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HYDRODYNAMICS OF THE VOTER MODEL

BY ERRIcO PRESUTTI AND HERBERT SPOHN

Universita di Roma and Universitdat Minchen

We study the voter model on Z7, d = 3, for a sequence x° of initial states
which have a gradient in the mean magnetization of the order ¢ ¢ — 0. We
prove that the magnetization field m(f, ¢) = ¢ = f(ex)n(x, e *t) tends to a
deterministic field m(f, ¢) = [ dgf(q)m(q, t) as ¢ — 0. m(q, ¢) is the solution of
the diffusion equation. The fluctuations of m(f, t) around its mean are given
by an infinite dimensional, non-homogeneous Ornstein-Uhlenbeck process. In
the limit as ¢ — 0, locally, i.e. around (¢7'q, £7%), the voter model is in
equilibrium with parameter m(q, t).

1. Introduction. Systems with many components, as spins or particles, often admit
a macroscopic description. The presumably best known example is a fluid. Microscopically
the fluid consists of many small molecules moving according to the mechanical laws of
motion. On a macroscopic scale the state of the fluid is specified by the mass, velocity and
energy density and the time evolution of these fields is governed by the hydrodynamic
equations, a set of five non-linear partial differential equations. Since the time evolution of
the five hydrodynamic fields only partially reflects the time evolution of the exact
microscopic state of the fluid, hydrodynamics can be derived from microscopic dynamics
only within a certain approximation. This approximation consists in considering micro-
scopic states with slow variation in the hydrodynamic fields, i.e. with small (average) mass,
velocity and energy density gradients. Then locally the fluid is almost in thermal equilib-
rium with the local equilibrium parameters governed approximately by the hydrodynamic
equations.

In recent years it has been realized that the Aydrodynamic picture of the time evolution
of a many particle system can be made precise for certain stochastic interacting particle
systems. The favorite model of investigation is the simple symmetric exclusion process in
one dimension [3, 4, 5]. Also the asymmetric exclusion process and harmonic oscillators
with random exchanges of energy have been investigated [9, 11]. In this paper we will
study the hydrodynamics of the voter model [2, 6]. We are interested in the voter model
because its microscopic structure differs in essential points from the one of the simple
exclusion process.

(i) In the simple exclusion process, the number of particles is locally conserved, i.e. the
number of particles in the bounded region A can change only through the boundary of A.
In essence this local conservation law is the reason that on a macroscopic scale the density
of particles is governed by the diffusion equation. For the voter model the magnetization
(or, say, the number of up spins) is not locally conserved. Nevertheless, since in dimension
d = 3 the voter model has a one-parameter family of extremal stationary (= equilibrium)
states, the hydrodynamic picture provides a valid description. Namely, on a macroscopic
scale the voter model is locally, in space-time, in equilibrium and the local equilibrium
parameters change according to the solution of its hydrodynamic equation which turns
out to be the diffusion equation.

(ii) In the simple exclusion process, the equilibrium states have correlations of short
range. For the voter model the static correlations decay slowly [1]. This difference is
reflected in the fluctuation fields for the two models.
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Holley and Stroock [8] studied the fluctuation field of the voter model in the particular
case where the initial state is given by a Bernoulli measure with equal probability for spin
up and spin down. They “hope that someone else will take up the voter model and explain
to them what is going on.” With this paper, we try to accomplish this by proving that the
voter model allows for a hydrodynamic description. We expect that the hydrodynamic
picture of time evolution is valid for many other stochastic particle systems.

To give a brief outline of the paper: In Section 2 we define the voter model, settle the
notation and state the main results. In the remaining sections we prove the structure of
the magnetization field and its fluctuations and local equilibrium.

2. Summary of the results. We consider spins on the lattice Z*. The space of spin
configurations is {—1, 1}?¢ = Q. @ is equipped with the usual product topology. A
configuration is denoted by n € €. 5(x) is its value at the lattice site x € Z 4 n(x) €
{—1, 1}. The voter model is defined by the flip rates

(2.1) c(x, ) = d — % Yy s-y1=1 1®M(Y).

We restrict ourselves to the simplest voter model with only symmetric nearest neighbor
interactions. The generator of the flip dynamics is then given by

(2.2) (Lf)(n) = Txez. c(x, )(fO™) — ()

acting on strictly local functions f: & — R, where n* denotes the configuration 5 with
the spin at site x reversed. The closure of L generates the unique Markov semigroup
{e*|t = 0} on C(R), the space of bounded and continuous functions on €. In turn, it
follows from the general theory of Markov processes that e’ determines a unique Markov
jump process 7(¢) with state space Q. The canonical path space of this process is D([0,
), ), the space of functions ¢ — n(¢) €  which are right continuous and have left hand
limits. If p is the starting measure for this process, then P, denotes its path measure on
D([0, »), Q) and E, its expectation. We denote by 1(x, ) the value of the spin at site x at
time ¢.

From now on we restrict ourselves to d = 3. (We comment briefly on d = 1, 2 at the end
of this section.) In this case the extremal time invariant states are given by {un|m| = 1}
[6]. They are also translation invariant and are parametrized by the magnetization,

(2.3) E,.(n(x)) = m.
Their covariance decays slowly,
24)  E,(nG) —m’=(1-m’)px—y) = (1-m)(1-ple)|x—y[**

for large | x — y |[1]. Here p(x) is the probability that a simple, symmetric random walker
on Z% who starts at x will ever hit the origin and e € Z¢ with |e| = 1.

The object of our study is the magnetization field m(f, t). Let F(R?) be the Schwartz
space of rapidly decreasing functions. Then we define for every f € F(R?)

(2.5) m(f, t) = Yzez f(x)n(x, t).

m(f, t) is considered as an &' (R?)-valued process. We are interested in the global and local
structure of m(f, t) in a situation where initially the gradient of the average magnetization
is small on the scale set by Z° We therefore choose a sequence p‘, ¢ — 0, of starting
measures on & such that their magnetization gradient is of the order e. We will show then
that the magnetization gradient remains of order ¢ at any later time. More precisely, for
each ¢, 0 < € = 1, we choose a starting measure p° on & with the following property.

(C1) There exists a continuous function m: R? — [—1, 1] such that
lim, ,osup,es’| Ex(m([e”'q])) — m(q)| = 0.
Here [a] denotes the integer part of a € R?.
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In addition to (C1) the sequence of initial states has to satisfy certain cluster properties.
(C2) There exist functions ®:: N — R, with lim,,.®:(n) =0,k =2, 3, .- -, such that
forevery e >0,k =2, x, - -+, xx € Z%,
| B ([T51 n(x)) — [1E<1 Eue(n(:)) | < ®@r(mings,| x: — x5]).
The rescaled magnetization field is defined by
(2.6) m(f, t) = e? Yaezd flex)n(x, e7%t)
with starting measure y°. We will show that the limit magnetization field is deterministic.

THEOREM 1. Let P* be the path measure of m*(f, t) on D([0, «), ¥'( R?)). Let P be the
measure on D ([0, ©), &' (R?)) which is concentrated on the single history

t—> quf(q)(e‘Am)(q)-
Then weak-lim._.o P° = P.

As a next step one would like to know the fluctuations around the deterministic limit.
Let us define the rescaled fluctuation field by

2.7 E(f, t) = e T e fex) (nx, e7°t) — Epe(n(x, e7t))).

The time scale in (2.7) is set through the one of the magnetization field. The power of the
prefactor is determined by the scaling properties of the equilibrium fluctuations (2.4). We
will prove that the limiting fluctuations are governed by an infinite-dimensional, inhomo-
geneous Ornstein-Uhlenbeck process.

THEOREM 2. Let P¢ be the path measure of £(f, t) on D([0, »), ¥ (R%)) and let
(e*'m)(q) = m(q, t).
(i) Let P be the Gaussian measure on D([0, ), ¥ ( R%)) with mean zero and covariance

(2.8) E&(f, )é(g, 8)) =2 d(1 - p(e))
J;m ds’ f dq(1 —m(q, s'))f(q, t — s')g(q, s — &)
fortzll f, & € AAR?) with (e*f)(q) = f(q, t). If Dy in (C2) is integrable, ¥ .cz'®s(|x]) <
o, then
weak-lim,_,oP. = P.
(ii) Let pu* = pm for 0 < e = 1 and let P be the Gaussian measure on D([0, ©), & (R?))

with mean zero and covariance

(2.9) E(&(f, )8, 8) = (L — m®)(1 = p(e)) qu/‘(q, [t —s])A™"g)(q)

for all f, g € P(R?). Then
weak-lim,_,oP* = P.

Theorems 1 and 2 provide the expected picture. The magnetization is deterministic
with small Gaussian fluctuations around it. However, in comparison to other models the
fluctuations are huge because of slowly decaying static correlations. To contrast we should
mention that for the simple exclusion process the analogues of Theorems 1 to Theorem 3
are true in any dimension. Because of rapidly decaying static correlations, the fluctuation
field is now defined by

E(f 1) =" Yieza f(ex)(n(x, e7°t) — Ex(n(x, e7°¢))).
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Its limit is a Gaussian field with mean zero and covariance

(E(f, 0)E(g, 8)) = (£(f(t), 0)£(g(s), 0))
17:%

(2.10) + J ds’ J dq(1 —m(q, s')*) grad f(g, t — s")-grad g(g, s — ),
0

t,s=0,f(t) =e™f.

Theorem 1 provides us only with the information that m(q, t) indicates the value of the
magnetization “around” position ¢ 'q at time & "% and that its fluctuations are negligible in
a first approximation as ¢ goes to zero. A more refined study shows that the path measure
in the neighborhood of (¢ g, £ ?t) is approximately the equilibrium path measure P,‘m(q‘n.

THEOREM 3. Foreveryq€ R t>0,n=1,%1, -+, %, € Z% 81, -+, 5, € R,

(2-11) liIIleaoSqueR'd | Eu‘( H;L=1 n ([8_14] + xj: e_zt + sj)) - Eum(q,t)(Hj"L=l n (xj, sj)) | = 0'

An alternative way to read Theorem 3 is that m(q, t) is the parameter of that equilibrium
path measure which at time ¢ % “best” approximates the actual measure around ¢ 'q.
This interpretation is further strengthened in Theorem 4 of Section 4.

We may picture the voter model as being patched together, in space-time, out of many
pieces in equilibrium whose parameter changes on the macroscopic scale according to its
hydrodynamic equation, i.e. the diffusion equation. The fact that the hydrodynamics of
the voter model is governed by a linear equation reflects the simplicity of the model. For
example, in the simple symmetric exclusion process with speed change we expect that the
hydrodynamic equation governing the density of particles, p (g, t), is a non-linear diffusion
equation of the form (3/0¢)p(q, t) = div D(p(q, t)) grad p(q, t) with some d X d matrix
valued function D on [0, 1].

REMARK. For d = 1, 2 the voter model has only two extremal time invariant states,
namely those concentrated on the configurations either n(x) = 1 or n(x) = —1 for all x.
This indicates a breakdown of the hydrodynamic picture. For d = 1 the limit magnetization
field exists but it is not deterministic. For d = 2, Theorem 1 holds. We did not investigate
the nature of the fluctuations around the deterministic limit. Locally the voter model is in
a superposition of the two extremal time invariant states.

3. Global structure of the magnetization field. In this section we prove Theorems
1 and 2.

DEFINITION 3.1. The dual of the voter model. The voter model has a very simple
dual, the annihilating random walk process. Givenx = (x5, ++-, X,), , € Z% i=1, .-+, n,
Pidenotes the law of the process x (t) = (x1(t), -+ -, X, (t)) of n independent random walks
on Z ¢ starting from x. Each particle moves at independent Poisson times of mean 1 and
jumps with equal probability on the nearest neighbor sites. The random variables o;(¢),
i=1, ..., n, can take values either 0 (the particle is “alive”) or 1 (the particle is “dead”).
All particles start alive, i.e. 6;(0) =0, =1, - - -, n, and whenever two alive particles are at
the same site they both die. Dead particles remain dead. We will employ the following
shorthand notation: for A C {1, - .., n}

{oa(t) =0} = {0:(¢) =0iff i€ A, i=1,...,n}
{04(0) =0} = {a:(t) =0VtER,iffiEA,i=1, ..., n}.
Let Ezbe the expectation with respect to P;. We have then
(3.1) E, (I]%1n(x:, 8)) = Yac,....ny EE, (ITica n(x:(2), 0))1({04(t) = 0})],

where 1({.}) is the characteristic function of {-}.
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ProoF oF THEOREM 1. Since |n(x, t)] =1, we have for0<e=1
3.2) E (m (£, t)*) = (% Yrez | f(x)|)* = (cSupgert (1 + | @ Py | F@))?

with ¢ a constant independent of f and e. By the results of [7] this implies that the family
{P¢, 0 < e =<1} is tight.

We regard f— m(f, t) as a point in &' (R?) and ¢ — m(-, t) as a path in &' (R *?). For
any F € C7(R)

2t

33) F@m(f 1) —f ds Y c(x, () {FIm(f,e’s) — 2e? f(ex)n (x, 5)]1 — F(m(f,e>s))}

0

is a P* martingale relative to the o-algebra o {m(., s), 0 < s < t}.

Here n(x, s) is identified with m(g.,., £2s), where g... € #(R°), g..(ex) = ¢"? and g, has
a support around ex of diameter less than e.

We will show that, for any limit point P° of {P*|0<e=<1} ase— 0,

t

(3.4) F(m(f, t)) — J ds F'(m(f, s))m(Af, s)

0

is a P° martingale relative to o{m(-,s),0<=s=<¢} forall F€ C3(R),f€ ykR’d). Since by
(C1) and (C2)

(3.5) P°({m(f,0) = J dgm(g)f(@)}) =1,

P° = P. Therefore we need only to check that (3.4) is a P° martingale. We expand up to
second order

&2t

(3.3) = F(m(f, t)) — J’ ds [e*F’(m(f, e%s))m(A*f, e%s) + O€*) ¥ flex) ]

0

t

(3.6) =F(m(f, ¢)) - f ds F'(m(f, s))m@f, s)

o
- f ds F'(m(f, s))m(A*f — Af, s) + O€??)e? 3 flex)®
0

with A° the lattice Laplacian on ¢ Z9, i.e.

3.7 (Af)(x) = €7 Yejei=1 [F(x + e€) — f(x)].

By (3.2) the error term in (3.6) vanishes in distribution as e — 0 O

Proor oF THEOREM 2. We prove only Theorem 2(i), since (ii) is proven along the
same lines. Our proof follows closely the one of Holley and Stroock [8]. However, in our
case E,(1(x, t)) # 0 and therefore some additional terms have to be estimated. Let

p(x1 — %2, 8) = Py ({0:() = 1,1 =1,2}), p(x) =lim.p(x, o).
By duality, Equation (3.1) and (C2), we have
E(£(f, ") = €% Ty, F(e21) fle22) B, ) (L ({0:(e7%¢) = 0, i =1, 2})
(3.8) [E,.(n(x1(e7°8), Om(x2(e>2), 0)) — By (n(21(e7>¢), 0)) B, (n(x2 €7°2), 0))]
+1({oe*t) = 1,i= 1, 2))[1 — E,((x: (¢7°t), 0) E,: ((x2(e7*t), 0))])
< e Y x| Flex1) fex2) | {E i, un (@] x1(e728) — x2(e728)|)) + 20(x1 — 22, €7%¢8)}.
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From [8] for all k € R
|2 e®plx, £)| = (1 + 48).
By assumption, for all 2 € R
|3, e Ey (O (|21 ()] =T P2(|x]) = b < o0,
Therefore

) E (£(f, 1)) = (1 + 4e %t + b)e? Y. | f(ex) |?
(3.9
= (1 + 4t + b)c supeer<(1 + | g|®)?|f(@)|?.

This implies, [7], that the family {P*, 0 < e < 1} is tight.
We regard f— £(f, t) as a point in &/(R %) and t — £(-, t) as a path in ¥ (R“). For F
€ C¢(R) we think of
F(£(f, ) = F(m® (€ "22f, t) —e“"" 272 ¥, f(ex) B, (n(x,£7°¢)))
as a time dependent function of the magnetization. Then as in (3.3)
2
FE(ft) — J ds{Y. c(x, n(s)) (FE(f, e2s) — 2“2 flex)n (x, 5)) — FE(f,€%5))}
0
(3.10) d
— e “TIRE(E(f, e%)) P 2« fex)Eu(n(x, 5))}
is a P*-martingale relative to 6 { £(-, s), 0 < s < t}. Here 7 (x, s) is identified with £( gx.., £2s)

+ E,(1(x, s)), where g.. € (R?), g..(ex) = ¢ “*?/? and g... has a support around ex of
diameter less than ¢. We will show that, for any limit point P° of {P,0<e=<1} ase— 0,

F(£(f, 1) — J ds {F'(£(f, s)§@S, )

0

(3.11)

+2d(1 —p(e))[J dq (1 - m(q, t)z)f(q)z] F7((f, 9)}
is a P® martingale relative to o{£(-, s), 0 =< s < t} for all F € C5(R?), f € #(R?). By (C2)
and since @, is assumed to be integrable, P°({£(f, 0) = 0}) = 1 and therefore P° = P.

We have to check only that (3.11) is a P°-martingale. We expand up to third order.
Then

(3.10) = F(f, 1) — J ds{F'((f,€%s)) [- 2“2 3. (c(x, m(s)) flexhm (x, s)
0

+ % f(ex)(d/ds)Ex(n(x, 5)))] + 2F" (¢(f, £28))e?** (T c(x, n(s))fEx))
(3.12) + 0422643, f(ex)®)}

=FE(f, 1) - J ds{F'(&(f, s))E(A], 5)

0

+2d(1 —p(e))[jdq(l —m(q, t)z)f(q)z]F”(g(f, )}

- f ds{2F"(&(f, $))[e? Ts, flex:)?
0
(d =% Y x1msaj=1 B (1, e°s)(x2, €7%5)))
—d(l —p(e))jdq(l = mlq, ))f(@)°] + F'(¢(f, 9)EQf ~ Af, )

(3.13) + F"(&(f, 8))e? le,hy‘h_m:l flex)? Bz, e 28I (22, £2%s))
— (s, €2, €2)]) + O+ 7).
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By Theorem 3 and (2.4)
lim,0e? ¥y, 1, ez =1 F(€X1) B ((x1, £728)0 (22, £7%5))
(3.14)

=2d f dqf(g)’[m(q, t)* + (1 — m(q, t)*)p(e)],

| e| = 1. Therefore the first error term in (3.13) tends to zero in distribution as e — 0. The
second error term vanishes in distribution, since E, (¢ (A*f — Af, s)?) tends to zero as ¢ —
0 by (3.9).

To prove that the third error term vanishes in distribution as e — 0, we have to show
that

: 2d 2 2
llme_)()S 2-’0,12,[11—12[=1 sz,x4,|xu—x4l=l f(Exl) f(Sxa)

(3.15) (BT (i, €728)) — Epe([[ %1 (%, £728)) B ([ 45 n(x:, €7%5))] = 0.

For s = 0, (3.15) follows from (C2). Let us assume then s > 0. We use the duality (3.1) and
introduce the four random walks % (t) = (x1(t), - - -, x4(t)) with law Pz. To compute the
first expectation in (3.15), we need to partition the paths according to which particles are
still alive at time £ 2s. The product of expectations in (3.15) can also be written as an
expectation with respect to Pz; the annihilation rule needs to be modified, however: the
particles with label either 1 or 2 do not annihilate the particles with label either 3 or 4.

We break up the sum (3.15) into | x; — x3] < ¢ '8 and | x; — x3| = ¢™'8 with an arbitrary
constant 6 > 0. In the latter part of the sum, the probability that a particle with label
either 1 or 2 meets at any time a particle with either label 3 or 4 vanishes as ¢ — 0. In this
case we can neglect the difference between the two annihilation rules and conclude that
this part tends to zero as ¢ — 0. In the former part of the sum, i.e. when | x; — x3]| < £8,
we bound the term in the square brackets by two, which implies that this part of the sum
is bounded by const. §. Because of the arbitrariness of 6, (3.15) follows. 0

4. Local equilibrium. In this section, we examine the microscopic structure of the
system and we first prove in Theorem 4 that any initial measure satisfying (C2) exhibits as
time increases a local equilibrium structure. Related results are found in [6].

THEOREM 4. Let M, be the set of probability measures for which (C2) of Section 2
holds. Then for every u € M, there exists a function m(x, t|p): Z% X R+ — [—1, 1] such
that foralln=1, x1, -+ -, x, € Z°,

(4.1) limt—»oosupxezdl Ep(Hzl:l n(xt + X, t)) - E}Lqu,tl“} (H:‘=1 n(xl))l =0.

REMARK. (4.1) states that the system observed in a fixed region approaches equilib-
rium in the sense that its “distance” from the set & = {un., m € [—1, 1]} vanishes as ¢
diverges. It does not necessarily converge to a point in &, it might keep wandering closer
and closer to & When another region is considered, its equilibrium may “initially” be
different; a common behavior will eventually be established after some time, depending on
the mutual distance between the regions. Only when the “observations” are suitably
moved away in space along with time, they might keep showing some difference. Notice
that (4.1) does not determine uniquely the function m(x, ¢|u). Any other m’(x, ¢|u) such
that

lim, . wsupsez¢| m(x, t|p) — m'(x, t{p)| =0

fulfills (4.1) if m does so. This ambiguity is in a sense removed in Theorem 3.
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ProOF OF THEOREM 4. The extremal invariant measures u., |m| < 1 for the voter
model are determined by

4.2) E,‘,,.(Hf;l n(x:)) = ZAc(l.-.-,n; Pi({oa(0) = 0})mIAl-
We will prove Theorem 4 for
(4.3) m(x, t|p) = E.[E.(n(x(¢), 0))].

We need to consider initial conditions of the form x; + x, i = 1, --., n, wherex =
(1, -+, X,) is fixed while x varies in Z% It is easy to convince oneself that the estimates
we are going to prove are uniform in x, so for the sake of notational simplicity we set x =
0.

Having used (3.1), we want to exploit that the probability that o,(¢) changes after T is
very small when T is large. We therefore introduce ¢; € R., 8 € (0, 1) such that

(4.4) 0 < Pi({oa(ts) = 0}) — Pz({oa() = 0}) <6,
forall A C {1, ---, n}. (3.1) and (4.4) imply then that for all £ = ¢;
(4.5) E, ([T n(xi, 8)) = Y a4 EE,(Jlican(x:(2), 0))1({oa(ts) =0})] + R

with | R| = Y 4 8. We now introduce the process of n independent random walks all starting
from the origin of Z¢ its law being Pj, and for each 8 we couple the Pzand the Pj
processes as follows: P denotes the law of x (¢), ¥ (t), 2n independent random walks with

x:0) = x;, y(0) =0,i=1, - -+, n, and E refers to its expectation. For a € Z% we set a =
(a®, ..., a) and giveni € {1, .-+, n},u € (1, ---, d} and & we set
(4.6) T (8, i, u) = inf{t > & | x{*(¢) = y{*)(¢)}.

We define then the coupled process by

{xﬁ‘”(t) if t<T@, i, u)
() =

4.7) . Y = y().

yit) if t= TG, i, u)

The law of yi(t), i =1, -+, n is Py while that of %;(¢),i =1, --., nis P; Since x{“)(¢),
¥ (¢) are one dimensional random walks, the set

Gs(t) = {T(,i,uy<t forall ie (1,--,n},uec {1,---,d}}
is such that
(4.8) lim,,.P(Gs(t)) = 1.
Given 8 we can then choose ¢ so large that
(4.9) P(Gs(t)) =1-6
and from (4.5) we get
E,(I]%1 n(xi, 8)
=YaE[E,(Ilica n(%:(t), 0)1({oa(ts) = 0}){1(Gs(¢)) + 1(Gs(t))}] + R
410) = 54 ELE(Lica n(E(2), 0)1({oa(ts) = OD1(Gs(t)] + R + R’
=Ya E[E,([[iean(yi(2), 0))1({oa(ts) = 0D1(Gs(t))] + R + R’
=Y E[E,(Ilica n(3i(?), 0)1({oa(ts) = 0))] + R + R’ + R”
with |R’|, |R" |= Y 46.

The expectation in (4.10) refers to a product of x(-) andy (-) measurable functions.
Therefore it factorizes and we get
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E.([T=1 n(x:, £))
=Y Ez(1({oa(ts) = 0})) E5(E,(J]ica n(3:(¢),0))) + R+ R"+ R”
=Y Ez 1({oa(») = 0})) E#(E.([[:iea n(y:(¢),0))) + R+ R'+ R” + R”

(4.11)

with |R” | =Y 4 6. Given any r >0
(4.12) lime Ps ({|3:(2) — 3;(8)| >, Vi#j}) = 1.

From the assumption that the correlations of the initial measure u decay, it follows then
that for ¢ large enough the E, expectation and consequently also the E; expectation
factorize. By comparing (4.11) with (4.2) and using (4.3) we obtain

(4.13) | E (IT7=1 n(xis £) = B, 00 T17=1 n(x:, )| < HS

for t large enough and with H independent of §. This proves Theorem 4 because of the
arbitrariness of §. 00

Proor oF THEOREM 3. We first consider the case where s; =0,i =1, ..., n. Then,
using the uniformity of the factorization with respect to ¢, by Theorem 4 we already know
that the distribution with initial measure p° is locally well approximated by the equilibrium
ones with parameters m(x, t|u‘) uniformly in e. It only remains to show then that
m(e'q, e7%t| u°) converges to m(q, t) as e— 0. But this follows from (3.1) and (4.3) together
with (C1). The case where the s/’s are different from zero is completely analogous. In the
dual process, the jth annihilating random walk now starts at time —s; at position x; and it
walks up to time ¢ 7%. 0
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