation: let &, %,, n = 1, be sub-o-fields of
& such that & is generated by the countable collection of disjoint sets E;, £ =1, and %,
decreases to &; trivially & v/ FC & \V % for all n; if, for all n, G € & \/ %, then G =
Uss1 (Ex N Fy i) with F,,x € %,, and 80 G = Upz: (Ex N lim inf, F, ;) € & \/ %) Thus from
(2.3), the (reversed) martingale convergence theorem, and the hypothesis that Fis trivial,
we obtain (2.2) as required. O

COROLLARY 1. When A is finite the classes of Markov chains and Markov random
fields on (S*, %) coincide.

COROLLARY 2. Let II be a Markov specification. Then & (I1) C . (I1).

This last result ensures that the Markov random fields bélonging to &(II) have a
particularly simple structure. It has no obvious analogue for Markov specifications asso-
ciated with graphs more general than trees.

3. Interactions and entrance laws. We now show that any positive Markov
specification IT (associated with the tree (4, ~)) may be more simply represented by an
“interaction” @, and that there is then a one-to-one correspondence between .#(IT) and
the set of “entrance laws” for ®. (We shall in fact be able to partially relax the “positivity”
requirement.)

Let # be the set of subsets of A of the form {i, j} where i ~ j (i.e. the set of edges of
(A, ~)). We define an interaction to be a family ® = {¢,,1} (e~ of interaction functions
b4 1S — R, such that for each V€ ¥;

3.1 0<3,, covhov(®av, xv) <o, xv€E S,

where po,v: 8% X 8V > R, is given by

(3.2) M,V(xaV; xV) = H(i,j)e 7 (L) N Vet D b6 (x(i,j))-

(Here we are identifying SV x S with S2V; we shall continue to make such obvious
identifications.)

For any interaction ® we define the Markov specification Ily = {s, v} vey by: for each
Ve,

To,v(Xov, v = xv) = ko, v(Xav)pe,v(Xav, xv),
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where kg v:S°Y — R. is determined by the requirement that for each x°V € 8%,
7o,v(%av, ) be a probability measure. (It is straightforward to check that Ils is a Markov
specification. Note also that two interactions may define the same specification.) At least
every positive Markov specification corresponds to some interaction (with positive com-
ponent functions). This follows from a well-known result for Markov specifications on
more general graphs (see, for example, Spitzer (1973), Preston (1974), Theorem 4.1, Preston
(1976), Proposition 5.7).

In practice we both define a Markov specification and study the corresponding Markov
random fields via a “generating” interaction. We shall therefore require the following
result.

LEMMA 3.1. Let @ be an interaction and let P be a probability measure on (S*, F).
If P € %(Ily) then for each V € ¥;

(3.3) P(éav = xav) = vv(xav)p o,v(Xsv, Xv),

for some function vv:S® — R, (in general depending on both P and ®). Conversely, if
{Va}n=0 is any sequence in ¥" increasing to A and (3.3) is satisfied with V =V, for each
n, then P € 9(Ily).

Proor. If P € %(Ilp) then for each V€ ¥,
P(éav = xav) = P(&v = xov) e, v(Xov, &v = xv).

and so (3.3) follows trivially. Conversely, if (3.3) is satisfied for each member V, of the
given sequence, then for any V&€ 7] xv € SY, and for each n such that V.C V,,

P{¢v=xv/FAV\V)} = mav(&v, év=xv), as. P,

by the consistency condition (1.2). Letting n — o, we may replace AV, by A in the above
relation, and since V, xy are arbitrary, it follows that P € %(Ile).0

In order to define an entrance law we need some new concepts and some further
notation. Let ¥ be the space of equivalence classes of functions S — R, excluding the
function which is identically zero, where two such functions y, J are defined to be
equivalent if there is some 2 > 0 such that (x) = kf(x) for all x € S. We identify any
element of ¥ with the functions in the corresponding equivalence class, and where
necessary we use the proportionality sign o (rather than =) to denote equality up to a
strictly positive multiplicative constant. We define multiplication in ¥ (always denoted by
[I) to correspond to pointwise multiplication of the functions in the corresponding
equivalence classes. Let ./ be the set of ordered pairs of neighbouring elements of A, i.e.
N = {(i, J)}ica, jesi. For any interaction ® = {¢ ;} 3~ and for each (i, j) € A4 we shall
find it convenient to write ¢y(xi, %;) for ¢y (X ), Xy € S, (Thus éy(x:, ) = ¢ilx;,
x;).) Further, given ¢ € ¥ we define ¢;¥ € ¥ (where it exists) by ¢y = Yxes ¢y (-, X)P(x).
(We adhere to the convention that equations involving ¢4 include the assertion that it
exists.) An entrance law for @ is a family A = {A{} i/ es of elements of ¥ such that

(3.4) M = Tlkeair, ek, (i, j) € & (consistency),
(3.5) Yees ([[res prAi)(x) <o, i€ A (normalisability).

Note that (3.4) asserts equality in the space ¥. Note also that (3.5) is automatically
satisfied when the state space S is finite.

Now recall that ¥ * is the set of finite connected subsets of A. For each V€ v * i €
dV, let V(i) represent the unique element of V N ai.

THEOREM 3.2. Let the interaction ® = {¢ ) } (i j;e.s be such that for some reference
element s, € S4,

(3.6) oi(x,5) >0, xE€S, (i,))ENM
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Then there is a one-to-one correspondence between #(Ils) and the set of entrance laws
for ®, given by: for allv € v *,

3.7) Py = xav) o< po,v(xav, xv) [Licov AV O (xs),

(the “constant of proportionality” being independent of xav) for each P € #(Ils) and
corresponding entrance law A = {\} i jer

PrROOF. Suppose first that P € .#(I1s). Define the collection A = {A/} ¢,)e.» in ¥ by
(3.8) Moc P(&i = - /& = 5))/ i+, 5)).

We show that (3.7) holds for each V € ¥ * for this, and only this, collection A and that
A is an entrance law for @. For any V € ¥ *, consider the representation of P,v given by
(3.3) and (3.2). Now »y(x}v) > 0 for some x5y € S? and so from (3.6) it follows that
P(¢y = sy) > 0. We therefore have that

3.9) P(&ov = xav/év = sv) = avrv(xsv) [Licov divn(%i, svw), Xov € S,

for some positive constant av. Because V belongs to 7" * no two elements of 9V are
neighbours, and because P is a Markov chain and thus Pav a Markov random field, it
follows that (under P) the random variables &;, i € 9V, are condltlonally independent
relative to #(V'), and that

(3.10) P(&v = xov/év = sv) = [Licav P& = xi/éviy = svw).

Thus by (3.9) and (3.10), »y has a unique representation as a product of elements of ¥,
given by

vv(xav) o< Hieav )\zwi)(xi),

so that (3.7) holds. Since for every (i, j) € 4, there is some V € ¥ * with j = V(1), it
follows that A is the only collection in ¥ for which (3.7) is true. To show that A is an
entrance law, consider each i € A: by (3.7) with V = {i},

(3.11) P(éni = xai) < [Lheai pinli, xr)Ab(xr);

thus for any j € ai, P(&; = - /£; = ;) /i (-, 8;) o< [[reai\j dirAk, and this, together with (3.8),
gives the consistency condition (3.4). Also by (3.11), P(& = -) o< [[reai dirA%, yielding the
normalisability condition (3.5).

We now establish the converse result. Let A = {A/} ¢ j)e+ be an entrance law for ®. We
construct (the obviously unique) P € .#(Ils) such that (3.7) holds for all V € ¥ *. Observe
first that (3.4) and (3.6) imply that Ai(s;) > 0 for all (i, j) € A4 For each V € 7" * define the
function py: SV — R, by

pvixav) = pv(xav, xv) [licav (N () /A9 (s1)).
Fix any A € A and define the sequence {V,},=0in ¥ *by Vo= {h}, V., =AV,_1,n= 1.1t
follows easily from (3.4) that for alln = 1,
Zrav,.esav"Pv,,(xv,,_,) = cupv,_,(xv,),
for some finite positive constant c,. Further
Yxasesen Py (Xan) o< Yaes ([Treon dred k) (x) < oo

by (3.5). Thus each function py, may be normalised to a probability density on 84V such
probability densities form a consistent family and so define a probability measure P on
(S*, #), with the property that (3.7) holds at least for all V = V,,, n = 0. By Lemma 3.1,
P € %(Ils). Further every V € ¥ * is contained in some V,, n = 0, and because Py, is by
construction a Markov random field so also is Py (by Corollary 1 to Theorem 2.1). We
therefore have that P € .#(Ils). It remains to show that (3.7) holds for all V € v *, i.e.
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that if A = {A)} Gj)e.+ is the entrance law corresponding to P then A = A. We have already
established that A{ = Al for all (i, j) € 4" such thati € 8V, j € V,, for some n = 0. Iterative
application of (3.4) now shows that A = A} for all (i, j) € 4" as required. 0

4. Homogeneous specifications on regular trees. Henceforth we take (A4, ~) to
be the regular tree of “dimension” d, i.e. with d + 1 edges meeting at each vertex. We say
that a Markov specification, an interaction, or a probability measure is homogeneous if it
is invariant under graph isomorphisms of the tree. For any homogeneous Markov specifi-
cation IT let %(I1) and .#,(II) denote the sets of homogeneous elements of %(IT) and
A (I1) respectively.

For the special case d = 1 (so that (A, ~) is the one-dimensional lattice Z) it is more
natural to consider Markov specifications which are simply stationary, i.e. translation
invariant. Many authors have studied such specifications and their corresponding Markov
random fields. (See in particular Dobrushin (1968), Spitzer (1975b), Kesten (1976), Cox
(1977), and also Preston (1976), Chapter 5.) Here the theory of the preceding sections has
much in common with the approach of Spitzer (1975b); in particular entrance laws are
equivalent to the double sequences of functions introduced in his Theorem 6. For the
general case d = 1, and with state space restricted to S = {0, 1}, homogeneous Markov
specifications have been studied by Preston (1974) and Spitzer (1975a); (see also Section
5 of this paper). )

Let the function ¢: S X S — R, satisfy

4.1) ox, y) =¢(y,%), xy€ES,
(4.2) o(x,8) >0, x€S,
(4.3) Yeves’ fov(xay, Xv) <, VE Y, xv€E S,

where s is some fixed reference element of S and p,,v: 8% X 8V — R, is defined by
o v(xav, 2v) = [T e ginves o(x:, x;).

Then the collection {¢}} ¢.jye» of functions ¢, : S — R., defined by ¢ (xi;) =
o(x;, x;), is a homogeneous interaction. We identify this interaction with ¢; then I1, denotes
the corresponding (necessarily homogeneous) Markov specification. Every positive ho-
mogeneous Markov specification may be represented by such an interaction (for example,
by adapting the representation of Preston (1976), Proposition 5.7); here (4.2) is satisfied for
alls € S.

For any member  of the space ¥ introduced in the preceding section, define F,y € ¥,
where it exists, by F,y < {¥,es (-, »)¥(¥)}°. Now Theorem 3.2 defines a correspondence
between .#(Il,) and the set of entrance laws for ¢. An element of .#(Il;) belongs to
Mo(IL,) if and only if the corresponding entrance law has all its components equal. We
thus have immediately from Theorem 3.2 and the defining relations (3.4), (3.5) for an
entrance law the result below. (Note that the relation (4.4) is used in obtaining (4.5).)

THEOREM 4.1. There is a one-to-one correspondence between .#y(I1,) and the set of
A € Y which satisfy

(4.4) A=F,\,
(4.5) Yres Y yes AX)d(x, Y)A(y) < oo,

The Markov chains comprising #,(Il;) are mutually singular: for if (B, ~) is any
subgraph of (A, ~) isomorphic to Z', then the marginal distribution on (SZ, #(B)) of each
Markov chain in #,(I1,) is a stationary (indeed reversible) irreducible one-dimensional
Markov chain and is therefore ergodic. In particular no strictly convex combination of any
two distinct Markov chains in .#,(I1;) can also belong to .#,(I1,); (see also Theorem 4.4).

Theorem 4.2 below is analogous to a result of Dobrushin (1968) for Z<.
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THEOREM 4.2. Let S be finite. Then | #(I1,) | = 1.

Proor. Fix each element y of ¥ by the requirement Y .es Y(x) = 1, and regard ¥ as a
subset of the Banach space of all real-valued functions on S with, say, the norm | f| =
supses | f(x) |. Then ¥ is convex and compact. The function F,: ¥ — ¥ is given by

{Dyes o(x, (3)}?
Yees {Tyes oz, ()}’

For all ¥ € ¥, the denominator of the right side of (4.6) is positive (consider z = s). Hence
it is easily verified that F, is continuous and so by the Leray-Schauder-Tychonoff theorem
(Reed and Simon, 1980, page 151) F, has a fixed point. Therefore by Theorem 4.1 .#,(I1,;)
is non-empty. 0

(4.6) Foh) (x) =

yE V.

We now consider a further class of Markov chains (first introduced by Spitzer for the
case S = {0, 1} ), which arises naturally in the study of “repulsive” interactions. (See also
Section 5.) Label the vertices of the tree (A, ~) alternately even and odd, denoting by E
and O the respective sets of even and odd vertices. (Thus, of every pair of neighbours in A,
exactly one belongs to E.) Denote by .#:(I1;) the class of those Markov chains in #(Il,)
which are invariant under those graph isomorphisms of the tree mapping E onto E.
Trivially #,(I1,) C #:(I1,). Theorem 4.1 has the following straightforward generalisation.

THEOREM 4.3. There is a one-to-one correspondence between #,(IL,) and the set of
ordered pairs (A°, \°) of elements of ¥ which satisfy

N=FuX°, N =F,X°, Yies 2 yes A(X)p(x, »)A(y) < .

If P € . (I1,) corresponds to (A%, A°) we define its complement P’, say, to be the chain in
M (I1,) corresponding to (A% A°). Then P = P’ if and only if P € Mo(I1,). The following
result has two important corollaries.

THEOREM 4.4. Suppose that Py, P, are distinct Markov chains in #,(I1,) and that
0 < k < 1. Then the Markov random field P, = kP, + (1 — k)P; is not a Markov chain.

ProoF. Suppose the contrary. Then necessarily P, € .#1(I1,). For each m =0, 1, 2 let
(A5, Am) be the ordered pair of elements of ¥ corresponding to P,, as in Theorem 4.3.
Since A5, = FyA5, it follows that A5,(s) > 0, so that we may for definiteness take A,,(s) = 1.
Then there is a positive constant a,, such that for any i € O,

P& = x5) = am ers Hjeai o(x, xj))\ren(xj)
(see Theorem 3.2). We thus obtain
ao [[jeai A8(x) = a1k [[jecai AN1(x)) + a2(1 — k) []jeas AS(x)),

valid for all x, € S%. This can only be the case if A{ = A%, implying by Theorem 4.3 that P;
= P, in contradiction to the hypothesis that P;, P, are distinct. 0

CoROLLARY 1. If P, P’ form a complementary pair of distinct Markov chains in
A1 (11,) then Ya(P + P’) belongs to %(I1,) but not to Mo(I1,).

(Spitzer’s results for the case S = {0, 1} show that such complementary pairs of distinct
Markov chains do in fact exist.)

COROLLARY 2. Letd =1, so that (A, ~) = Z*, and let the homogeneous interaction
¢ be positive. Then #(I1,) = Mo(I1,) and contains at most a single element.

Proor. This is immediate from Corollary 1 above and the result of Kesten (1976) that
here %(I1;) = #,(I1;) and contains at most a single element. 0
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5. The binary state space. We now consider the case S = {0, 1}. We continue to
take (A, ~) to be the regular tree of dimension d, and consider the homogeneous Markov
specification IT, defined by ¢:S X S — R. satisfying (4.1) and (4.2)—since S is finite the
condition (4.3) is here redundant. We give a short proof of Spitzer’s result that | %(IL,) |
= 1if (and only if) | #(I1,)| = 1. We also establish a further result: that if | .#(IL,)| > 1
then | #/(IL)| = oo.

We take the reference element of the condition (4.2) to be given by s = 0. Now for all
k> 0, I, = I1,. Thus without loss of generality we may take ¢ to be given by ¢,,¢:S X S
— R+ where

¢P»q(0’ 0) = 1) ¢P»q(0) 1) = ¢P,q(1’ 0) =4q, ‘f’p.q(l’ 1) =p2’

and 0 < g < ®, 0 < p < ». For simplicity we write IL,, for IT, . The corresponding “single
point” kernels 7(,,q),i, ¢ € A, are given by

W(P»q),i(xai’ gi =1) _ . 2r _d+1-2r

5.1) - ’
( T p,q),i{Xai, & = 0) pq

where r, 0 < r = d + 1, is the number of neighbours j of i such that x; = 1. It follows in
particular that distinct pairs (p, g) define distinct homogeneous Markov specifications.
Note also that IT, , is positive if and only if p > 0, and that here every positive homogeneous
Markov specification has such a representation; (see Section 4).

Throughout this section we represent any element y of the space ¥ introduced in
Section 3 by the corresponding point in R. U {e} given by ¥(1)/4(0) (the element y of ¥
with ¥(0) = 0 being represented by «). An entrance law for the interaction ¢,,q is then a
collection A = {A{} i es in R+ U {} such that

(5.2) }\'{ = erai\j gp,q(xi), (l, .]) enN
where g,4: R+ U {} — R, is given by
_[@+pN)/(1+qN), AER.
8ra(A) = {p2/q A= oo,

Theorem 4.1 then states that there is a one-to-one correspondence between .4 (Il,,,) and
the set of solutions A (necessarily in R.) of the consistency condition: A = { Ea(M}2
Similarly Theorem 4.3 states that there is a one-to-one correspondence between .#1(I1,,q)
and the set of ordered pairs (A%, A°), A%, A° € R, satisfying A° = {g5,¢(A°)} % A° = {gp,o(A°)} <,
These results are essentially those obtained by Spitzer (1975a).

When p = g, each side of (5.1) is an increasing function of 7 and the Markov specification
I1, , is said to be attractive; similarly when p < ¢ each side of (5.1) is a decreasing function
of r, and I, , is said to be repulsive. Spitzer (1975a) deduces the following results. In the
attractive case #o(Il,,) = A1 (I1,,); further for d > 1, #(I1,,) may contain 1, 2 or 3
Markov chains according to the precise value of (p, g). In the repulsive case | #(IL,q)|
= 1 always; however for d > 1 and suitable (p, q), | #1(IL,4)| > 1.

The first part of Theorem 5.1 below is again due to Spitzer (1975a). His proof uses the
general theory of supermodular potentials (see Preston, 1974), while that given here is
based on the use of entrance laws.

THEOREM 5.1.

G) If | AM(,e)| =1 then M(I,e) = ML) = F(Ily,4).
@) If |A(Tpe)|>1 then | M(Iyg)| = oo.

ProorF. We consider separately the attractive and repulsive cases.

1. Suppose p = q. Define the sequences {A7},=0 and {A:} =0 in R+ U {0} by Ay =0,
An = {&rg(Ano1)}? for n= 1, and A§ = o, A}y = {&pq(A7-1)} ¢ for n = 1. Trivially Ag =< Ay
and because g,, is here an increasing function it follows by induction that An = A =
{&p,q()} ¢ for all n = 0. Hence there exists A\~ € R+ such that A\, = A” asn— oo. Similarly
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A~ decreases in n to a limit A* € R.. Since g,,, is continuous it follows that
(5.3) "= {8} AT = {g(A)}

Let P~, P* € My(11,,,) be the homogeneous Markov chains corresponding to A=, A*
respectively.

Let A = {A}} ¢.jres be any entrance law for the interaction ¢,,,. Because A satisfies (5.2)
and g, is increasing and (trivially) Ag < A4 < A¢ for all (i, j) € .#; it follows by induction
that Az < AJ < A} for all (i, j) € 4 and for all n = 0. Letting n — o gives A™ < A < A* for
all ¢, j) e N

Now if | #1(Il,,4)| = 1 then P~ = P*, A\ = A", and therefore the only entrance law for
¢p,q is that with all its components equal to A™. Thus P~ = P™ is the sole member of
AM(11,,,) and so also of %(IL,,) (see Section 1).

If | 41 (I1,,4) | > 1 the argument of the preceding paragraph shows that P~ % P*, A~
A*. Fix any h € A. We show how to construct an infinite family of Markov chains in
M (I1,,4), each (for simplicity) rotationally symmetric about A. Let Ao satisfy A~ < Ao = \*;
we may then define a sequence {A,.} =0 in R. satisfying

(5.4) A=A =\, n=0
(5.5) A= {8oa(Ans1)}?, n=0;

for since g, is increasing and continuous, and A~, A* satisfy (5.3), we may define the
sequence recursively via (5.5) noting at each state the (5.4) is satisfied. Define now the
sequence {V,.}n=0in ¥ * by Vo = {h}, V, = AV, for n = 1. We construct an entrance law
A = (N} jres for ¢pq as follows: if (i, j) € A is such that i € 8V, j € V,, for some n =0,
let A} = A,; by (5.5) the components A/ thus defined satisfy the consistency condition (5.2);
the remaining components of A are then uniquely and consistently determined by the
iterative use of (5.2). Distinct values of Ao between A~ and A* define distinct entrance laws
and thus distinct Markov chains in .#(I1,,,). Hence | #(IL,4)| = o.

2. Now suppose p < q. Let the sequence {A;}.=0 in R, be as defined before. The
function g, , is here decreasing and continuous. Thus, starting with the trivial relation Ay
= Az, we may show by induction that A3, increases with 7 to a limit A® € R,., while Az,+1
decreases to a limit A° € R, ; further A° = { ,,4(A°)}%, A° = {£,,4(A°)} ¢, s0 that the ordered
pairs (A% A°) and (A°, A°) define a complementary pair of Markov chains in ;(I,,)
coincident if and only if A° = A°. If A = {A/} ¢ j)es is any entrance law for ¢, , then, starting
with the relation Aj < M/ for all (i, j) € .# we may show (essentially as in the attractive
case) that \* <M < \° for all (i, j) € A, Thus if | 4 (IL,,4) | = 1, \° = A° and we may deduce
as before that .#(Il,,) = /1 (I1,,4), while if | #(IL,,)| > 1 then, again essentially as
previously, we may construct infinitely many further members of .#(I1,,).0

6. An example with |S| = 3. Let S= {0, 1, 2} and A again be the regular tree of
dimension d. Let IT, denote the positive homogeneous Markov specification defined as in
Section 4 by ¢:S X 8 — R. where ¢p(x, x) =1, x € S and ¢u(x, y) =k >0,x, yE S, x
# y. By Theorem 4.3 .#(I1,) is in a one-to-one correspondence with the set of solutions
(A% A%), A A°E P, of

(6.1) A= {Tres duls, DIN(0)}9, A° = {Tues da (-, D)A(x))°.

As usual a Markov chain in .#(I1;) belongs to .#,(I1;) if and only if the corresponding
solution of (6.1) satisfies A° = A°. One such solution is given by A°(x) = constant for all
x € S. Identification of all solutions of (6.1) is analytically difficult (though possible by
numerical investigation for any given d and k). We look here for solutions with A°(1) /A¢(0)
= N(2)/A°(0) = 5\*, say. (To each such solution, other than that with e = 1, there
correspond two further distinct solutions of (6.1), obtained by cyclic permutation of the
states of S.) The equations (6.1) then reduce to

(6.2) x=f(d), A= fh),
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where A° = A°(1)/A°(0) = A°(2)/A°(0) and where fr: R+ — R+ is defined by fi(A) =
[{2 + (1 + E)A}/{1 + 2kA}]% The solutions of (6.2) are most easily obtained by further
reference to Spitzer’s (1975a) treatment of the case S = {0, 1}. We obtain (6.2) from the
equation considered in Theorem 9 there by putting x = (A°)V%, s =1/(1 +2k), t= (1 + &)/
(1 + 2k). The results below then follow 1mmed1at,ely from Spitzer’s analysis. When £ < 1
any solution of (6.2) necessarily satisfies A° = A° (for the function [ is here increasing), and
depending on d and the precise value of % there may be 1, 2 or 3 such solutions. When
k> 1, the equations (6.2) have exactly one solution with A° = A° (for the function £ i is here
decreasmg), but for sultable d and k there is an additional pair of solutions ()\" x°)
and (A°, A°) with A = A°.

For d = 2 we may again use Spitzer’s results to classify completely the solutions of (6.2).
Here for all 2 > 0, we have A¢ = A° always. For 2 >(2v2 — 1)/7(%0.261) the only solution
of (6.2) is that with A° = 1. For each of the two cases % —(2~/§ —1)/7 and k = Y (6.2) has
exactly one additional solution (given by A =%and \°= % respectively); it follows that for
these two cases | #(I1;)| = 4. For k < (2\/§ —1)/7, k # Y4, (6.2) has exactly two additional
solutions—so that | #(I1x) | = 7.
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