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ON THE QUADRATIC VARIATION OF TWO-PARAMETER
CONTINUOUS MARTINGALES

By D. NUALART

Universitat de Barcelona

Let M = {M(z), z € [0, 1]} be a two-parameter square integrable
continuous martingale. We prove the sample continuity of the quadratic
variation of M using an Ito’s differentiation formula for M>

1. Introduction. The aim of this paper is to show some results concerning
the quadratic variation of a two-parameter continuous martingale, which are
well-known in the one-parameter case.

Suppose that M = {M,, z € [0, 1]} is a square integrable continuous martingale
with respect to an increasing family of o-fields satisfying the usual conditions of
R. Cairoli and J. B. Walsh [4]. The Doob-Meyer decomposition theorem (cf. [4]
and [9]) assures the existence and uniqueness of a predictable, increasing process
(M) vanishing on the axes, and such that M* — (M) is a weak martingale. The
main result of this note is the sample continuity of the quadratic variation (M),
which so far had only been proved for some special kinds of martingales, like
path independent variation martingales or martingales with orthogonal incre-
ments in one direction (see [13]). If the martingale M is bounded in L” for
p = 2, then the process (M) is obtained as the L”? limit of sums of the form
Y. M(A;)®. The method to show these results is based on the deduction of a
two-parameter It6’s formula for M2,

The construction of the quadratic variation of M and a more general It6’s
formula have been obtained by L. Chevalier in [5], under the additional assump-
tion that any square integrable martingale has a continuous version. Under this
hypothesis any square integrable martingale can be approximated by continuous
bounded martingales, as in the one-parameter case. As far as we know, this
approximation is not allowed in the general case, because of the lack of stopping
times, and we have replaced it by a more accurate application of martingale
inequalities.

2. Notation and basic assumptions. The set of parameters will be T =
[0, 1]%, with the partial ordering (s:, ¢;) < (sz, t2) if and only if s; < s, and t; <
to. Then, (s;, t) < (sq, t;) means s; < s, and ¢, < t,. Let 2, < z,, then (z), 2;]
denotes the rectangle {z € T z; < z < z,}. Suppose that f is a mapping from T to
R. The increment of f on a rectangle (z1, 23], 21 = (s1, t1), 22 = (s2, t2) will be
f((z1, 22]) = f(22) = f(s1, t2) — f(s2, t1) + f(21).

Let (2, % P) be a complete probability space and let {#,, z € T} be an
increasing family of sub-gs-fields of Z The o-fields %, are assumed to satisfy the
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usual conditions of [4]: (a) Fy includes the null sets of Z (b) #, is right-
continuous, and (¢) ., and ,, are conditionally independent given %,.

Suppose that M = {M,, z € T} is an integrable, #,-adapted process. Then: (a)
M is a martingale if E(M,/%,) = M, for any z < z’, and (b) M is a weak
martingale if E(M(z, 2’]/%,) = 0 for z < z’. For p = 1, let m? be the class of all
sample continuous martingales M such that M, = 0 on the axes and E(| M,|?) <
o for all z. Given a martingale M of m?, we will denote by M., and M. the one-
parameter martingales {M,,, %, s = 0} and {M,, &, t = 0} respectively. A
process A = {A,, z € T'} will be called increasing if it is adapted, A, = 0 on the
axes, and A (A) = 0 for any rectangle A = (z;, 2,].

A subset & of T will be called a grid if & = 2! X #? where #! and 2
are finite subsets of [0, 1) containing the point zero. Suppose that 0 = s, < s, <
.- . < s, are the points of £, in increasing order, and 0 = ¢; <t, < --- <{, are
those of 22 For any u = (s;, ;) in & we will write & = (si+1, tj+1), Ay = (4, @],
Al = (s;, si+1] X (0, t;] and A2 = (0, s;] X (¢, tj+1], with the convention s,4; = 1
and ¢,+; = 1. The class of all grids on T is ordered by inclusion. Given a grid &
and an arbitrary point z of T, we denote by &, the smallest grid containing &
and z. We will write &7, = {2’ € %: 2’ <z}. The norm of & is defined as | & |
=max{|lu—al|,u€ ¥}

Throughout the paper, C, will represent a constant, depending on p, which
may be different from one formula to another one. In the same way, C will denote
an arbitrary constant.

The next result about one-parameter continuous martingales will be needed
in the following.

LEMMA 2.1. Let M = {M,, t € [0, 1]} be a square integrable continuous
martingale with respect to an increasing family of s-fields { %, t € [0, 1]} satisfying
the usual conditions. Suppose My, = 0 and denote by P = {s;},0 =85, <s; < ...
< s, < 1 a finite set of points. Consider another finite set ' O P, whose points
can always be written as ¢4, i =1, ---,n; k=1, ---, r;, in such a way that
si=oi<ob< ... <ol <suiforalli Set| P | =max]si1— si|, where s,.; =
1. Then

(2.1 lim, | y08up >, E(sup; i, (M(0k+1) — M(o}))?) = 0.

By convention, we put ¢\ 1 = Si+1.

PROOF. Notice that the random variables {Y; (M(s;+1) — M(s;))?, 2 finite
subset of [0, 1)} are uniformly integrable. Indeed, this property can be shown by
using Burkholder-Davis-Gundy’s inequalities (cf. [2]) and the lemma due to
de la Vallée-Poussin which gives necessary and sufficient conditions for the
uniform integrability of a family of random variables. For every ¢ > 0, we choose
a positive integer h > 0 such that P(D}) < ¢, where D, = {w: sup,| M,(w) | = h}.
Define T = inf{s = 0: | M,| > h}. Then, applying Burkholder’s and maximal
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inequalities, we obtain, for all A\ > 0
Pisup; T7; (M(chs1) — M(a}))® > A}
=< P(D}) + Pfsup; 3y, (M(che1 A Th) — M(ck A Th))*> > N}
< e+ A7 LE(QiL, M(cke A Th) = M(ci A Tn))??)
e+ A°C Y E((M(sis1 N Ty) — M(s; A Tr))Y)
< &+ NCLE[(X: (M(si+1 A Ti) — M(s; A Th))*)?]
- E[supi(M(six1 A Tw) — M(s; A T)*l}"?
< ¢+ \7°C hYE(supjs—v = » | M, — My | )},
and the proof follows easily. 0

In the proof of our results we will often use the next inequality for a family of
one-parameter martingales. The method to show this inequality is the same as
that used in the proof of Theorem 1 of [8]:

LEMMA 2.2. Let Mi,j=1, .. -,m},i=1, ..., n,bea family of one-parameter
martingales. Set Si, = (37, (M} — M_,)*)"?, assuming M) = 0. Then, there
exists a universal constant C such that

E[(Z: (M7))"*] = CE[(Z: (Sw)*)").

Proor. Denote by {r;} a family of Rademacher functions on [0, 1]. Using
Khintchine and Davis inequalities, we have

Bz 0 = o8( [ 15 M) )
= CEU; (%) (% (M; - M;:—l)ri(t))2)1/2dt:|

1 1/2
= CE[(Z,- J; (i (M) - M}-l)ri(t))zdt> ]
= CE[(Z; X (M} — Mj-1))"?]
= CE[(Z: (SR))"?]. O

3. Main results and proofs. Suppose that M = {M,, z € T} is a martingale
of m2. We fix an increasing sequence of grids " whose norms tend to zero. Let
Sr=PIX P, Pl={0=s1<..-<spland Z;={0=ti<...<t;}.In
order to simplify the notation, we omit the index n of the points of #7 and #3.
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Then, for all z = (s, t) in T the following equality holds
M: =2 Fue » M\M(A,) + 2 Tue 7+ M(ALM(AY)
(3.1) + 30 (M(sie1 A s, t) — M(s; A s, t))?
+ X (M, tia A t) — M(s, t; A £))? — Tue 72 M(AL)

Note that in the above expression the rectangles A,, Al and AZ are defined with
respect to the grid “7. The proof of (3.1) is straightforward. It can also be
viewed as a particular case of Lemma 1 of [5]. Next we are going to look over the
behavior of each term of the right-hand side of (3.1) when n tends to infinity.

LEMMA 3.1. Suppose that M belongs to m2 with p = 2. Then, there exists a
martingale N in m?’? such that

3.2) lim,sup.erE (| Sue 7» MM (A,) — N,|P2) = 0.

PROOF. For any natural n we define the martingale N7 Eue M M(AL).
Fix m > n and consider the difference

Nll - N'I!I = Eue,/’" MuM(Au) - Zue./" MuM(Au)
= Eue,/’" (Mu - Mu')M(Au),

-where u’ = supfv € " v < u}. The terms (M, — M, )M(A,) are martingale
differences with respect to the o-fields {%;, u € <™}. Therefore, using Burk-

holder-Davis-Gundy’s inequalities extended to the case of two-parameters (cf.
[8], [10]) we obtain

E(|NTi — N1|"?) < CoE(] Sue m (M, — M,/ )*M(A,)*|7*)
< CoE(supuc n| My — My |7 (Tue om M(8,)?)%)
< Co{E(supue n| M, = My |P)E((Zuec om M(A,)?YP)}2
< Co{E(sup)u—v < +» | My — M, |P)E(| My |P)}V2.
In consequence, we have
lim,supn>.sup.E(| N7 — NZ|”%) = 0,

and this implies the existence of a martingale N bounded in L”/? such that (3.2)
holds. It remains to prove that N has a continuous version. For p > 2 this is an
immediate consequence of Doob-Cairoli’s maximal inequalities for two-parameter
martingales. In fact, we have in this case

limnE(SUle Zue,/_;' MuM(Au) - NZIP/z) = 0.

If p = 2, the continuity of the martingale N could be deduced from the properties
of the stochastic integral [ M dM (cf. [3]). However, we prefer to present here a
direct proof of the existence of a continuous version of N. Fix a positive integer
h > 0 and define M,,(z) = (M(2) A h) V (=h). Then, for any n and h, the process
given by N3 (z) = Yue M, (u)M(A,) is a square integrable continuous martin-
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gale. Let m > n. Applying Doob-Cairoli’s maximal inequality and Burkholder’s
inequality for two-parameter discrete martingales, we obtain

E(sup,| N7 (2) — N3(2) |%?)
< CE(|N?(1, 1) — Na(1, 1)|*?)
= CE(| Sue.m (Ma(u) — Ma(u’))M(A,) |¥2)
< E(] Suem (Ma(u) — Miu(u')*M(A,)?1%4)
< CE(supuc»| Ma(w) — Miu(@’) |%2(Tucm M(A)%4)
< C{E(supju-v; =) /n| Mu(u) = My(v) |)}/4E(M3,))¥".

Set D, = {w: sup,| M.(w)| < h}. Given an ¢ > 0 we take h in such a way that
P(Dj,) <e. Then, for any positive number \ we will have

Pfsup,| N™(z) — N"(2) | > )}
=< P(D}) + P({sup.| N"(z) — N"(z) | > \} N Dy)
<e+ Pfsup, | NP(2) — Ni2) | >N}
< ¢+ AN 32E(sup,| NF(z) — N3(2) |*?).

Therefore, (3.3) and (3.4) imply lim,sup,,~.P{sup.| N™(z) — N*(z)| > \} = 0,
which completes the proof. 0

(3.3)

(3.4)

LEMMA 3.2. Suppose that M is a martingale belonging to m®? with p = 2. Then,
there exists a martingale S in m?’? such that

(3.5) lim,sup. E(| Tue 72 M(AM(AY) — S,|P?) = 0.

PrROOF. Define S? = Y.c » M(A,)M(AZ). We are going to consider two
different cases. ‘
(a) If p> 2, the assertion of the lemma will follow from the convergence

(3.6) lim,sup.>.E(| ST — ST |”?) = 0.

Assume that & is a grid on T which contains <" and has the same projection
on the “t” axis. If {u = (s;, t;),1 <i < p,, 1 =j < q,} are the points of <", those
of & will be of the form u’ = (0, ¢),1<i’'<p,1<j<gq,.Foranyi=1, ...,
Dn, we denote by I; the set {i’: oy € [s;, si41)}. Put S, = Yue 7, M(AL)M(AY). In
order to show (3.6) it suffices to prove that lim,sup , E(| 81, — 8% |”?) = 0, and
a similar result for grids with the same projection than <" on the “s” axis. Using
Burkholder-Davis-Gundy’s inequality for two-parameter discrete martingales, we
obtain

E(]Si — SH|P?) = E(| Swe M(AL)M(AL) — Yue ,» M(ALM(A2) |P?)
= E(| Tu=tsupe - Sver, MAL)M (AL — A2)|P72)
< CE(| Tue » Sier, M(AL )X M(AZ — A2)?|P/4),
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where u = (s;, t;), u’ = (o7, t;), Aw = (07, 07411 X (0, ;] and A% — A2 = (s;, o]
X (&, ti+1]- Therefore,
E(| 81 — S11”) < Co{E(| & Sver, sup;M(AL)?|P?)
-E(|sup;supyer,y; M(AZ — A2)2|P/3)}1/2,

i) We will show that the first factor of the right-hand side of (3.7) is bounded
by some constant. To do this consider the continuous increasing and #,,-adapted
process defined by

A=3 Zi’EI; sup,<:(M(ci41, 7) — M(ay, 7))%

Then E(| ¥: Yier, sup;M(Ai)?|7?) < E(AR?).
Next we compute the potential Z, associated to A,,

Z, = E, — A| F1)
= E(3: Yrer, (sup,(M (0141, 7) — M(os, 7))*
= sup.<(M(oi41, ) — M(ov, 7)) | F.)
=< E(%: Zier, sup,=:(M(0i41, 7) — Moy, 7))%/ F1)
< C % Yier, E(M(0y41, 1) = M(or, D)?| A0) = m,,

where m, is an #,-adapted martingale. Then, from Garsia-Neveu’s inequality
(cf. [7]) we obtain

E(A??) = C,E(m8?) = C,E(| 3 Tver, (M (0741, 1) — Moy, 1)2|7?)
<= CE(| M |P).

ii) The second factor converges to zero when n tends to infinity, uniformly
with respect to &7 Indeed, applying Doob’s maximal inequality and Burkholder’s
inequality for discrete martingales, we deduce

E(|supisuprer X M(AL — A%)?|P7?)
< Y E(supre,(3T; M(AZ — A2)?)P2)
= GYi E(1 T M(A)? P
= G X E(| M(si41, 1) — M(si, 1) |?)
= G{E(| Zi (M(si1, 1) — M(s;, 1))2|7)}*P
AE (sup:| M(sis1, 1) — M(s;, 1) |P)} =P
< Co{E(| My, |P)}*P
AE(SUP) 2~z <) o | M(21) — M(20) |P)} =P,
(b) Suppose p = 2. With the same assumptions as above on the grids & and

3.7
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", we will first show that

(3.8) lim,sup ,E(sup, | S, — S% ) = 0.

By Davis inequality in the case of continuous martingales, we have

E(sup, | S — Si) ,
= E(sup, | Yu=s,pe +» e, M(AL — AD(M(ois1 As, ) — M(or A s, 1)) ])
< CE(Zi Yre, (T M(AY — AD)(M(oi41 N -, t) — M(ar A -, t))1| VD).

For any i’ we consider a partition of the interval [¢;, 0;.,] determined by the
finite set P = {ok}, ov = 6l <o) < ... < ai:., = 0y41. Set | | =
max (o1 — ok).

Then, using Fatou’s lemma, we obtain

E(sup,| S, — S3l)
< CE(| Zi Yver, lim 4, 0 Tk (T M(AL — AD)(M(chn, t) — M(sk, t))))*|?)
< Csup ,E(| % Trer, T (T; M(AL — AZL)M(AN4))2|Y3),

where A.{/k = (ok, oh+1] X (0, t;] and the supremum is taken over all finite sets
2 = {¢},} which contain the points g;.
Applying Lemma 2.2 to the martingale differences (with respect to the index
J) M(A% — A%Z)M(ALL), we have
E(supsl ‘gsl - S?l | )
(89) = Csup,E(|X Trer Xk X5 M(AL — AZ)*M(AL4)*|V?)
< C{E(3;, suprer,M(AZ — A2)?)-sup ,E(sup;;Yier, Tk M(AL)D}2

The first factor of the above expression is bounded by E (M?,) because of Doob’s
maximal inequality. The process (sup;Y. »M (A%;)?)?, appearing in the second
factor, is a submartingale with respect to the index j. In fact, it can be regarded
as a convex function of the martingales M (A’ ). Then, we apply Doob’s maximal
inequality, obtaining

E(sup;;Yier, Ye M(A44)?)
< CE(sup;Yier, Xx (M(chs1, 1) — M(sk, 1))?).
Therefore, from (3.9) and (3.10) it follows that
sup LE (sup,| S — S4|)
(3.11) p ps | Si1 2 1
< C{E(M%,) - sup., E(sup:Yrer, (M(0i41, 1) — M(oi, 1)))}V2

Now, from (3.11) and Lemma 2.1 applied to the martingale M .,, we see that (3.8)
holds. Notice that for the convergence to zero in (3.8) we only need that
lim,| 21| =0.

We could obtain a similar result for grids & with the same projection than

(3.10)
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<" on the “s” axis. That means
(3.12) lim,sup , E(sup;| S;; — S%|) = 0.

Then, from (3.8) and (3.12) we deduce the existence of a martingale S such that
(3.5) holds. It remains to show that S has a continuous version. For any m > n
denote by <™ the grid on T with the same projection on the “t” axis than "
and with the same projection on the “s” axis than <™ Set S =
Yue 7mM(AL)M(A?). Then by maximal inequality, for all X > 0 we have

P{sup,.| S% — S%| > A}

A

sP{sups,tIS,Z'Z—S.Z'E"I > :

+ P{Sups,tl Sar — > 5}

3]

N ——

2
=3 E(sup,| ST: — ST"|) + X E(sup,| 83" — Sy 1),

which converges to zero when n — o, uniformly with respect to n, because of
(3.8) and (3.12). 0

The next result states the continuity in both arguments of the quadratic
variation in one direction of a two-parameter continuous square integrable
martingale.

THEOREM 3.3. Let M be a martingale of m?. Then the processes (M,.), and
(M ;) have continuous versions in both coordinates.

PrROOF. We will show the existence of a continuous modification of (M,.),.
Consider an increasing sequence of finite sets 23 ={0=t, <t, < --- <t <1}
such that | 25| = max;| t;+, — ¢;| tends to zero when n — . Define

w=2; (M(s, tisa N t) — M(s, t; A )

We know that lim,E(| P}, — (M,.);|) = 0. For any m > n the difference
P — P} is a martingale and by the maximal inequality we will have
Pisup,,| P — P%| > A} <= (1/N)E(sup,| P;i — P3%|) for all A > 0. Therefore, the
theorem will follow from the convergence

(3.13) lim,sup-.E (sup,| P5i — P3|) = 0.

In order to prove (3.13) we make the decomposition P}, = 2R} + T?7, where

R =3, J(; (Mo, tjs1) — M(o, 1,))0(M (o, tjr1) — M(o, t;))

(here the symbol d denotes a one-parameter stochastic integral with respect to
the first index) and T = ¥; (M.,,, — M_;)),. Then the proof of (3.13) will be
done in several steps.

i) First we will show that

(3.14) lim,sup,.-.E(sup,| R{" — R}|) = 0.
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Set
E(sup,| Ry — RY|)
= E(Sups 7:1 f (M(O', tj+1) - M(O', tj))a(M(Uy tj) - M(O', tu(j))) l)
(3.15) 0
+ E<Sups 721 L (M(O', t]) - M(U’ tu(j)))a(M(Uy tj+1) - M(U, t])) >,

where t,, = sup{t € ™t <t;},foranyj=1, ---, ¢n. The method we will use
to show (3.14) is similar to the demonstration of (3.8). That means, we apply
Davis inequality to the first term of the right-hand side of (3.15) in order to
obtain

E<Sups ‘ 27:1 L (M(O', tj+1) - M(O', t}))a(M(U, tj) - M(O', tu(j))) ‘ )

= CE{ ‘ 7:;'=1 L (M(s, tj+l) - M(s’ t]))(M(s, tj"+1)

il
J

- M(S, t]')) d(M.tJ - M'tvm’ M'tl' - M-t,(j:)>s

= CE{lim, | X%, Bim_) (M(si, tjs1) — M(ss, t;))
“(M(si, tr1) — Mls;, t;)
M.y = M.y, My, — M),
- (M., —M.,,, M, —M,,)) "

The limit is taken with respect to an increasing sequence of finite sets #7| =
{0=s<s,<..- <s, <1} such that lim,| 27| = 0. By Fatou’s lemma and
using the same arguments that in the proof of (3.8), the above expression is
bounded by

(3.16) C sup,sup »E(| 2, Xk (Timy (M(si, tien) — M(si, )M (8ijx))*|V3),

where A, = (ok, 641] X (t.j), t;] and the points ok, k=1, ..., r;, form a
partition of the interval [s;, s;+:]. In (3.16) the supremum is taken over all finite
sets # = {o}} which contain 21. Put A;; = (s, sis1] X (L)), t;]. Then, applying
Lemma 2.2 we obtain that (3.16) is less or equal than

C sup,sup »E(| 2%, Tk Tim (M(si, 1) — M(si, £:))°M(Aii)? | %)
(3.17) < C sup, sup ,{E (sup;sup;Y je;, (M(si, tjs1) — M(si, t))?)
- BTy Tk T2, suprerM(Aj) )},

where foranyj=1, ---,q,, ;= {j’: t;is a point of #3 belonging to the interval
[tj, t+1)}. The second factor of (3.17) is bounded by {E (M?,)}!/%, and the first one
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converges to zero when n — oo, uniformly with respect to m, as in the proof of
part b) of Lemma 3.2.

The same arguments can be used to treat the second term of the right-hand
side of (3.15), obtaining that it is bounded by

C{E(Supu—msy?m | My, — My, |2)E(M%1)}1/2-

So, (3.14) holds.
ii) We want to prove that

(3.18) lim;osup, E(sup,,—y|<;| T¢ — T2 |) = 0.

The processes T'; are continuous and increasing. Thus, if we consider a finite set
P ={0=5<s<-..-.-<s <1}suchthat | Z| < j, we obtain

E(sup -y <s | T5 — T% |)
= 2E(sup:| T%,, — T5|)
=2E(sup; 372, (M., — M), — (M., — M.;)),))
= 2E(sup;lim; 4,0 2%, Yojc » M(Air)?),

where Ay = (0k, 0ks1] X (&, tim] and P = {si= ol <ob < ... < ol < 8is1}
determines a partition of the interval [s;, s;11] forany i =1, ..., 2 Put A =
(%, ok+1] X (0, t;]. Then, (3.19) is bounded by

(3.20) 2E(supi((M.1)s,-+1 - (M~1>S;))
+ 4E(sup;lim, 50 | 221 T M(A5) M(Aij) |).

The first term of (3.20) does not depend on n and converges to zero when é | 0.
The second term can be bounded by

4E{lim| 0| Xi (T; Tk M(Aj)M (D)) | V3,
and using Lemma 2.2, this quantity is less than or equal to
Csup ,E(|X; i (Tk M(Aije) M (Aij))?|?)
< C{E(M%,) sup ,.E (sup;sup; ¥r M(A;)%)}Y2

This expression converges to zero when 6 | 0, uniformly with respect to n, as in
the proof of part b) of Lemma 3.2.
iii) We will show that

(3.21) lim,sup,>,sup,E(| T™ — T?|) = 0.
Fix m > n. With the same notation as above we have
E(|T? = T2|) = E(| 20, (Mo, — M), — 302, (M., — M.,),|)
(3.22) =2E(| 3% (M., — M.,, M., — M..,,),|)
< 2sup,E(| Ti ¥ M(A;)M(A;) ),

where A; = (s, Sin1] X (&, 1], Ay = (8i, sie1] X (L), 8], and the supremum is

(3.19)
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taken over all finite sets & = {0 = 5, < s, < .-+ < 5,< 5,41 = s}. By Davis
inequality, (3.22) is bounded by

C sup» E(| X (T: M(Aj))M(A;))*|?)
< Csup» E(| X (T M(A))(Z: M(A)H V%)
< C sup »{E(sup; Yjer; i M(A;))E(T, supjer, X M(A;)H)}2
Now we apply Doob’s maximal inequality, obtaining that (3.23) is less than or
equal to
C{E(M3,) sup LE(sup; Tjer, Ti M(Ayz))}2
Next we set
E(sup; Yjer; i M(Ai;)?)
(3.24) < E(sup; Zj'elj (M, typ4) — MQ, t;7))?)
+ 2E(sup; | Xjer; Ti (M(si, tp1) — M(si, t))M(Ai) |).
The first term of (3.24) converges to zero when n tends to infinity, uniformly
with respect to m, by Lemma 2.1 applied to the martingale M, .. This convergence

holds too for the second term. Indeed, applying Lemma 2.2, this term is bounded
by

2E(| 27;1 (Zj'aj i (M(si, tp+1) — M(s;, tj'))M(Aij'))2|1/2)
= CE(|1 % Zi21 (Tjer, (M(si, tya) — M(s;, t))M(Ay))?| %)
< C{E(MY)E(supi; Yjer, (M(si, tis1) — M(s;, t;:)))}.2
Then we apply Doob’s maximal inequality to the positive submartingale (with

respect to the coordinate s) (sup; Y er, (M(s, tj-41) — M(s, t;))*)'%, as in the proof
of (3.10), obtaining that the above expression is majored by

C{E(M})E (sup; Tyer; (M(1, ty41) — M(1, ¢))2)}2
iv) Finally we will prove that
(3.25) lim,sup,>.E(sup,| T?* — T?|) = 0.

This convergence together with (3.14) will imply the theorem. In the deduction
of (3.14) we have essentially used Davis inequality applied to the one-parameter
continuous martingales R — R?. Here we substitute this inequality by the
uniform continuity of the processes T'; with respect to n, which has been obtained
in part ii). Given a real number ¢ > 0 we fix § > 0 such that E(sup,,—s ;| T% —
Ty|)<e/3foralln.Let £ ={0=s,<s,< ... <s <1} a finite set with | Z |
< 6. Then

E(sup,| T? — T¢|) = E(supisupses, sl Ts — T5|) + X E(| T — T3|)
+ E(supisupeis, s | Ts; — T3 1)

2
<3+ LE(T; - Til) se

for any n = n, and for all m > n, because of (3.21). 0
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Now we can state the main result.

THEOREM 3.4. Let M be a martingale of m? with p = 2. There exists a
continuous increasing process (M) such that

(3.26) lim,sup,E(| Yue 7» M(A,)? — (M), |”?) =0,
and the following It6’s formula holds
(3.27) Mft = 2Nst + 2Sst + (Ms~>t + (M-t>s - (M)st,

where N and S are the martingales of m#’* given by Lemmas 3.1 and 3.2.

ProoF. The following convergences are well-known from the results in the
one-parameter case

(3.28) limnsupy,E(| X (M(sies A s, 8) — M(s; A s, £))2 — (M..)s|”2) = 0,
(3.29) limusup, E(|S; (M(s, tisn A t) — M(s, t; A £))? — (M,.).|”"?) = 0.

Then, applying these convergences and Lemmas 3.1 and 3.2 to the decomposition
given in (3.1), we obtain an adapted and integrable process (M ), for which (3.26)
holds. It is easy to see that this process has a right-continuous and increasing
modification. Finally the sample continuity of (M ), follows from Lemma 3.1, 3.2
and Theorem 3.3.

REMARKS.

1. A sequence of continuous processes X, = {X,(2), z € T} is said to converge
uniformly in probability to a process X = {X(z), z € T} if lim,P{sup,| X.(z) —
X(2) | > ¢} = 0 for any ¢ > 0. Suppose that M is a martingale of m2. Then, the
preceding results imply that the five terms appearing in the right-hand side of
(3.1) converge uniformly in probability to the continuous processes Ny, S,
(M), (M,.); and (M), respectively.

2. Let M be a martingale of m?2. A limit argument in Burkholder’s inequalities
for two-parameter discrete martingales leads to the following inequalities for all
p>1

C,E(sup.| M,|?) = E((M)??) < C}E(sup,| M,|?),
provided that, for p > 2, the expectation E(| My, |?) is finite. For p = 1, we can
only affirm that

E(Supsl Msl | ) = CE((M>%{2)’
because E(sup,| M, |) <= CE((M.;)}?) by Davis inequality, and moreover
E((M.,)¥?) < CE((M)1{?), by a limit argument in Lemma 2.2.

Acknowledgement. I would like to thank the referee for several helpful
remarks, and especially for suggesting the use of Lemma 2.2.
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