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EXPONENTIAL APPROXIMATIONS FOR TWO CLASSES OF
AGING DISTRIBUTIONS

BY MARK BROWN! AND GUANGPING GE
City College, CUNY and CUNY Graduate Center

Inequalities are derived for the quality of exponential approximations to
NBUE (new better than used) and NWUE (new worse than used) distribu-
tions.

1. Introduction. If a random variable is exponentially distributed with
p = EX and p; = EX? then pu; = 2u? Defining p = | uo/2u® — 1], it is tempting
to conjecture that under mild restrictions a distribution with small p is ap-
proximately exponential. That restrictions are needed is seen by the example,
Pr(X =0) = Pr(X = 1) = %, for which p = 0.

The scale invariant quantity, p, was suggested by Keilson [3]. It has an
interesting interpretation. Define F = 1 — F and G(x) = u™ [§ F(s) ds, the
stationary renewal distribution corresponding to F. Then ug = u2/2u and p =
| u/u — 1|. The parameter p is thus the scaled (by u) distance between u and
uc. For F exponential, F = G and thus u = ug.

The problem of interest can be stated as follows: Given a class & of distri-
butions, along with the first two moments u and u,, find upper bounds for
sup; re.-| F(t) — e™"*| in terms of p.

The above problem for the class of completely monotone distributions (mix-
tures of exponential distributions) was studied by Keilson [8], Heyde [6], Heyde
and Leslie [7], Hall [5], and Brown [2].

Brown [2] considered the class of IMRL (increasing mean residual life)
distributions on [0, «) deriving:

(1.1) sup,| F(t) — e™*| < p/(p + 1)
(1.2) supges| F(B) — GB) | = p/(p + 1)
(1.3) suppes| G(B) — Lu’le“/“dtl =p/(lp+1)
(1.4) sup:| G(t) — e™*s| < p/(p + 1).

In (1.2) and (1.3) above, 8 is the collection of Borel subsets of [0, ©). The
quantity p/(p + 1) was shown to be the best upper bound for (1.1) and (1.2) even
within the subclass of completely monotone distributions.

Brown [3] considered the class of IFR (increasing failure rate) distributions.
It turns out that in this case (1.1) and (1.2) hold with p/(p + 1) replaced by 2p,
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and (1.3) and (1.4) hold with p/(p + 1) replaced by p. The bound 2p is the best
bound for (1.1), among bounds of the form cp®.

In this paper we consider the problem for F NBUE (new better than used in
expectation) and for F NWUE (new worse than used in expectation). These are
the weakest among the commonly studied classes of aging distributions, and it is
often easy to demonstrate that a distribution belongs to one of these classes
(NBUE and NWUE are defined in Section 2). The methods of Brown ([2], [3])
do not generalize to these cases because the partial ordering between F and G is
too weak. Instead we use Fourier methods adopted from Feller [4]. Our main
result is that for ¥ NBUE or NWUE:

(1.5) sup;| F(t) — e™/*| <= Ap'/?

where A = 4V6/r ~ 3.119. For the NBUE case we show that the best bound of
the form cp*has a = % and 1 < ¢ < 4v6/x. Thus the potential improvement in
(1.5) for F NBUE is the lowering of the constant from 3.119 to 1. This remains
true even within the subclass of IFRA distributions.

The standard reference for the classes of distributions discussed in this paper
(NBUE, NWUE, IMRL, IFR, IFRA, NBU, completely monotone) is Barlow and
Proschan [1].

2. Definitions and preliminary results. A distribution F on [0, ») with
F(0) <1 and finite mean u is defined to be NBUE if E(X — t| X > t) < u for all
t = 0 with F(t) > 0. Since E(X — t| X > t) = uG(t)/F(t), it follows that F is
NBUE if and only if F is stochastically larger than G, the stationary renewal
distribution corresponding to F. Define hg to be the failure rate function of G
and note that hg(t) = [E(X — t| X > t)]7}, thus F is NBUE if and only if h¢(t)
_ =pu forall t =0 with F(t) > 0.

A distribution F on [0, «) with F(0) > 1 and finite mean is defined to be
NWUEif E(X — t| X >t) = u for all t = 0 with F(t) > 0. This is equivalent to

F being stochastically smaller than G, and also to hg < u™%.

LEMMA 2.1. If F is NBUE then G(t) < e /*for all t = 0; for F NWUE, G(t)
=e forallt=0.

ProOF. For F NBUE let t, be the smallest number such that F(t,) = 0, with
to = o if F(t) > 0 for all t. Now hg(t) = p for 0 < t < to, thus G(t) < e **for 0
<t <t If ty < o then for t > ty, G(t) = 0 < e™/* If F is NWUE then F(t) > 0
for all t, for if F(t,) = O for a finite ¢, then lim,,, , E(X —t| X >t) =0<u. Thus
ho(t) <= p 'forallt = 0and G(t) = e “*for all t = 0.

The following inequality (Lemma 2.2) is quite an important tool in deriving
our subsequent results. It relies heavily on a smoothing result of Feller [4]
(Lemma 1, page 510). ’

LEMMA 2.2. Let F,, F, be probability distributions on [0, ©) with finite means
w1 and ug. Assume that F, is either stochastically larger or smaller than F, and
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that F, is differentiable with F4(x) < ui* for all x = 0. Then:
sup,| Fi(x) — Fa(x) | < A[|p1 — pa2l/m]"?
where A = 4v/6/.

ProoF. By Feller [4], Lemma 1, page 510,
(2.3) sup | Fy(x) — Fao(x) | < 2 sup;| Taw| + 24/7ua T

where

A(x) = Fl(x) - Fz(x), TA(t) = Iw A(t - x)VT(x) dx,

1.— cos Tx
Vrlx) = wTx2.
Now, assume that F; is stochastically larger than F,. Then:
T
| Taol = f [Pyt = 2) = Folt = 0] - d
f [Fi(t — x) — Fo(t — x)] —M dx

<_f [Fi(t — x) — Fz(t—x)]dx_l(ﬂl—ﬂz)-

Thus from (2.3):
sup | Fi(x) — Fo(x) | = (1/m)[T (w1 — p2) + 24/ T).
. Define L(T) = T'(u; — p2) + 24/u, T; then a routine differentiation argument
gives:
ming>oL(T) = L[(24/u1 (1 — 12))"?] = 4V6 [1 = (uo/p1)]"?

and the result is proved.
If F, is stochastically larger than F; the analogous result follows by similar

argument.

3. NBUE results. Assume that F is NBUE. Recall that G(t) < F(t) and
G(t) < e **for all t = 0, where G is the stationary renewal distribution corre-
sponding to F. Note that G’(x) = F(x)/u < u" for all x. Applying Lemma 2.2
with F; = F, F, = G we obtain:

(3.1) sup | F(x) — G(x) | = (4v8/m)(1 — ue/w)? = (4v6/m)p2
By Brown [1], Remark 4.14, for ¥ NBUE:

(3.2) sup |G(t) — e™*| < sup|G(B) — L ple”tm dt| < p.



872 BROWN AND GE

Since F NBUE implies G(x) < min(F(x), e™*/*) for all x = 0, it follows that:
sup | F(x) — e™™/*|
(33) < max(sup | F(x) — G(x) |, sup | G(x) — e™*|) < (46/7)p"%
Next, by simple computation:
(3.4) sup |e™* — e™*o| = 1 = (ug/p) = p.
Moreover, e * = max(G(t), e /¢, thus:
(3.5) sup|G(t) — e *#¢| < max(sup|G(t) — e™**|, sup| e /* — e*/*s|) < p.
We summarize these results in Theorem 3.6.
THEOREM 3.6. Let F be NBUE. Then:
sup | F(x) — e™*| < Ap*?, sup|F(x) — G(x)| < Ap'”?

sup |G(x) — e™*| = sup| G(B) — J; pleTtmdt| < p

sup | G(x) — e /4| < p
where A = 4V6/7 and p = 1 — (ua/2u).
Corollary (3.7) below presents a limit theorem for NBUE distributions.

COROLLARY 3.7. Let {X,, n = 1} be a sequence of NBUE random variables
with w, = EX,, uon= EX? and p, = 1 — (ug,n/2u2). Then X,/u, converges in
distribution to an exponential distribution if and only if lim p, = 0, in which case
the mean of the limiting exponential distribution equals 1.

PrROOF. The sufficiency of the condition lim p, = 0 follows from Theorem
3.6. To prove necessity assume that lim Pr(X, > tu,) = e “for all t = 0, and
some ¢ > 0. Let G, denote the stationary renewal distribution corresponding to
X,., and H, the stationary renewal distribution corresponding to X,/u.. Then
ﬁn(t) = Gn(tﬂn) and Pn = 1- f:)o Hn(t) dt.

Now:

t
limpwH,(t) = 1 — limyooH,(t) = 1 — limp—e f Pr(X, > su,) ds
0

=1-[1-e"/c].
Since X, is NBUE, so is X,/u,, and it thus follows from Lemma 2.1 that:

H.t) <e* forall n,t>0.
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Thus by the dominated convergence theorem:

limyyepr = 1 — limp e J; H.(t)dt=1-— J; [1—{@1—e*)/c}] dt

[' o for ¢<1
=40 for c=1
1—00 for ¢>1.

But NBUE distributions satisfy 0 < p < % (since uz = u® by Chebychev’s
inequality). Thus ¢ equals 1 and lim p, = 0.

4. Potential improvement of NBUE bound. In the following example
we have a sequence of IFRA (and thus NBUE) distributions {F,, n = 1}, with

sup | Fu(x) — ™|
limy . 1/2
pr

It follows from this example and Theorem 1 that the best bound of the form
cp*has a = Y2 and 1 < ¢ < 4v6/x. Thus the maximum potential improvement in
the bound Ap'/?is the lowering of A to 1. This statement holds for the NBUE
class as well as for the subclasses NBU and IFRA.

The distributions F, is defined by:

=, _J1 t<l/n
Falt) = {e" t=1/n.

=1

Then:
pn=n"+ e, mp=n?+2n7" + e
pn=1-[1 +2n(n + 1)e™")/2(1 + ne™")?|
D, =sup|F.(x) — e |=1 — exp[-1/(1 + ne™)].
It follows that:
D,=n"1!+o0(n™?
and
pn=n"2+0(n7?.
Thus:
lim,a[D,/p7*] = 1.
5. NWUE results. Assume that F is NWUE. Applying Lemma 2.2 with F;
= F and F, = G we obtain:
(5.1) sup | F(x) — G(x)| < Ap'2
We do not know of an analogue of (3.2) for NWUE distributions, but applying
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Lemma 2.2 with F;(x) = e *and F, = G we obtain:

(5.2) sup | G(x) — e™/*| < Ap*2.
Since G(x) = max(F(x), e™*/*) it follows from (5.1) and (5.2) that:
(5.3) sup | F(x) — e™*| = Ap'2.

Finally since e™/* < min(G(t), e”*/#¢) and sup | e /#s - e =1 — (u/ug) =
p/(p + 1), we obtain:

(5.4) sup | G(x) — e™*/*c| < Ap'/2

Corollary (3.7) does not hold for NWUE distributions. While (5.3) insures
that lim p, = 0 is sufficient for convergence to an exponential distribution, lim
pr = 0 is not a necessary condition. To see this consider the distribution F with
failure rate:

_J2 eo=x=1
- ]23c'1 x> 1.

Clearly F is DFR, with finite mean, and infinite second moment. Now, for
n=1,2, -..-define:

h(x)

F.(x) =n"'Fx)+ (1 —nH)Q1 —e™).

Since F, is a mixture of DFR distributions, F, is DFR and thus NWUE.
Clearly, F, converges to an exponential distribution with mean 1. However since
F has infinite second moment, so does F,,, and thus p, = « for all n.

6. Geometric sums. Define Y to be a geometric sum of X with parameter
p if Y can be represented as YV X; with {X;, i = 1} i.i.d. as X, N geometrically
“ distributed with parameter p, and N and {X;} independent. One naturally occur-
ring example of a geometric sum is the last renewal epoch in a defective renewal
process (Feller [4], Chapter XI, Sections 6 and 7).

THEOREM 6.1. Let X be either NBUE or NWUE with finite second moment.
Suppose that Y is a geometric sum of X with parameter p. Then:
sup | Pr(Y > t) — exp(—tpu™")| = A(pp)"?
where A = 46/7 and p = | (EX?/2(EX)?) — 1.

PrOOF. The result follows from Theorem 3.6 and the following easily verified
results:

(6.2) py = ppx where py = |(EY?*/2(EY)?) —1]|.
(6.3) If Y is a geometric sum of X and X is NBUE (NWUE) then
Y is NBUE (NWUE).
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