ON THE QUADRATIC VARIATION OF TWO-PARAMETER CONTINUOUS MARTINGALES

By D. NUALART

Universitat de Barcelona

Let $M = \{M(z), z \in [0, 1]^2\}$ be a two-parameter square integrable continuous martingale. We prove the sample continuity of the quadratic variation of M using an Itô's differentiation formula for M^2 .

1. Introduction. The aim of this paper is to show some results concerning the quadratic variation of a two-parameter continuous martingale, which are well-known in the one-parameter case.

Suppose that $M = \{M_z, z \in [0, 1]^2\}$ is a square integrable continuous martingale with respect to an increasing family of σ -fields satisfying the usual conditions of R. Cairoli and J. B. Walsh [4]. The Doob-Meyer decomposition theorem (cf. [4] and [9]) assures the existence and uniqueness of a predictable, increasing process $\langle M \rangle$ vanishing on the axes, and such that $M^2 - \langle M \rangle$ is a weak martingale. The main result of this note is the sample continuity of the quadratic variation $\langle M \rangle$, which so far had only been proved for some special kinds of martingales, like path independent variation martingales or martingales with orthogonal increments in one direction (see [13]). If the martingale M is bounded in L^p for $p \geq 2$, then the process $\langle M \rangle$ is obtained as the $L^{p/2}$ limit of sums of the form $\sum_{i,j} M(\Delta_{ij})^2$. The method to show these results is based on the deduction of a two-parameter Itô's formula for M^2 .

The construction of the quadratic variation of M and a more general Itô's formula have been obtained by L. Chevalier in [5], under the additional assumption that any square integrable martingale has a continuous version. Under this hypothesis any square integrable martingale can be approximated by continuous bounded martingales, as in the one-parameter case. As far as we know, this approximation is not allowed in the general case, because of the lack of stopping times, and we have replaced it by a more accurate application of martingale inequalities.

2. Notation and basic assumptions. The set of parameters will be $T = [0, 1]^2$, with the partial ordering $(s_1, t_1) \le (s_2, t_2)$ if and only if $s_1 \le s_2$ and $t_1 \le t_2$. Then, $(s_1, t_1) < (s_2, t_2)$ means $s_1 < s_2$ and $t_1 < t_2$. Let $t_1 < t_2$, then (t_1, t_2) denotes the rectangle $t_1 \in T$: $t_1 < t_2 \le t_2$. Suppose that $t_1 \in T$ is a mapping from $t_1 \in T$. The increment of $t_1 \in T$ on a rectangle $t_1 \in T$ or $t_2 \in T$. The increment of $t_3 \in T$ will be $t_3 \in T$.

Let (Ω, \mathcal{F}, P) be a complete probability space and let $\{\mathcal{F}_z, z \in T\}$ be an increasing family of sub- σ -fields of \mathcal{F} . The σ -fields \mathcal{F}_z are assumed to satisfy the

Received January, 1983; revised September, 1983.

AMS 1980 subject classifications. Primary 60G44; secondary 60G17.

Key words and phrases. Two-parameter martingales, quadratic variation.

usual conditions of [4]: (a) \mathcal{F}_{00} includes the null sets of \mathcal{F}_{t} , (b) \mathcal{F}_{z} is right-continuous, and (c) \mathcal{F}_{s1} and \mathcal{F}_{1t} are conditionally independent given \mathcal{F}_{st} .

Suppose that $M = \{M_z, z \in T\}$ is an integrable, \mathscr{F}_z -adapted process. Then: (a) M is a martingale if $E(M_z/\mathscr{F}_z) = M_z$ for any $z \leq z'$, and (b) M is a weak martingale if $E(M(z,z')/\mathscr{F}_z) = 0$ for $z \leq z'$. For $p \geq 1$, let m_c^p be the class of all sample continuous martingales M such that $M_z = 0$ on the axes and $E(|M_z|^p) < \infty$ for all z. Given a martingale M of m_c^2 , we will denote by $M_{\cdot t}$ and M_s the one-parameter martingales $\{M_{st}, \mathscr{F}_{s1}, s \geq 0\}$ and $\{M_{st}, \mathscr{F}_{1t}, t \geq 0\}$ respectively. A process $A = \{A_z, z \in T\}$ will be called increasing if it is adapted, $A_z = 0$ on the axes, and $A(\Delta) \geq 0$ for any rectangle $\Delta = (z_1, z_2]$.

A subset $\mathscr S$ of T will be called a grid if $\mathscr S=\mathscr S^1\times\mathscr P^2$, where $\mathscr P^1$ and $\mathscr P^2$ are finite subsets of [0,1) containing the point zero. Suppose that $0=s_1< s_2<\cdots< s_p$ are the points of $\mathscr P^1$, in increasing order, and $0=t_1< t_2<\cdots< t_q$ are those of $\mathscr P^2$. For any $u=(s_i,t_j)$ in $\mathscr S$ we will write $\bar u=(s_{i+1},t_{j+1}),\ \Delta_u=(u,\bar u],\ \Delta_u^1=(s_i,s_{i+1}]\times(0,t_j]$ and $\Delta_u^2=(0,s_i]\times(t_j,t_{j+1}]$, with the convention $s_{p+1}=1$ and $t_{q+1}=1$. The class of all grids on T is ordered by inclusion. Given a grid $\mathscr S$ and an arbitrary point z of T, we denote by $\mathscr S_z$ the smallest grid containing $\mathscr S$ and z. We will write $\mathscr S_z=\{z'\in\mathscr S_z\colon z'< z\}$. The norm of $\mathscr S$ is defined as $|\mathscr S|=\max\{|u-\bar u|,u\in\mathscr S\}$.

Throughout the paper, C_p will represent a constant, depending on p, which may be different from one formula to another one. In the same way, C will denote an arbitrary constant.

The next result about one-parameter continuous martingales will be needed in the following.

LEMMA 2.1. Let $M = \{M_t, t \in [0, 1]\}$ be a square integrable continuous martingale with respect to an increasing family of σ -fields $\{\mathcal{F}_t, t \in [0, 1]\}$ satisfying the usual conditions. Suppose $M_0 = 0$ and denote by $\mathscr{P} = \{s_i\}$, $0 = s_1 < s_2 < \cdots < s_n < 1$ a finite set of points. Consider another finite set $\mathscr{P}' \supset \mathscr{P}$, whose points can always be written as σ_k^i , $i = 1, \dots, n$; $k = 1, \dots, r_i$, in such a way that $s_i = \sigma_1^i < \sigma_2^i < \dots < \sigma_r^i < s_{i+1}$ for all i. Set $|\mathscr{P}| = \max_i |s_{i+1} - s_i|$, where $s_{n+1} = 1$. Then

(2.1)
$$\lim_{\|\cdot\|_{1} \to 1} \sup_{\beta' \supset -\infty} E(\sup_{i} \sum_{k=1}^{r_{i}} (M(\sigma_{k+1}^{i}) - M(\sigma_{k}^{i}))^{2}) = 0.$$
 By convention, we put $\sigma_{r_{i}+1}^{i} = s_{i+1}$.

PROOF. Notice that the random variables $\{\sum_i (M(s_{i+1}) - M(s_i))^2, \mathcal{P} \text{ finite subset of } [0, 1)\}$ are uniformly integrable. Indeed, this property can be shown by using Burkholder-Davis-Gundy's inequalities (cf. [2]) and the lemma due to de la Vallée-Poussin which gives necessary and sufficient conditions for the uniform integrability of a family of random variables. For every $\varepsilon > 0$, we choose a positive integer h > 0 such that $P(D_h^c) < \varepsilon$, where $D_h = \{\omega : \sup_s |M_s(\omega)| \le h\}$. Define $T_h = \inf\{s \ge 0 : |M_s| > h\}$. Then, applying Burkholder's and maximal

inequalities, we obtain, for all $\lambda > 0$

$$\begin{split} P\{\sup_{i} \sum_{k=1}^{r_{i}} \left(M(\sigma_{k+1}^{i}) - M(\sigma_{k}^{i}) \right)^{2} > \lambda \} \\ & \leq P(D_{h}^{c}) + P\{\sup_{i} \sum_{k=1}^{r_{i}} \left(M(\sigma_{k+1}^{i} \wedge T_{h}) - M(\sigma_{k}^{i} \wedge T_{h}) \right)^{2} > \lambda \} \\ & \leq \varepsilon + \lambda^{-2} \sum_{i} E(\left(\sum_{k=1}^{r_{i}} \left(M(\sigma_{k+1}^{i} \wedge T_{h}) - M(\sigma_{k}^{i} \wedge T_{h}) \right)^{2} \right)^{2}) \\ & \leq \varepsilon + \lambda^{-2} C \sum_{i} E(\left(M(s_{i+1} \wedge T_{h}) - M(s_{i} \wedge T_{h}) \right)^{4}) \\ & \leq \varepsilon + \lambda^{-2} C \{ E[\left(\sum_{i} \left(M(s_{i+1} \wedge T_{h}) - M(s_{i} \wedge T_{h}) \right)^{2} \right)^{2} \right] \\ & \cdot E[\sup_{i} \left(M(s_{i+1} \wedge T_{h}) - M(s_{i} \wedge T_{h}) \right)^{4} \} \}^{1/2} \\ & \leq \varepsilon + \lambda^{-2} C h^{3} \{ E(\sup_{|s-s'| \leq |s'|} |M_{s} - M_{s'}|^{2}) \}^{1/2}, \end{split}$$

and the proof follows easily. \square

In the proof of our results we will often use the next inequality for a family of one-parameter martingales. The method to show this inequality is the same as that used in the proof of Theorem 1 of [8]:

LEMMA 2.2. Let $\{M_j^i, j=1, \cdots, m\}$, $i=1, \cdots, n$, be a family of one-parameter martingales. Set $S_m^i = (\sum_{j=1}^m (M_j^i - M_{j-1}^i)^2)^{1/2}$, assuming $M_0^i = 0$. Then, there exists a universal constant C such that

$$E[(\sum_{i} (M_{m}^{i})^{2})^{1/2}] \leq CE[(\sum_{i} (S_{m}^{i})^{2})^{1/2}].$$

PROOF. Denote by $\{r_i\}$ a family of Rademacher functions on [0, 1]. Using Khintchine and Davis inequalities, we have

$$\begin{split} E[(\sum_{i} \ (M_{m}^{i})^{2})^{1/2}] &\leq CE\bigg(\int_{0}^{1} \mid \sum_{i} \ M_{m}^{i} r_{i}(t) \mid \ dt\bigg) \\ &\leq CE\bigg[\int_{0}^{1} \ (\sum_{j} \ (\sum_{i} \ (M_{j}^{i} - M_{j-1}^{i}) r_{i}(t))^{2})^{1/2} dt\bigg] \\ &\leq CE\bigg[\bigg(\sum_{j} \int_{0}^{1} \ (\sum_{i} \ (M_{j}^{i} - M_{j-1}^{i}) r_{i}(t))^{2} dt\bigg)^{1/2}\bigg] \\ &\leq CE[(\sum_{j} \ \sum_{i} \ (M_{j}^{i} - M_{j-1}^{i})^{2})^{1/2}] \\ &= CE[(\sum_{i} \ (S_{m}^{i})^{2})^{1/2}]. \quad \Box \end{split}$$

3. Main results and proofs. Suppose that $M = \{M_z, z \in T\}$ is a martingale of m_c^2 . We fix an increasing sequence of grids \mathscr{S}^n whose norms tend to zero. Let $\mathscr{S}^n = \mathscr{P}_1^n \times \mathscr{P}_2^n$, $\mathscr{P}_1^n = \{0 = s_1^n < \dots < s_{p_n}^n\}$ and $\mathscr{P}_2^n = \{0 = t_1^n < \dots < t_{q_n}^n\}$. In order to simplify the notation, we omit the index n of the points of \mathscr{P}_1^n and \mathscr{P}_2^n .

Then, for all z = (s, t) in T the following equality holds

$$M_{z}^{2} = 2 \sum_{u \in \mathcal{T}_{z}^{n}} M_{u} M(\Delta_{u}) + 2 \sum_{u \in \mathcal{T}_{z}^{n}} M(\Delta_{u}^{1}) M(\Delta_{u}^{2})$$

$$+ \sum_{i=1}^{p_{n}} (M(s_{i+1} \wedge s, t) - M(s_{i} \wedge s, t))^{2}$$

$$+ \sum_{i=1}^{q_{n}} (M(s, t_{i+1} \wedge t) - M(s, t_{i} \wedge t))^{2} - \sum_{u \in \mathcal{T}_{n}^{n}} M(\Delta_{u})^{2}.$$

Note that in the above expression the rectangles Δ_u , Δ_u^1 and Δ_u^2 are defined with respect to the grid \mathcal{S}_z^n . The proof of (3.1) is straightforward. It can also be viewed as a particular case of Lemma 1 of [5]. Next we are going to look over the behavior of each term of the right-hand side of (3.1) when n tends to infinity.

LEMMA 3.1. Suppose that M belongs to m_c^p with $p \ge 2$. Then, there exists a martingale N in $m_c^{p/2}$ such that

(3.2)
$$\lim_{n} \sup_{z \in T} E(|\sum_{u \in \mathcal{T}_{r}} M_{u} M(\Delta_{u}) - N_{z}|^{p/2}) = 0.$$

PROOF. For any natural n we define the martingale $N_z^n = \sum_{u \in \mathcal{I}_z^n} M_u M(\Delta_u)$. Fix m > n and consider the difference

$$N_{11}^m - N_{11}^n = \sum_{u \in \mathscr{N}^m} M_u M(\Delta_u) - \sum_{u \in \mathscr{N}^n} M_u M(\Delta_u)$$
$$= \sum_{u \in \mathscr{N}^m} (M_u - M_{u'}) M(\Delta_u),$$

where $u' = \sup\{v \in \mathcal{S}^n : v \leq u\}$. The terms $(M_u - M_{u'})M(\Delta_u)$ are martingale differences with respect to the σ -fields $\{\mathcal{F}_{\bar{u}}, u \in \mathcal{S}^m\}$. Therefore, using Burkholder-Davis-Gundy's inequalities extended to the case of two-parameters (cf. [8], [10]) we obtain

$$\begin{split} E(|N_{11}^m - N_{11}^n|^{p/2}) &\leq C_p E(|\sum_{u \in \mathcal{N}^m} (M_u - M_{u'})^2 M(\Delta_u)^2|^{p/4}) \\ &\leq C_p E(\sup_{u \in \mathcal{N}^m} |M_u - M_{u'}|^{p/2} (\sum_{u \in \mathcal{N}^m} M(\Delta_u)^2)^{p/4}) \\ &\leq C_p \{E(\sup_{u \in \mathcal{N}^m} |M_u - M_{u'}|^p) E((\sum_{u \in \mathcal{N}^m} M(\Delta_u)^2)^{p/2})\}^{1/2} \\ &\leq C_p \{E(\sup_{|u - v| \leq \mathcal{N}^n} |M_u - M_v|^p) E(|M_{11}|^p)\}^{1/2}. \end{split}$$

In consequence, we have

$$\lim_{n} \sup_{m>n} \sup_{z} E(|N_{z}^{m} - N_{z}^{n}|^{p/2}) = 0,$$

and this implies the existence of a martingale N bounded in $L^{p/2}$ such that (3.2) holds. It remains to prove that N has a continuous version. For p > 2 this is an immediate consequence of Doob-Cairoli's maximal inequalities for two-parameter martingales. In fact, we have in this case

$$\lim_{n} E(\sup_{z} |\sum_{u \in \mathcal{T}_{r}^{n}} M_{u} M(\Delta_{u}) - N_{z}|^{p/2}) = 0.$$

If p=2, the continuity of the martingale N could be deduced from the properties of the stochastic integral $\int M dM$ (cf. [3]). However, we prefer to present here a direct proof of the existence of a continuous version of N. Fix a positive integer h>0 and define $M_h(z)=(M(z)\wedge h)\vee (-h)$. Then, for any n and h, the process given by $N_h^n(z)=\sum_{u\in \mathbb{Z}_+^n}M_h(u)M(\Delta_u)$ is a square integrable continuous martin-

gale. Let m > n. Applying Doob-Cairoli's maximal inequality and Burkholder's inequality for two-parameter discrete martingales, we obtain

$$E(\sup_{z} |N_{h}^{m}(z) - N_{h}^{n}(z)|^{3/2})$$

$$\leq CE(|N_{h}^{m}(1, 1) - N_{h}^{n}(1, 1)|^{3/2})$$

$$= CE(|\sum_{u \in \mathscr{I}^{m}} (M_{h}(u) - M_{h}(u'))M(\Delta_{u})|^{3/2})$$

$$\leq E(|\sum_{u \in \mathscr{I}^{m}} (M_{h}(u) - M_{h}(u'))^{2}M(\Delta_{u})^{2}|^{3/4})$$

$$\leq CE(\sup_{u \in \mathscr{I}^{m}} |M_{h}(u) - M_{h}(u')|^{3/2}(\sum_{u \in \mathscr{I}^{m}} M(\Delta_{u})^{2})^{3/4})$$

$$\leq C\{E(\sup_{u \in \mathscr{I}^{m}} |M_{h}(u) - M_{h}(u)|^{6}\}^{1/4}(E(M_{11}^{2}))^{3/4}.$$

Set $D_h = \{\omega : \sup_z |M_z(\omega)| \le h\}$. Given an $\varepsilon > 0$ we take h in such a way that $P(D_h^c) < \varepsilon$. Then, for any positive number λ we will have

$$P\{\sup_{z} | N^{m}(z) - N^{n}(z) | > \lambda\}$$

$$\leq P(D_{h}^{c}) + P(\{\sup_{z} | N^{m}(z) - N^{n}(z) | > \lambda\} \cap D_{h})$$

$$\leq \varepsilon + P\{\sup_{z} | N_{h}^{m}(z) - N_{h}^{n}(z) | > \lambda\}$$

$$\leq \varepsilon + \lambda^{-3/2} E(\sup_{z} | N_{h}^{m}(z) - N_{h}^{n}(z) |^{3/2}).$$

Therefore, (3.3) and (3.4) imply $\lim_{n}\sup_{m>n}P\{\sup_{z}|N^m(z)-N^n(z)|>\lambda\}=0$, which completes the proof. \square

LEMMA 3.2. Suppose that M is a martingale belonging to m_c^p with $p \ge 2$. Then, there exists a martingale S in $m_c^{p/2}$ such that

(3.5)
$$\lim_{n} \sup_{z} E(|\sum_{u \in \mathbb{Z}_{2}^{n}} M(\Delta_{u}^{1}) M(\Delta_{u}^{2}) - S_{z}|^{p/2}) = 0.$$

PROOF. Define $S_z^n = \sum_{u \in \mathbb{Z}_2^n} M(\Delta_u^1) M(\Delta_u^2)$. We are going to consider two different cases.

(a) If p > 2, the assertion of the lemma will follow from the convergence

(3.6)
$$\lim_{n} \sup_{m>n} E(|S_{11}^m - S_{11}^n|^{p/2}) = 0.$$

Assume that \mathscr{S} is a grid on T which contains \mathscr{S}^n and has the same projection on the "t" axis. If $\{u=(s_i,t_j),\,1\leq i\leq p_n,\,1\leq j\leq q_n\}$ are the points of \mathscr{S}^n , those of \mathscr{S} will be of the form $u'=(\sigma_{i'},t_j),\,1\leq i'\leq p,\,1\leq j\leq q_n$. For any $i=1,\,\cdots,p_n$, we denote by I_i the set $\{i':\sigma_{i'}\in[s_i,s_{i+1})\}$. Put $\tilde{S}_z=\sum_{u\in\mathcal{I}_z}M(\Delta_u^1)M(\Delta_u^2)$. In order to show (3.6) it suffices to prove that $\lim_n\sup_{x}E(|\tilde{S}_{11}-S_{11}^n|^{p/2})=0$, and a similar result for grids with the same projection than \mathscr{S}^n on the "s" axis. Using Burkholder-Davis-Gundy's inequality for two-parameter discrete martingales, we obtain

$$\begin{split} E(|\tilde{S}_{11} - S_{11}^n|^{p/2}) &= E(|\sum_{u' \in \mathcal{N}} M(\Delta_{u'}^1) M(\Delta_{u'}^2) - \sum_{u \in \mathcal{N}^n} M(\Delta_u^1) M(\Delta_u^2)|^{p/2}) \\ &= E(|\sum_{u = (s_i, t_j) \in \mathcal{N}^n} \sum_{i' \in I_i} M(\Delta_{u'}^1) M(\Delta_{u'}^2 - \Delta_u^2)|^{p/2}) \\ &\leq C_p E(|\sum_{u \in \mathcal{N}^n} \sum_{i' \in I_i} M(\Delta_{u'}^1)^2 M(\Delta_{u'}^2 - \Delta_u^2)^2|^{p/4}), \end{split}$$

where $u = (s_i, t_j)$, $u' = (\sigma_{i'}, t_j)$, $\Delta_{u'}^1 = (\sigma_{i'}, \sigma_{i'+1}] \times (0, t_j]$ and $\Delta_{u'}^2 - \Delta_u^2 = (s_i, \sigma_{i'}] \times (t_j, t_{j+1}]$. Therefore,

(3.7)
$$E(|\tilde{S}_{11} - S_{11}^n|^{p/2}) \le C_p \{ E(|\sum_i \sum_{i' \in I_i} \sup_j M(\Delta_{u'}^1)^2|^{p/2}) \cdot E(|\sup_i \sup_{i' \in I_i} \sum_i M(\Delta_{u'}^2 - \Delta_u^2)^2|^{p/2}) \}^{1/2}.$$

i) We will show that the first factor of the right-hand side of (3.7) is bounded by some constant. To do this consider the continuous increasing and \mathcal{F}_{1t} -adapted process defined by

$$A_t = \sum_{i} \sum_{i' \in I_i} \sup_{\tau \le t} (M(\sigma_{i'+1}, \tau) - M(\sigma_{i'}, \tau))^2.$$

Then $E(|\sum_{i}\sum_{i'\in I_{-}}\sup_{i}M(\Delta_{u'}^{1})^{2}|^{p/2}) \leq E(A_{1}^{p/2}).$

Next we compute the potential Z_t associated to A_t ,

$$\begin{split} Z_{t} &= E(A_{1} - A_{t} | \mathscr{F}_{1t}) \\ &= E(\sum_{i} \sum_{i' \in I_{i}} (\sup_{\tau} (M(\sigma_{i'+1}, \tau) - M(\sigma_{i'}, \tau))^{2} \\ &- \sup_{\tau \leq t} (M(\sigma_{i'+1}, \tau) - M(\sigma_{i'}, \tau))^{2}) | \mathscr{F}_{1t}) \\ &\leq E(\sum_{i} \sum_{i' \in I_{i}} \sup_{\tau \geq t} (M(\sigma_{i'+1}, \tau) - M(\sigma_{i'}, \tau))^{2} / \mathscr{F}_{1t}) \\ &\leq C \sum_{i} \sum_{i' \in I_{i}} E((M(\sigma_{i'+1}, 1) - M(\sigma_{i'}, 1))^{2} | \mathscr{F}_{1t}) = m_{t}, \end{split}$$

where m_t is an \mathcal{F}_{1t} -adapted martingale. Then, from Garsia-Neveu's inequality (cf. [7]) we obtain

$$\begin{split} E(A_1^{p/2}) &\leq C_p E(m_1^{p/2}) = C_p E(|\sum_i \sum_{i' \in I_i} (M(\sigma_{i'+1}, 1) - M(\sigma_{i'}, 1))^2|^{p/2}) \\ &\leq C_p E(|M_{11}|^p). \end{split}$$

ii) The second factor converges to zero when n tends to infinity, uniformly with respect to \mathcal{L} Indeed, applying Doob's maximal inequality and Burkholder's inequality for discrete martingales, we deduce

$$\begin{split} E(|\sup_{i}\sup_{i'\in I_{i}}\sum_{j}M(\Delta_{u'}^{2}-\Delta_{u}^{2})^{2}|^{p/2}) \\ &\leq \sum_{i}E(\sup_{i'\in I_{i}}(\sum_{j}M(\Delta_{u'}^{2}-\Delta_{u}^{2})^{2})^{p/2}) \\ &\leq C_{p}\sum_{i}E(|\sum_{j}M(\Delta_{u})^{2}|^{p/2}) \\ &\leq C_{p}\sum_{i}E(|M(s_{i+1},1)-M(s_{i},1)|^{p}) \\ &\leq C_{p}\{E(|\sum_{i}(M(s_{i+1},1)-M(s_{i},1))^{2}|^{p/2})\}^{2/p} \\ &\qquad \cdot \{E(\sup_{i}|M(s_{i+1},1)-M(s_{i},1)|^{p})\}^{1-(2/p)} \\ &\leq C_{p}\{E(|M_{11}|^{p})\}^{2/p} \\ &\qquad \cdot \{E(\sup_{i|z_{1}-z_{2}|\leq |z_{1}|}M(z_{1})-M(z_{2})|^{p})\}^{1-(2/p)}. \end{split}$$

(b) Suppose p = 2. With the same assumptions as above on the grids $\mathcal S$ and

 \mathcal{S}^n , we will first show that

$$(3.8) \qquad \lim_{n} \sup_{z} E(\sup_{s} |\tilde{S}_{s1} - S_{s1}^{n}|) = 0.$$

By Davis inequality in the case of continuous martingales, we have

$$E(\sup_{s} | \tilde{S}_{s1} - S_{s1}^{n} |)$$

$$= E(\sup_{s} | \sum_{u=(s_{i},t_{j})\in \mathcal{I}^{n}} \sum_{i'\in I_{i}} M(\Delta_{u'}^{2} - \Delta_{u}^{2})(M(\sigma_{i'+1} \wedge s, t_{j}) - M(\sigma_{i'} \wedge s, t_{j})) |)$$

$$\leq C E(| \sum_{i} \sum_{i'\in I_{i}} \langle \sum_{i} M(\Delta_{u'}^{2} - \Delta_{u}^{2})(M(\sigma_{i'+1} \wedge \cdot, t_{j}) - M(\sigma_{i'} \wedge \cdot, t_{j})) \rangle_{1} |^{1/2}).$$

For any i' we consider a partition of the interval $[\sigma_{i'}, \sigma_{i'+1}]$ determined by the finite set $\mathscr{P}_{i'} = {\sigma_k^{i'}}, \sigma_{i'} = \sigma_1^{i'} < \sigma_2^{i'} < \cdots < \sigma_{r_{i'}}^{i'} = \sigma_{i'+1}$. Set $|\mathscr{P}_{i'}| = \max_k (\sigma_{k+1}^{i'} - \sigma_k^{i'})$.

Then, using Fatou's lemma, we obtain

$$\begin{split} E(\sup_{s} | \tilde{S}_{s1} - S_{s1}^{n} |) \\ &\leq C E(| \sum_{i} \sum_{i' \in I_{i}} \lim_{| \mathcal{P}_{i'} | \downarrow 0} \sum_{k} (\sum_{j} M(\Delta_{u'}^{2} - \Delta_{u}^{2}) (M(\sigma_{k+1}^{i'}, t_{j}) - M(\sigma_{k}^{i'}, t_{j})))^{2} |^{1/2}) \\ &\leq C \sup_{\mathcal{P}} E(| \sum_{i} \sum_{i' \in I_{i}} \sum_{k} (\sum_{j} M(\Delta_{u'}^{2} - \Delta_{u}^{2}) M(\Delta_{i'k}^{i}))^{2} |^{1/2}), \end{split}$$

where $\Delta_{i'k}^{j} = (\sigma_k^{i'}, \sigma_{k+1}^{i'}] \times (0, t_j]$ and the supremum is taken over all finite sets $\mathscr{P} = \{\sigma_k^{i'}\}$ which contain the points $\sigma_{i'}$.

Applying Lemma 2.2 to the martingale differences (with respect to the index j) $M(\Delta_u^{i_i} - \Delta_u^2)M(\Delta_{i'k}^{j_i})$, we have

$$E(\sup_s |\tilde{S}_{s1} - S_{s1}^n|)$$

(3.9)
$$\leq C \sup_{\mathscr{E}} |E(|\sum_{i} \sum_{i' \in I_{i}} \sum_{k} \sum_{j} M(\Delta_{u'}^{2} - \Delta_{u}^{2})^{2} M(\Delta_{i'k}^{j})^{2}|^{1/2})$$

$$\leq C \{ E(\sum_{i,j} \sup_{i' \in I_{i}} M(\Delta_{u'}^{2} - \Delta_{u}^{2})^{2}) \cdot \sup_{\mathscr{E}} |E(\sup_{i,j} \sum_{i' \in I_{i}} \sum_{k} M(\Delta_{i'k}^{j})^{2}) \}^{1/2}.$$

The first factor of the above expression is bounded by $E(M_{11}^2)$ because of Doob's maximal inequality. The process $(\sup_i \sum_{i',k} M(\Delta_{i'k}^i)^2)^{1/2}$, appearing in the second factor, is a submartingale with respect to the index j. In fact, it can be regarded as a convex function of the martingales $M(\Delta_{i'k}^j)$. Then, we apply Doob's maximal inequality, obtaining

(3.10)
$$E(\sup_{i,j} \sum_{i' \in I_i} \sum_k M(\Delta_{i'k}^{i})^2)$$

$$\leq CE(\sup_i \sum_{i' \in I_i} \sum_k (M(\sigma_{k+1}^{i'}, 1) - M(\sigma_k^{i'}, 1))^2).$$

Therefore, from (3.9) and (3.10) it follows that

(3.11)
$$\sup_{E(\sup_{s} |\tilde{S}_{s1} - S_{s1}^{n}|)} \le C\{E(M_{11}^{2}) \cdot \sup_{E(\sup_{i} \sum_{i' \in I_{i}} (M(\sigma_{i'+1}, 1) - M(\sigma_{i'}, 1))^{2})\}^{1/2}}.$$

Now, from (3.11) and Lemma 2.1 applied to the martingale $M_{\cdot 1}$, we see that (3.8) holds. Notice that for the convergence to zero in (3.8) we only need that $\lim_{n} |\mathscr{S}_{1}^{n}| = 0$.

We could obtain a similar result for grids $\mathscr S$ with the same projection than

 \mathcal{S}^n on the "s" axis. That means

(3.12)
$$\lim_{n} \sup_{z} E(\sup_{t} |\tilde{S}_{1t} - S_{1t}^{n}|) = 0.$$

Then, from (3.8) and (3.12) we deduce the existence of a martingale S such that (3.5) holds. It remains to show that S has a continuous version. For any m > n denote by \mathscr{S}^{mn} the grid on T with the same projection on the "t" axis than \mathscr{S}^n and with the same projection on the "s" axis than \mathscr{S}^m . Set $S_z^{mn} = \sum_{u \in \mathcal{T}_z^{mn}} M(\Delta_u^1) M(\Delta_u^2)$. Then by maximal inequality, for all $\lambda > 0$ we have

 $P\{\sup_{s,t}|S_{st}^m - S_{st}^n| > \lambda\}$

$$\leq P \left\{ \sup_{s,t} |S_{st}^m - S_{st}^{mn}| > \frac{\lambda}{2} \right\} + P \left\{ \sup_{s,t} |S_{st}^{mn} - S_{st}^n| > \frac{\lambda}{2} \right\}$$

$$\leq \frac{2}{\lambda} E(\sup_{t} |S_{1t}^m - S_{1t}^{mn}|) + \frac{2}{\lambda} E(\sup_{s} |S_{s1}^{mn} - S_{s1}^n|),$$

which converges to zero when $n \to \infty$, uniformly with respect to n, because of (3.8) and (3.12). \square

The next result states the continuity in both arguments of the quadratic variation in one direction of a two-parameter continuous square integrable martingale.

THEOREM 3.3. Let M be a martingale of m_c^2 . Then the processes $\langle M_{s.} \rangle_t$ and $\langle M_{.t} \rangle_s$ have continuous versions in both coordinates.

PROOF. We will show the existence of a continuous modification of $\langle M_s. \rangle_t$. Consider an increasing sequence of finite sets $\mathscr{P}_2^n = \{0 = t_1 < t_2 < \cdots < t_{q_n} < 1\}$ such that $|\mathscr{P}_2^n| = \max_j |t_{j+1} - t_j|$ tends to zero when $n \to \infty$. Define

$$P_{st}^n = \sum_j (M(s, t_{j+1} \wedge t) - M(s, t_j \wedge t))^2.$$

We know that $\lim_n E(|P_{st}^n - \langle M_{s\cdot} \rangle_t|) = 0$. For any m > n the difference $P_{s\cdot}^m - P_{s\cdot}^n$ is a martingale and by the maximal inequality we will have $P\{\sup_{s,t}|P_{st}^m - P_{st}^n| > \lambda\} \leq (1/\lambda)E(\sup_s|P_{s1}^m - P_{s1}^n|)$ for all $\lambda > 0$. Therefore, the theorem will follow from the convergence

(3.13)
$$\lim_{n} \sup_{m>n} E(\sup_{s} |P_{s1}^m - P_{s1}^n|) = 0.$$

In order to prove (3.13) we make the decomposition $P_{st}^n = 2R_s^n + T_s^n$, where

$$R_s^n = \sum_j \int_0^s (M(\sigma, t_{j+1}) - M(\sigma, t_j)) \partial(M(\sigma, t_{j+1}) - M(\sigma, t_j))$$

(here the symbol ∂ denotes a one-parameter stochastic integral with respect to the first index) and $T_s^n = \sum_j \langle M_{\cdot t_{j+1}} - M_{\cdot t_j} \rangle_s$. Then the proof of (3.13) will be done in several steps.

i) First we will show that

$$(3.14) \qquad \qquad \lim_{n \to \infty} E(\sup_{s} |R_s^m - R_s^n|) = 0.$$

Set

$$E(\sup_{s} |R_{s}^{m} - R_{s}^{n}|)$$

$$\leq E\left(\sup_{s} \left| \sum_{j=1}^{q_{m}} \int_{0}^{s} (M(\sigma, t_{j+1}) - M(\sigma, t_{j})) \partial(M(\sigma, t_{j}) - M(\sigma, t_{\nu(j)})) \right| \right)$$

$$+ E\left(\sup_{s} \left| \sum_{j=1}^{q_{m}} \int_{0}^{s} (M(\sigma, t_{j}) - M(\sigma, t_{\nu(j)})) \partial(M(\sigma, t_{j+1}) - M(\sigma, t_{j})) \right| \right),$$

where $t_{\nu(j)} = \sup\{t \in \mathcal{P}^n: t \leq t_j\}$, for any $j = 1, \dots, q_m$. The method we will use to show (3.14) is similar to the demonstration of (3.8). That means, we apply Davis inequality to the first term of the right-hand side of (3.15) in order to obtain

$$E\left(\sup_{s} \left| \sum_{j=1}^{q_{m}} \int_{0}^{s} (M(\sigma, t_{j+1}) - M(\sigma, t_{j})) \partial(M(\sigma, t_{j}) - M(\sigma, t_{\nu(j)})) \right| \right)$$

$$\leq CE\left\{ \left| \sum_{j,j'=1}^{q_{m}} \int_{0}^{1} (M(s, t_{j+1}) - M(s, t_{j})) (M(s, t_{j'+1}) - M(s, t_{j'})) d\langle M_{\cdot t_{j}} - M_{\cdot t_{\nu(j)}}, M_{\cdot t_{j'}} - M_{\cdot t_{\nu(j')}} \rangle_{s} \right|^{1/2} \right\}$$

$$= CE\left\{ \lim_{r \to \infty} \left| \sum_{i=1}^{p_{r}} \sum_{j,j'=1}^{q_{m}} (M(s_{i}, t_{j+1}) - M(s_{i}, t_{j})) \cdot (M(s_{i}, t_{j'+1}) - M(s_{i}, t_{j'})) \cdot ((M_{\cdot t_{j}} - M_{\cdot t_{\nu(j)}}, M_{\cdot t_{j'}} - M_{\cdot t_{\nu(j')}})_{s_{i+1}} - \langle M_{\cdot t_{j}} - M_{\cdot t_{\nu(j)}}, M_{\cdot t_{j'}} - M_{\cdot t_{\nu(j')}} \rangle_{s_{i}} \right\}^{1/2} \right\}.$$

The limit is taken with respect to an increasing sequence of finite sets $\mathcal{P}_1^n = \{0 = s_1 < s_2 < \cdots < s_{p_n} < 1\}$ such that $\lim_n |\mathcal{P}_1^n| = 0$. By Fatou's lemma and using the same arguments that in the proof of (3.8), the above expression is bounded by

(3.16)
$$C \sup_{\mathscr{P}} \sup_{\mathscr{P}} E(|\sum_{i=1}^{p_{r}} \sum_{k} (\sum_{j=1}^{q_{m}} (M(s_{i}, t_{j+1}) - M(s_{i}, t_{j})) M(\overline{\Delta}_{ijk}))^{2}|^{1/2}),$$

where $\overline{\Delta}_{ijk} = (\sigma_k^i, \sigma_{k+1}^i] \times (t_{\nu(j)}, t_j]$ and the points $\sigma_k^i, k = 1, \dots, r_i$, form a partition of the interval $[s_i, s_{i+1}]$. In (3.16) the supremum is taken over all finite sets $\mathscr{P} = \{\sigma_k^i\}$ which contain \mathscr{P}_1 . Put $\overline{\Delta}_{ij} = (s_i, s_{i+1}] \times (t_{\nu(j)}, t_j]$. Then, applying Lemma 2.2 we obtain that (3.16) is less or equal than

$$C \sup_{\mathscr{S}} \sup_{\mathscr{S}} E(|\sum_{i=1}^{p_{j}} \sum_{k} \sum_{j=1}^{q_{m}} (M(s_{i}, t_{j+1}) - M(s_{i}, t_{j}))^{2} M(\overline{\Delta}_{ijk})^{2}|^{1/2})$$

$$\leq C \sup_{\mathscr{S}} \sup_{\mathscr{S}} \{E(\sup_{i} \sup_{j} \sum_{j' \in I_{j}} (M(s_{i}, t_{j+1}) - M(s_{i}, t_{j}))^{2}) + E(\sum_{i=1}^{p_{j}} \sum_{k} \sum_{i=1}^{q_{m}} \sup_{j' \in I_{j}} M(\overline{\Delta}_{ij'k})^{2})\}^{1/2},$$

where for any $j=1, \dots, q_n, I_j=\{j': t_{j'} \text{ is a point of } \mathscr{P}_2^m \text{ belonging to the interval } [t_j, t_{j+1})\}$. The second factor of (3.17) is bounded by $\{E(M_{11}^2)\}^{1/2}$, and the first one

converges to zero when $n \to \infty$, uniformly with respect to m, as in the proof of part b) of Lemma 3.2.

The same arguments can be used to treat the second term of the right-hand side of (3.15), obtaining that it is bounded by

$$C\{E(\sup_{|t-t'| \leq |\mathscr{P}_2^n|} |M_{1t} - M_{1t'}|^2)E(M_{11}^2)\}^{1/2}$$

So, (3.14) holds.

ii) We want to prove that

(3.18)
$$\lim_{\delta \downarrow 0} \sup_{n} E(\sup_{|s-s'| < \delta} |T_s^n - T_{s'}^n|) = 0.$$

The processes T_s^n are continuous and increasing. Thus, if we consider a finite set $\mathscr{P} = \{0 = s_1 < s_2 < \cdots < s_r < 1\}$ such that $|\mathscr{P}| < \delta$, we obtain

$$E(\sup_{|s-s'|<\delta} | T_{s}^{n} - T_{s'}^{n} |)$$

$$\leq 2E(\sup_{i} | T_{s_{i+1}}^{n} - T_{s_{i}}^{n} |)$$

$$= 2E(\sup_{i} \sum_{j=1}^{q_{n}} (\langle M_{\cdot t_{j+1}} - M_{\cdot t_{j}} \rangle_{s_{i+1}} - \langle M_{\cdot t_{j+1}} - M_{\cdot t_{j}} \rangle_{s_{i}}))$$

$$= 2E(\sup_{i} \lim_{|\mathcal{S}_{i}| \to 0} \sum_{i=1}^{q_{n}} \sum_{\sigma i \in \mathcal{S}_{i}} M(\Delta_{iik})^{2}),$$

where $\Delta_{ijk} = (\sigma_k^i, \sigma_{k+1}^i] \times (t_j, t_{j+1}]$ and $\mathcal{P}_i = \{s_i = \sigma_1^i < \sigma_2^i < \cdots < \sigma_{r_i}^i < s_{i+1}\}$ determines a partition of the interval $[s_i, s_{i+1}]$ for any $i = 1, \dots, \ell$. Put $\overline{\Delta}_{ijk} = (\sigma_k^i, \sigma_{k+1}^i] \times (0, t_j]$. Then, (3.19) is bounded by

$$(3.20) \begin{array}{c} 2E(\sup_{i}(\langle M_{\cdot 1}\rangle_{s_{i+1}} - \langle M_{\cdot 1}\rangle_{s_{i}})) \\ + 4E(\sup_{i}\lim_{i \gg 1 \to 0} |\sum_{i=1}^{q_{n}} \sum_{k} M(\Delta_{i:k})M(\overline{\Delta}_{i:k})|), \end{array}$$

The first term of (3.20) does not depend on n and converges to zero when $\delta \downarrow 0$. The second term can be bounded by

$$4E\{\lim_{|\mathscr{S}_i|\to 0}|\sum_i(\sum_j\sum_kM(\Delta_{ijk})M(\overline{\Delta}_{ijk}))^2|^{1/2}\},$$

and using Lemma 2.2, this quantity is less than or equal to

$$C \sup_{\mathscr{I}_{i}} E(|\sum_{j} \sum_{i} (\sum_{k} M(\Delta_{ijk}) M(\overline{\Delta}_{ijk}))^{2}|^{1/2})$$

$$\leq C \{ E(M_{11}^{2}) \sup_{\mathscr{I}_{i}} E(\sup_{i} \sum_{k} M(\overline{\Delta}_{iik})^{2}) \}^{1/2}.$$

This expression converges to zero when $\delta \downarrow 0$, uniformly with respect to n, as in the proof of part b) of Lemma 3.2.

iii) We will show that

$$\lim_{n}\sup_{m>n}\sup_{s}E(|T_{s}^{m}-T_{s}^{n}|)=0.$$

Fix m > n. With the same notation as above we have

$$E(|T_{s}^{m} - T_{s}^{n}|) = E(|\sum_{j=1}^{q_{m}} \langle M_{\cdot t_{j+1}} - M_{\cdot t_{j}} \rangle_{s} - \sum_{j=1}^{q_{n}} \langle M_{\cdot t_{j+1}} - M_{\cdot t_{j}} \rangle_{s}|)$$

$$= 2E(|\sum_{j=1}^{q_{m}} \langle M_{\cdot t_{j+1}} - M_{\cdot t_{j}}, M_{\cdot t_{j}} - M_{\cdot t_{\nu(j)}} \rangle_{s}|)$$

$$\leq 2 \sup_{\mathscr{P}} E(|\sum_{j=1}^{q_{m}} \sum_{i} M(\Delta_{ij}) M(\overline{\Delta}_{ij})|),$$

where $\Delta_{ij} = (s_i, s_{i+1}] \times (t_j, t_{j+1}], \overline{\Delta}_{ij} = (s_i, s_{i+1}] \times (t_{\nu(j)}, t_j],$ and the supremum is

taken over all finite sets $\mathcal{P} = \{0 = s_1 < s_2 < \dots < s_r < s_{r+1} = s\}$. By Davis inequality, (3.22) is bounded by

$$C \sup_{\mathscr{P}} E(|\sum_{j=1}^{q_m} (\sum_i M(\Delta_{ij}) M(\overline{\Delta}_{ij}))^2|^{1/2})$$

$$\leq C \sup_{\mathscr{P}} E(|\sum_{j=1}^{q_m} (\sum_i M(\Delta_{ij})^2) (\sum_i M(\overline{\Delta}_{ij})^2)|^{1/2})$$

$$\leq C \sup_{\mathscr{P}} \{E(\sup_i \sum_{i' \in I_i} \sum_i M(\Delta_{ii'})^2) E(\sum_{i=1}^{q_m} \sup_{i' \in I_i} \sum_i M(\overline{\Delta}_{ii'})^2)\}^{1/2}.$$

Now we apply Doob's maximal inequality, obtaining that (3.23) is less than or equal to

$$C\{E(M_{11}^2) \text{ sup } \mathcal{E}(\sup_i \sum_{i' \in I_i} \sum_i M(\Delta_{ii'})^2)\}^{1/2}$$
.

Next we set

$$E(\sup_{j} \sum_{j' \in I_{j}} \sum_{i} M(\Delta_{ij'})^{2})$$

$$\leq E(\sup_{j} \sum_{j' \in I_{j}} (M(1, t_{j'+1}) - M(1, t_{j'}))^{2})$$

$$+ 2E(\sup_{j} |\sum_{j' \in I_{i}} \sum_{i} (M(s_{i}, t_{j'+1}) - M(s_{i}, t_{j'}))M(\Delta_{ij'})|).$$

The first term of (3.24) converges to zero when n tends to infinity, uniformly with respect to m, by Lemma 2.1 applied to the martingale M_1 . This convergence holds too for the second term. Indeed, applying Lemma 2.2, this term is bounded by

$$\begin{aligned} 2E(|\sum_{j=1}^{q_n} (\sum_{j' \in I_j} \sum_{i} (M(s_i, t_{j'+1}) - M(s_i, t_{j'}))M(\Delta_{ij'}))^2|^{1/2}) \\ &\leq CE(|\sum_{i} \sum_{j=1}^{q_n} (\sum_{j' \in I_j} (M(s_i, t_{j'+1}) - M(s_i, t_{j'}))M(\Delta_{ij'}))^2|^{1/2}) \\ &\leq C\{E(M_{11}^2)E(\sup_{i,j} \sum_{j' \in I_j} (M(s_i, t_{j'+1}) - M(s_i, t_{j'}))^2)\}^{1/2} \end{aligned}$$

Then we apply Doob's maximal inequality to the positive submartingale (with respect to the coordinate s) $(\sup_j \sum_{j' \in I_j} (M(s, t_{j'+1}) - M(s, t_{j'}))^2)^{1/2}$, as in the proof of (3.10), obtaining that the above expression is majored by

$$C\{E(M_{11}^2)E(\sup_j \sum_{j'\in I_j} (M(1, t_{j'+1}) - M(1, t_{j'}))^2)\}^{1/2}$$

iv) Finally we will prove that

$$(3.25) \qquad \qquad \lim_{n \to \infty} E(\sup_{s} |T_s^m - T_s^n|) = 0.$$

This convergence together with (3.14) will imply the theorem. In the deduction of (3.14) we have essentially used Davis inequality applied to the one-parameter continuous martingales $R_s^m - R_s^n$. Here we substitute this inequality by the uniform continuity of the processes T_s^n with respect to n, which has been obtained in part ii). Given a real number $\varepsilon > 0$ we fix $\delta > 0$ such that $E(\sup_{|s-s'| < \delta} |T_s^n - T_{s'}^n|) < \varepsilon/3$ for all n. Let $\mathscr{P} = \{0 = s_1 < s_2 < \cdots < s_r < 1\}$ a finite set with $|\mathscr{P}| < \delta$. Then

$$\begin{split} E(\sup_{s} ||T_{s}^{m} - T_{s}^{n}|) &\leq E(\sup_{i} \sup_{s \in [s_{i}, s_{i+1}]} ||T_{s}^{m} - T_{s_{i}}^{n}|) + \sum_{i} E(||T_{s_{i}}^{m} - T_{s_{i}}^{n}|) \\ &+ E(\sup_{i} \sup_{s \in [s_{i}, s_{i+1}]} ||T_{s_{i}}^{n} - T_{s}^{n}|) \\ &\leq \frac{2\varepsilon}{3} + \sum_{i} E(||T_{s_{i}}^{m} - T_{s_{i}}^{n}|) \leq \varepsilon, \end{split}$$

for any $n \ge n_0$ and for all m > n, because of (3.21). \square

456 D. NUALART

Now we can state the main result.

THEOREM 3.4. Let M be a martingale of m_c^p with $p \ge 2$. There exists a continuous increasing process $\langle M \rangle$ such that

(3.26)
$$\lim_{n} \sup_{z} E(|\sum_{u \in \mathcal{F}_{n}^{n}} M(\Delta_{u})^{2} - \langle M \rangle_{z}|^{p/2}) = 0,$$

and the following Itô's formula holds

$$(3.27) M_{st}^2 = 2N_{st} + 2S_{st} + \langle M_{s.} \rangle_t + \langle M_{.t} \rangle_s - \langle M \rangle_{st},$$

where N and S are the martingales of $m_c^{p/2}$ given by Lemmas 3.1 and 3.2.

PROOF. The following convergences are well-known from the results in the one-parameter case

$$(3.28) \quad \lim_{n} \sup_{s,t} E(|\sum_{i} (M(s_{i+1} \wedge s, t) - M(s_{i} \wedge s, t))^{2} - \langle M_{i} \rangle_{s}|^{p/2}) = 0,$$

$$(3.29) \quad \lim_{s \to 0} \sup_{s,t} E(|\sum_{i} (M(s, t_{i+1} \land t) - M(s, t_{i} \land t))^{2} - \langle M_{s, t} \rangle_{t}|^{p/2}) = 0.$$

Then, applying these convergences and Lemmas 3.1 and 3.2 to the decomposition given in (3.1), we obtain an adapted and integrable process $\langle M \rangle_z$ for which (3.26) holds. It is easy to see that this process has a right-continuous and increasing modification. Finally the sample continuity of $\langle M \rangle_z$ follows from Lemma 3.1, 3.2 and Theorem 3.3.

REMARKS.

- 1. A sequence of continuous processes $X_n = \{X_n(z), z \in T\}$ is said to converge uniformly in probability to a process $X = \{X(z), z \in T\}$ if $\lim_n P\{\sup_z | X_n(z) X(z)| > \varepsilon\} = 0$ for any $\varepsilon > 0$. Suppose that M is a martingale of m_c^2 . Then, the preceding results imply that the five terms appearing in the right-hand side of (3.1) converge uniformly in probability to the continuous processes N_{st} , S_{st} , $\langle M_{s+} \rangle_s$, $\langle M_{s+} \rangle_t$ and $\langle M \rangle_{st}$, respectively.
- 2. Let M be a martingale of m_c^2 . A limit argument in Burkholder's inequalities for two-parameter discrete martingales leads to the following inequalities for all p > 1

$$C_p E(\sup_z |M_z|^p) \leq E(\langle M \rangle_{11}^{p/2}) \leq C_p^1 E(\sup_z |M_z|^p),$$

provided that, for p > 2, the expectation $E(|M_{11}|^p)$ is finite. For p = 1, we can only affirm that

$$E(\sup_s |M_{s1}|) \leq CE(\langle M \rangle_{11}^{1/2}),$$

because $E(\sup_s |M_{s1}|) \leq CE(\langle M_{\cdot 1} \rangle_1^{1/2})$ by Davis inequality, and moreover $E(\langle M_{\cdot 1} \rangle_1^{1/2}) \leq CE(\langle M \rangle_{11}^{1/2})$, by a limit argument in Lemma 2.2.

Acknowledgement. I would like to thank the referee for several helpful remarks, and especially for suggesting the use of Lemma 2.2.

REFERENCES

- [1] BURKHOLDER, D. L. (1966). Martingale transforms. Ann. Math. Statist. 37 1494-1504.
- [2] BURKHOLDER, D. L., DAVIS, B. J. and GUNDY, R. F. (1972). Integral inequalities for convex functions of operators on martingales. Proc. Sixth Berkeley Symp. Math. Statist. Probab. 2 223-240. Univ. of California Press.
- [3] CAIROLI, R. (1980). Sur l'extension de la définition d'intégrale stochastique. Lecture Notes in Math. 784 18-25.
- [4] CAIROLI, R. and WALSH, J. B. (1975). Stochastic integrals in the plane. Acta Math. 134 111-183.
- [5] CHEVALIER, L. (1982). Martingales continues à deux paramètres. Bull. Sci. Math. (2) 106 19-62.
- [6] DAVIS, B. J. (1970). On the integrability of the martingale square function. Israel J. Math. 8 187-190.
- [7] GARSIA, A. M. (1973). Martingale inequalities: seminar notes on recent progress. Mathematics Lecture Note Series. Benjamin, Reading.
- [8] LEDOUX, M. (1981). Inégalités de Burkholder, pour martingales indexées par $N \times N$. Lecture Notes in Math. 863 122–127.
- [9] MERZBACH, E. and ZAKAI, M. (1980). Predictable and dual predictable projections for twoparameter stochastic processes. Z. Wahrsch. verw. Gebiete 53 263-269.
- [10] METRAUX, C. (1978). Quelques inégalités pour martingales à paramètres bi-dimensionnels. Lecture Notes in Math. 124 1-27.
- [11] MEYER, P. A. (1981). Théorie élémentaire des processus à deux indices. Lecture Notes in Math. 863 1-39.
- [12] MILLAR, P. W. (1968). Martingale integrals. Trans. Amer. Math. Soc. 133 145-166.
- [13] NUALART, D. (1982) Différents types de martingales à deux indices. Lecture Notes in Math. 986 398-417.
- [14] ZAKAI, M. (1981). Some classes of two-parameter martingales. Ann. Probab. 9 255-265.

FACULTAT DE MATEMÀTIQUES UNIVERSITAT DE BARCELONA GRAN VIA 585, BARCELONA-7 SPAIN