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SANOV PROPERTY, GENERALIZED I-PROJECTION AND
A CONDITIONAL LIMIT THEOREM

By IMRE CsSISZAR!

Mathematical Institute of the Hungarian Academy of Sciences, Budapest

Known results on the asymptotic behavior of the probability that the
empirical distribution P, of an iid. sample X;, -, X, belongs to a given
convex set II of probability measures, and new results on that of the joint
distribution of X;, - - -, X, under the condition P, € II are obtained simulta-
neously, using an information-theoretic identity. The main theorem involves
the concept of asymptotic quasi-independence introduced in the paper. In the
particular case when P, € II is the event that the sample mean of a V-valued
statistic ¢ is in a given convex subset of V, a locally convex topological vector
space, the limiting conditional distribution of (either) X; is characterized as a
member of the exponential family determined by y through the unconditional
distribution Px, while X, ..., X, are conditionally asymptotically quasi-
independent.

1. Introduction. Given a sequence X;, X;, --- of independent ran-
dom variables (rv’s) distributed over an arbitrary measurable space (S, %)
with common distribution Px, a set II of probability measures (pm’s) on
(S, #) is said to have the Sanov property if the empirical distribution P, of X"
= (X, - -+, X,,) satisfies

(1.1) lim,_.(1/n)log Pr{P, € I} = —D(11 || Px).

Here the following notation is used:

(1.2) D11 || Q) = infpen D(P || Q),

where for any two pm’s P and € defined on the same measurable space
_ J[ log(dP/dQ) dP if P« Q

(1.3) D(P| Q) = {m else

is the I-divergence or Kullback-Leibler information number, called briefly diver-
gence in the sequel. The quantity (1.3) has also been called information for
discrimination, cross-entropy, information gain, etc. The terminology adopted
here is the one appearing most frequently in recent information theory literature,
although it is at variance with the original terminology of Kullback and Leibler
(1951) where “divergence” meant the Jeffreys divergence, i.e., the symmetrized
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form of (1.3). A familiar alternative definition is
(1.4) D(P| Q) =sup»Dx(P|Q); D»(P|Q = ¥k P(B;)log(P(B;)/Q(B)),

where & = (B,, ---, B:) ranges over all finite (measurable) partitions of the
underlying measurable space. Here one understands 0 log 0 = 0 log(0/0) = 0,
a log(a/0) = + if @ > 0; all logarithms in this paper are to the base e. For the
equivalence of (1.3) and (1.4) and for the basic properties-of divergence cf., e.g.,
Pinsker (1964).

The limit relation (1.1) is often referred to as Sanov’s theorem. Papers
establishing (1.1) under various conditions include Sanov (1957), Hoeffding
(1965), Hoadley (1967), Borovkov (1967), Lanford (1972), Stone (1974), Donsker
and Varadhan (1975-1976) (this highly sophisticated work deals with the Markov
case), Bahadur and Zabell (1979) and Groeneboom, Oosterhoff and Ruymgaart
(1979). For brevity, in the sequel we shall refer to the last two papers as BZ
(1979) and GOR (1979). Familiarity with them or any of the other references is,
however, not necessary for reading this paper.

There is a close relationship exhibited and exploited in our treatment, between
the Sanov property and the limiting behavior of the conditional distribution of
X, under the condition P, € II, as n — . The latter has been treated in the
literature only when conditioning on empirical averages, i.e., on an event
(1/n) Y%, f(X;) € I (where f is some real-valued function and I is an interval) or
on the joint occurrence of a finite number of such events. This corresponds to
letting II be the set all pm’s P satisfying [ f dP € I, or the intersection of sets of
this form. For such conditioning, Lanford (1973), Bartfai (1974), Vasicek (1980),
Van Campenhout and Cover (1981) determined the limiting conditional distri-
bution of X; under various assumptions, all of which implied the existence of a pm
P* € II minimizing D(P || Px) subject to P € II; the limiting conditional distri-
bution of X; was equal to this P*. Such results are relevant for statistical physics,
since microcanonical distributions can be interpreted as conditional distributions
of the mentioned kind. It has been argued, cf. Van Campenhout and Cover (1981),
that such conditional limit theorems provide a justification of the “maximum
entropy principle” in physics. Conditioning on exact values of empirical averages
has also been considered, cf. Zabell (1980) and the literature cited there. Except
for the discrete case, this problem requires stronger regularity conditions and
may still not have direct implications for the previous one, cf. Van Campenhout
and Cover (1981). Our generalization of these results will involve the concepts of
generalized I-projection and convergence in information.

Let Q be a pm and II be a convex set of pm’s on (S, 4) such that D(IT1 | Q) <
. As in Csiszar (1975), a pm P* will be called the I-projection of @ on II if
P*€ 1l and D(P* || @) = DI || Q). This I-projection surely exists if II is variation-
closed, while in general there exists a pm P* not necessarily in II such that every
sequence of pm’s P, € II with D(P, || Q) — D(II || Q) converges to P* in variation,
cf. Csiszar (1975, Theorem 2.1 and Remark). The latter P* will be called the
generalized I-projection of @ on II. Csiszar (1975, Theorem 2.2) proved that if P*
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is the I-projection of € on II then
(1.5) D(P|| Q) = D(P|| P*) + D(1|| Q) for every P €II.

Topsoe (1979, Theorem 8) proved that (1.5) holds also if P* is the generalized I-
projection, called by him the “relative center of attraction”; moreover, (1.5)
uniquely determines P*. It follows from (1.5) that any sequence of pm’s P, € II
with D(P,. | @) — D(I1 || Q) converges in information to P* in the sense of Csiszar
(1962), i.e., D(P,|| P*) — 0; this is a stronger property than convergence in
variation, cf. Section 2. It is not possible, in general, to define a “closure” of II
such that every @ with D(II || @) < « had an I-projection on this closure equal to
its generalized I-projection on II, cf. Example 3.1. Further, while we always have

(1.6) D(P*||Q =D(1| Q)

by the lower semi-continuity of divergence, implied by (1.4), cf. Pinsker (1964),
here the strict inequality is possible, cf. Example 3.2.

In this paper we will consider convex sets II of pm’s satisfying some slight
additional conditions. These are fulfilled for the intersection of a finite number
of sets of form {P: [ f dP € I} and also in other cases of interest. For such sets
IT we will obtain a simple proof of the Sanov property, using an elementary
information-theoretic identity. More importantly, our approach leads to the
cpnclusion that the conditional distribution of (either) X; under the condition
P, € II converges in information to the generalized I-projection P* of Px on II.
It will also turn out that X;, - ., X, are asymptotically quasi-independent under
the condition P, € II in an information-theoretic sense, which has a very intuitive
probabilistic meaning, cf. Definition 2.1 and the discussion thereafter. This
appears highly relevant for the statistical physics problem hinted to above; results
of this kind do not seem to have been published previously. .

As a special case, we will consider the choice of Il which makes P, € II
‘equivalent to (1/n) Y%, ¥(X;) € C where ¥ is a statistic with values in a topological
vector space V and C is a convex subset of V. In this case we get more explicit
results, based on representing the generalized I-projection of Px on II as a
member of the exponential family determined by Px and y.

2. Statement and discussion of the results. Let (S, %) be an arbitrary
measurable space, considered as fixed throughout this paper. We designate by A
the set of all pm’s on (S, 4) and by Ay its subset consisting of all atomic pm’s
with a finite number of atoms, i.e., P € A iff for every B € 4

(21) PB) =3k alpls) (€S, 0:>0,i=1, -+, k& a;=1).

The empirical distribution of a sample s = (s, ---, s,) € S™ is the pm P.(s, -)
'€ Ay defined by ‘ : ’

(2.2) _ P.(s, B) = (1/n) 3k, 1a(s).

We consider as fixed also a sequence of independent S-valued rv’s X,
Xo, - -+ with common distribution Px. A formal definition of such rv’s will not
be needed, for we simply regard the nth Cartesian power of (S, %, Px) as the
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sample space of X" = (X, - - -, X,) and by probabilities of events determined in
terms of X" we formally mean P%-measures of subsets of S” where P¥% is the nth
Cartesian power of Px. In particular, for any set of pm’s I C A the probability
that the empirical distribution P, of (X, - - -, X,,) belongs to II is, by definition,

(2.3) Pr{P, € I} = P¥A,); A, ={s: P.(s, -) EII}.

The last probability is well defined if A, € 2" For conditions on II C A ens:uring
this for every n, cf. GOR (1979, Proposition 3.1). If A, & %", consider instead of
(2.3) the upper and lower probabilities

(2.4) Pr{P, € I} = P%(A,), Pr{P, € I} = PX(4,)

where A, D A, and A, C A,, respectively, are sets in %" having minimum,
respectively maximum, P%-measure among all such sets. In this case the Sanov
property is interpreted to mean that the limit relation (1.1) holds both for the
upper and lower probabilities. ,

REMARK 2.1. If S is a completely regular topological space, & its Borel
o-algebra, and Py satisfies the regularity condition

(2.5) lim Px(G.) = Px(UG.)

for every increasing net of open sets G, then, by Csiszar (1970, Lemma 2), Pk
can be uniquely extended to the Borel o-algebra of S™ which, in general, is larger
than 2", in such a way that both (2.5) and the Fubini theorem for evaluating
integrals [ f dP% hold for the extended P% and Borel-measurable functions f on
S". This remark is relevant to our subject when S is a topological vector space,
and one is interested in the event that the sample mean is in a given Borel subset
of S, cf. BZ (1979). This event need not be in 2" but is obviously a Borel set in
- 8™ The regularity of a pm in the sense of BZ (1979, page 592) is a stronger
condltlon than (2.5).

" For any subset A € 2" of S™ with P%(A) > 0, we designate by Px,4 and
Pxn 4 the conditional distribution of X; and of X" = (Xi, - - -, X,), respectively,
under the condition X" € A. Formally, Pxn 4 is the pm defined on (S, %)" by

(2.6) Pxn4(E) = PX(E N A)/PXx(A) (E € 2"

and Px, 4 is its ith marginal. In the case when Px, s = --- = Px,a, this pm will
be denoted simply by Px;4. The definition of these conditional distributions is
extended to the case A & " by setting Px»a = Px»z where A € 8" is such
that A D A and P%(A) is minimum subject to these contraints. Clearly, this leads
to an unambiguous definition whenever A has a positive outer Pk %-measure. In
particular, the conditional distributions

(2.7) Pxnpen = Pxna,, Pxipen = Pxa,
—with A, as in (2.3)—are well defined whenever Pr{P, € I1} > 0.

DEFINITION 2.1. Let X1, ---, Xun be S-valued rv’s with joint distribution
P™ pn=1,2 .-, 0orlet X;, X, --- be S-valued rv’s and A, C S™ be sets with
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Pxna,=P™, n=1,2, ... Then, if
(2.8) lim,_(1/n)D(P™ | Q™) = 0

for some pm Q € A, we say that Xy, - - -, Xy, are asymptotically quasi-independent
with limiting distribution @, or that X, ---, X, are asymptotically quasi-inde-
pendent under the condition X" € A, with limiting distribution Q, respectively.

This terminology is motivated by the fact that whatever probabxhstlc state-
ment holds, excepting an event of exponentially small probability, for i.i.d. rv’s
with common distribution @, it holds with probability tending to 1 for Xi,, - -,
X, as in Definition 1 or, equivalently, with conditional probability tending to 1
for X, - - -, X, given that X" € A,,. More precisely, it follows from (2.8) that for
every a >0

lim, .P™(B,) =0 if B, € %",

(2.9)
) Q"(B,) < exp(—an), n=1,2, ---.

In fact, the inequality D.(P™ || Q") < D(P™ | Q"), cf. (1.4), applied to & =
(B, S ”\Bn) yields

PY(B,) " _ p"(B,)
Qg TG~ PTBIe o8 T Q"(B,)

hence (2.9) clearly follows if (2.8) holds. If in Definition 2.1 each X;, has the
same distribution P, or each X; has the same conditional distribution P, given
that X" € A, (i=1, ---, n) then, by the inequality

2100 D(P.] Q) = (1/n)D(P™ || Q),

Q is the limiting distribution for the individual rv’s in the strong sense that
P, — Q in information, i.e., D(P,|| Q) — 0 as n — . (2.10) follows from the
identity

2.11) DP™|Q, X --- X @) = D(P™ || Py X -+ X P,) + Yy D(P;| Q)

where P, €E A, Q; € A, i =1, ---, n are arbitrary and P" is any pm on (S, %)"
whose marginals are the P;s. For a proof of (2.11), P™ <« P, X --- X P, and
P;< Q;,i=1, ---, n may be assumed, for else both sides are +o. Then

dp™ dP™
d(le e xQn) (31, e, Sn)— (sl, ...’sn) Hl—

d(Py X -+ X Py) sz
whence, taking logarithms and integrating with respect to P, (2.11) follows by
(1.3). As another consequence of (2.11), we notice that if every k consecutive
ones of the rv’s in Definition 2.1 have the same joint distribution or conditional
joint distribution given that X" € A,, say Pi,k’, then P¥ — @ in information as
n— o,

Convergence in information is a stronger property than that in variation. In
fact, the variation distance of any two pm’s P and @, i.e., the total variation

P‘"’(B,,)l 0g ——% < D(P™ | Q™);

(s,)
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| P — Q| of the signed measure P — @, satisfies
(2.12) |P - Q| = v2D(P| Q),
cf. Csiszar (1967, Theorem 4.1). Further, if P, — @ in information then

(2.13) ffdPn—-)ffdQ if fexp(tf)dQ<oo for |t] <e

where ¢ > 0 is arbitrary, cf. Csiszar (1975, Lemma 3.1). Clearly, P, — @ in
variation is not sufficient for (2.13).

The results of GOR (1979) on the Sanov property are formulated in terms of
what they call the 7-topology on A. This topology is defined by the basic
neighborhoods of pm’s P € A of form

(2.14) UP, Z¢) ={Q: |P(B) —Q(B) | <e,i=1, -, k

where & ranges over all measurable partitions & = (By, - - -, By) of (S, #) and
¢ ranges over the positive numbers. We shall find it convenient to use a slightly
weaker topology.

DEFINITION 2.2. The 74-topology on A is defined by the basic neighborhoods
Uo(P, & ¢)

Notice that A is 7o-open but not 7-open.

(2.15)

DEFINITION 2.3. A set of pm’s I C A is completely convex if for every
probability space (2, <7, u) and Markov kernel » from (Q, o7) to (S, £) such
that »(w, -) € II for each w € Q, the pm uv defined by

uV(B)=IV(~,B) dp (BE %)

also belongs to II. Further, a convex set of pm’s I C A is almost completely convex
if there exist completely convex subsets I, C II, C - - - of II such that Uy, I1, D
I N A

Notice that A; is convex but, typically, not even almost completely convex.
For an important class of almost completely but, in general, not completely
convex sets of pm’s cf. Lemma 4.3.

Now we can formulate our basic result.
THEOREM 1. Let Il C A be an almost completely .convex set of pm’s and, if
D(I1 || Px) < o, let P* denote the generalized I-projection of Px on II. Then
(2.16) (1/n)log Pr{P, € 11} < —=D(1 | Px) for every n
and in case D(I1 | Px) < o we have for each I’ C I1 with Pr{P, € I’} > 0
(2.17)  (1/n)log Pr{P, € I’} = —D(I1 | Px) — (1/n)D(Pxnp,en || P*").
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If I’ C 11 is such that
(2.18) D(int, J1" || Px) = D1 || Px) <

then (Il and) I1” has the Sanov property, and Xu, - - -, X, are asymptotically quasi-
independent under the condition P, € I1’ with limiting distribution P*.

Theorem 1 will be proved in Section 4. The proof is remarkably simple, the
main tool being the identity (2.11). Of course, (2.17) implies that X;, - .., X, are
asymptotically quasi-independent under the condition P, € II’ with limiting
distribution P* whenever D(I1’ | Px) = D(II1 || Px) < o and II’ has the Sanov
property; (2.18) is just a sufficient condition for the latter. The intuitive proba-
bilistic implications of asymptotic quasi-independence have been discussed after
Definition 2.1. We notice that (2.10) and (2.17) yield

(2.19) D(Px,ew | P*) < —(1/n)log Pr{P, € I} — D(I || Px),

relating the speed of the convergence in information Px,s,en- — P* to the speed
of convergence in the Sanov property.

The next two theorems characterize generalized I-projections on certain im-
portant kinds of sets of pm’s as members of exponential families. They will be
proved in Section 3 as consequences of Lemma 3.4, a generalization of Csiszar
(1975, Theorem 3.1). Our final result, Theorem 4, proved in Section 4, is an
application of Theorems 1 and 3 to sample means of a statistic taking values in
a topological vector space. It comprises a large derivation theorem and a condi-
tional limit theorem involving such statistics.

The relation of Theorems 1-4 to previous results will be discussed at the end
of this section.

THEOREM 2. IfII C A is defined by

(2.20) H=-{P:ff,-dP20,i=1,---,k}

where f, -+, fr are given measurable functions on (S, &), for a pm Q € A we
have D = D11 || Q) < = iff there exists a P € 11 with P << Q. Then the generalized
I-projection P* of @ on I1 has Q-density of form

dP* _ [exp{D + Y1 91f) on {s: (fi(s), ---, fu(s)) € M}

(2.21) dQ 10 elsewhere

where M is a linear subspace of R* and 9* = (9%, - - -, 9}) € R%. (2.21) holds with
M = R*, i.e., P* belongs to the exponential family {Py: ¢ € 0} defined by
dP,  exp Y&, 0if; |

dQ [ exp(Tk, v:f) dQ’

(2.22)
0= {0 = (1, -+, Do) f exp(3k, 0:f) dQ < °°}

iff there exists a P € Il with P = Q, where = designates mutual absolute continuity.
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Under the last condition

(2.23) D=D1|Q) = max@ezeg[—log f exp(Tk 9if) dQ]
where the maximum is attained iff Py = P*.

COROLLARY. The statements of Theorem 2 hold also for Il = {P: [ f; dP = 0,
i=1, .-, k}, with the only modification that R is to be replaced everywhere by
R*.

Now let V be a locally convex topological vector space and consider pm’s on
the Borel s-algebra of V. The expectation or resultant of such a pm P is defined

by

(2.24) E(P) = v, if f 3(-) dP = %(vy) for each 9 € V’

if such a vy € V exists, while else E(P) is undefined. Here V"’ is the set of all
continuous linear functionals on V. A useful fact is

(2.25) A C V compact, convex, P(A) =1= E(P) exists, E(P) € A,

cf. Choquet (1969, page 115). The support of P is the set of those v € V which
do not have a neighborhood of P-measure 0. Let @ be a convex-tight pm on V,
i.e., such that there exist subsets K, of V with the properties

(2.26) K, CK,C ..., each compact and convex, Q(K,) -»1 as n— o,
If V is a separable Fréchet or, in particular, Banach space then every pm on V'is

convex-tight.

THEOREM 3. Given V and Q as above, let C C V be a convex set whose interior
has a nonvoid intersection with the convex hull of the support of Q. Then, with the
notation

(2.27) II(C) = {P: E(P) € C}, II4(C) = {P: P(K,) = 1 for some n} N II(C)
for sets K, satisfying (2.26), we have
(2.28) D(I(C) || Q) = D(IIy(int C) | Q) = D <

and the common generalized I-projection P* of Q on II(C) and Ily(int C) belongs
to the exponential family {Py: ¥ € 0} defined by

ahy__em90) oLy pev, [ o) ag<a
(2.29) dQ—jexp0(-)dQ’®_{0'0EV’ exp 9(-) dQ < }

Eurther,
(2.30) D = maxoevr[infvecﬂ(v) — log f exp J9(-) dQ]

where the maximum is attained iff Py = P¥.
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REMARK 2.2. To compare Theorems 2 and 3, consider the former in the case
S=R"fxy, -, %) =%x,—r;,i=1,---, k, where ry, - - -, r are real constants.
This is equivalent to the general case, even when setting r; = --- = r, = 0, cf.
the proof of Theorem 2. We get, in particular, that the generalized I-projection
P* of @ on II belongs to the exponential family of pm’s with @-density

dP; exp Y&, dix;

(2.31) 4@ P = Texp(3k, 9x) dQ

iff a P € II with P = Q exists; further, then

(2.32) D(II| Q) = maXoezeg[Ziil V;ri — log f exp(Th 9ix) dQ]

where the maximum is attained iff P, = P*. Theorem 3, when specialized to the
case V=Rt C={x:x;=r,i=1,---, k], gives the same results under the
condition that the convex hull of the support of @ intersects the interior of C, a
condition equivalent to

(2.33) f %xdP>r, i=1,.--,k forsome P<@.

Since (2.33) implies the existence of a P € II with P = @ but not conversely, we
see that Theorem 2 is somewhat stronger than the corresponding special case of
the more general Theorem 3. This is of advantage, e.g., in obtaining the corollary.

THEOREM 4. Let ¢ be a measurable mapping of (S, %) into a locally convex
topological vector space V, let Q be the image of Px under y, and suppose that Q is
convex-tight. Then, for any convex set C C V whose interior has a nonvoid
intersection with the support of Q, we have

(2.34) lim,_.»(1/n)log Pr{(1/n) ¥, ¥(X)) € C} = =D

where D < o is given by (2.30). Further, X,, --., X, are asymptotically quasi-
independent under the condition

(2.35) (1/n) T ¥(Xy) € C

with limiting distribution P*, where

*
dPx

with 9* € V' attaining the maximum in (2.30).

(2.36) = c exp 9*(Y(+)),

In the “nonmeasurable case”, i.e., when the set
An = {(s1, -+-, 80): (1/n) Ti Y(s) € C}

is not in & ", (2.34) is interpreted to mean that the limit relation holds for both
the upper and lower probabilities, cf. (2.4). The asymptotic quasi-independence
assertion means, of course, that (2.8) holds for Px» 4, and P* in the role of P
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and Q. We notice that as Theorem 4 is a consequence of Theorem 1, the bound
(2.19) holds for the present case. It now gives

(237 D(Pxjamzyxiec | P*) < — (1/n)log Pr{(1/n) $i, W(X;) € C} —

We conclude this section by discussing the relation of Theorems 1-4 to
previous results. :

The more interesting part of the basic Theorem 1 is the asymptotic quasi-
independence assertion. Related results available in the literature, referred to in
the Introduction, concern the case when the condition P, € II represents a finite
number of constraints on sample means; then, under various regularity hy-
potheses, the convergence of Px;sen to the I-projection of Px on II has been
established. These results are generalized here in four directions:

(i) more general sets II of pm’s are considered
(ii) the I-projection of Px on II need not exist
(iii) a stronger kind of convergence Pxpen — P* is established, namely
convergence in information, and its speed is related to the speed of
convergence in the Sanov property, cf. (2.19)

(iv) perhaps most importantly, the rv’s Xi, ---, X, under the condition
P, € 11 are shown to jointly behave, in a sense, hke i.i.d. rv’s with common
distribution P*.

Theorem 1 also contains the most general sufficient conditions known to us
for a convex set of pm’s to have the Sanov property. An interesting point is that
the upper bound needed for the Sanov property holds for every n rather than
asymptotically as n — o. This bound (2.16) may be viewed as a general Chernoff
bound. For the discrete case, (2.16) appears in Csiszar and Koérner (1981, page
43). A result equivalent to a special case of (2.16) is the “multidimensional
* Berstein-Chernoff inequality” of Bartfai (1977, Theorem 2). The asymptotic
upper bound

lim sup,_..(1/n)log Pr{P, € I} <= —D(Il || Px)

has been established by GOR (1979, Lemmas 2.4 and 3.1A) for sets I C A closed
in the 7-topology, cf. (2.14), but otherwise arbitrary. Its lower counterpart

(2.38) lim inf,_..(1/n)log Pr{P, € 11} = —D(II || Px)

was proved by GOR (1979, Lemma 2.1B) for II C A open in the 7-topology or,
equivalently, for I1 C A satisfying D(I1 || Px) = D(int,II | Px). It follows similarly,
cof. Lemma 4.1, that D(IT | Px) = D(int, I | Px) is already sufficient for (2.38).
Actually, hypothesis (2.18) of Theorem 1 has been imposed but for ensuring
(2.38) with II’ in the role of II. For an alternative approach yielding (2.38) in
great generality cf. Bahadur, Zabell and Gupta (1980).

It has been known for a long time that if

(2.39) H=-IP:ff,~dP=O,i=1,~-,k}

as in the Corollary of Theorem 2 then, providing the exponential family (2.22)
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contains a pm Py € II, this P, is the I-projection of @ on II. This is obvious
from the identity

(2.40) D(P||Q = D(P| Py) + D(Ps-|Q (P €

which can be considered as an analogue of Pythagoras’ theorem, the divergence
playing the role of squared Euclidean distance. Various special cases of (2.40)
were used in statistical inference by Kullback (1959), and a systematic approach
to geometric properties of pm’s based on (2.40) was developed by Cencov (1972).
The well-known exponential family representation of I-projections on II as in
(2.39) was extended to generalized I-projections by Jupp and Mardia (1983),
generalizing a previous result of Topsoe (1979). Their result is, in our terminology,
that if

(2.41) maxoek"[_IOg f eXP(2?=1 9f) dQ]

is attained then this maximum equals D(II | Q) and the generalized I-projection
of @ on II equals Py if ¢ = ¢* attains the maximum in (2.41). The corollary of
Theorem 2 shows that on the other hand, (2.41) is necessary for the generalized
I-projection to belong to the exponential family (2.22), and it provides another
necessary and sufficient condition for the latter, namely the existence of a
P € 11 with P = Q. The corollary also provides a characterization of generalized
I-projection when this condition is not fulfilled.

For the purpose of this paper, sets of pm’s of form (2.39) are of minor interest
for they typically do not meet the hypothesis (2.18) of Theorem 1. Characteri-
zations of generalized I-projections on sets of pm’s as in Theorems 2 and 3 have
not been considered in the literature. Nevertheless, formula (2.32)—equivalent
to (2.23)—has been proved by GOR (1979, Theorem 5.1) under a condition
equivalent to (2.33). Further, BZ (1979, Theorem 3.2 and Theorem 3.3d) proved
a minimax counterpart of formula (2.30) for open convex sets C C V, namely,
with our notation, that

(2.42) DII(C) | Q) = infuecsupoev'[ﬂ(v) - log f exp 9(-) dQ],

under a slightly stronger hypothesis on @ than ours. They did not assume that C
intersected the convex hull of the support of @; notice, however, that under the
hypothesis of BZ (loc. cit) formula (2.30) trivially holds if C is disjoint from the
convex hull of the support of @, since then C can be separated from the latter by
a hyperplane. We believe it is intuitively suggestive to regard formulas for
D(I1 | Q) as corollaries of the exponential family representation of generalized
I-projection. This has also lead to a simple proof of the identity (2.28) which was,
in a sense, a missing link between the .approaches of GOR (1979) and BZ (1979)
to large deviation theorems, cf. the next paragraph.

A general large deviation theorem for empirical means such as (2.34) has been
established by BZ (1979, Theorems 2.3 and 3.2) and GOR (1979, Corollary 4.2).
The former authors proved (2.34) for open convex sets C C V with the alternative
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formula (2.42) for D. In the finite-dimensional case the same was proved also by
Bartfai (1977, Theorem 1) who considered nonconvex open sets C, too. GOR (loc.
cit.) used effectively the hypotheses of Theorem 4 and identified the limit in
(2.34) as D = D(I1o(C) | Q) (with our notation, cf. (2.27)); they did not show that
this result was equivalent to that of BZ (1979). In the special case

V=Rkv ¢=(f1y"'7fk), C={(xlv."’,xk):xizrivi=1,""k}‘
the hypothesis of Theorem 4 reduces to (2.33), with @ = Px. Then (2.36) gives

dpP*
dPx

and Theorem 4 gives the “d-dimensional Chernoff theorem” of GOR (1979,
Theorem 5.1). The main new contribution of Theorem 4 is the asymptotic quasi-
independence assertion. It considerably extends previous limit theorems on the
conditional distribution of X, referred to in the Introduction, while retaining
the exponential family representation of the limiting distribution P*. The bound
(2.37) may also be of interest. Results of this kind have apparently not been -
published previously.

=cexp Y5, 0Ff with 9¥=0, i=1, ... k

3. Generalized I-projection. Given a pm @ € A write
(3.1) Ag={P:P€ A, D(P| Q) < o}.
LEMMA 3.1. Let P* be the generalized I-projection of @ on a convex set of pm’s
II C A with D(IT || Q) < «, and let P’ << Q, P’ # P* be arbitrary. Then
dP* dpP’
dQ dqQ

In particular, for any measurable function f on (S, #) such that [ fdP =0 for
every P € I1 N Aq, we have

dP.

(3.2) D(H " Q) =infpenn,\qf10g dP>1an€l'lﬂAQflOg

(3.3) DI || Q) = —log f exp f dQ.
If here the equality holds then
dP* f . -1
(3.4) dqQ [ exp f dQ] exp f.
PrROOF. On account of (1.5), we have for every P € I1 N Aq
| . dP*
D(I|Q) = DP|Q — DP|P*) = logd—QdP =D(P|Q

which proves the equality in (3.2). Further, as (1.5) uniquely determines P*, in
case P’ # P* there exists P € I1 N Aq such that D(P || Q) < D(P| P’) + D(I1 || Q).
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If here P’ <« Q, it follows that

dP’
DI | Q) > DP|Q) — DP|P) = f log Q9 dP,

completing the proof of (3.2). To prove (3.3), we may suppose that [ exp f dQ <
. Then, applying (3.2) to the pm P’ with Q-density [ exp f dQ]™ exp f, we
obtain

apr’ )
DI Q) = ianerlnAQ f log 36 dP = —log f exp f dQ + lanerlnAQ f fadpP

where the inequality is strict unless P’ = P*. As [ f dP = 0 for every P € II N
Aq by assumption, the proof is complete. O

LEMMA 3.2. For convex subsets II’ C Il of A, DII1||Q) = DI’ | Q) < =
implies that the generalized I-projections of @ on Il and I1’ are the same.

PROOF. Obvious from the definition of generalized I-projection. 0
We notice that the converse implication is false, cf. Example 3.2.

LEMMA 3.3. Let y be a measurable mapping of (S, &) into another measurable
space (V, %) and let I1 be the set of all pm’s P € A whose image under  belongs
to a given convex set Il of pm’s on (V, ¥). Then for arbitrary Q € A and its
Y-image Q we have

(3.5) D(I || Q) = D(1] Q).

If D(I1 | Q) < =, the generalized I-projections P* of Q on l'[ and P* of @ on 11 are
related by

dp*

dq Q
Proor. It follows from (1 4) that D(P| Q) > D(P| Q) for each P € A and its

y-image P. Further, for any P € 11 w1th D(P| @) <  the pm P € A determined
by .

(3.6) (s) = (¢(s)) Q.

dP_ db
A (s) = PTa (W(s))

has y-image P and it satisfies D(P || Q) = D(P| Q) by (1.3). This proves (3.5),
and implies that if P, € II, D(P,| Q) — D(1| Q) then the pm’s P, el
determined by (dP./dQ)(s) = (dP,/d@)(¥(s)) satisfy D(P.||Q) — D(1]Q) =
D(I1 || Q). Hence (3.6) follows by the definition of generalized I-projection. [0

EXAMPLE 3.1. As in Csiszar (1962, page 154), consider pm’s P, @, and
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R.. (1 <m<n)on N, the positive integers, with probability mass functions

i | if i<m Fon(i) = {qm(z) if i<n

N o-i - _ JPi
P@) =27, qm(‘)‘{ S if iz m, emni™? if iz n.

Further, let IT be the set of pm’s on N with expectation = 3, possibly infinite.
Then R, , € Il and D(R,.» | Q) — 0 as n — . Hence, if generalized I-projections
on II could be represented as I-projections on some. “closure” IT* of II, we
certainly had @, € II*, m=1,2, ---. On the other hand, P has I-projection P*
on IT with p*(i) = ¥(%)’, and D(Q,, | P) — 0 as m — = rules out the equality of
this P* to the I-projection of P on the hypothetical IT*.

EXAMPLE 3.2. Let S be the positive half-line, let @ be the pm with distribution
function 1 — (s + 1)~%¢7*, i.e., with density function
s+ 4 ot
s+ 1)* °

Let II, be the set of all pm’s P on S with expectation [ s dP = a. Consider the
pm’s P, € II, with density functions

q(s) =

_ Jenexp(tas)q(s), 0<s=<n
pn(s) - {0, s>n

where ¢, and t, are determined from the conditions [ p, ds =1, [ sp, ds = a. Let
a=%. Thent,=1,t,— 1asn— o, thus

D(P,|| Q) = log ¢, + f t.spn ds = —log f exp(t.s)q ds + tn,a
0

n -]
< —log f e’q ds + at, — —log f e’qds + a = a — log %:.
0 0

Hence D(I1, | Q) < a — log %.. Further, let P* be the element with parameter ¢t =
1 of the exponential family of pm’s with densities of from c¢ exp(ts)q(s), i.e., the
pm with density

2 s+4

p*(s) = 3 (s + 1)*

Then

£
flog(iil; dP = log§+fsdP2 a— logg for every P € II,.
This proves by Lemma 3.1 that P* is the generalized I-projection of @ on II,,
and D(I1, | @) = a — log %: (a = %). This example shows that for convex sets IT’
C II it may happen that Q has the same generalized I-projection on II and II’
and still D(II’ | Q) > DI | Q), and also that in (1.6) the strict inequality is
possible.
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Let & be a family of real-valued measurable functions on (S, #). We
designate by II(%) and I1’ (%) the set of all pm’s P € A for which the integrals
[ f dP exist and are nonnegative, respectively positive, for each f € 7

(%) = {P: ffsz 0, f€ ?}
3.7
n') = JlP: ffdP>O, fe 9}
For a subset K € & of S, I( ¥ | K) and I'(# | K) will designate the subsets

of II(Z) and II'(F) consisting of the pm’s with P(K) = 1. Further, if
% = {K;}, is a sequence of sets such that

38) K€ b K;,C K, each f€ ¥ isboundedon K;, i=1,2,---
we write
B9 I(¥|%)=vuz (¥ |K) N'(F|%)=VULII'(F |K).

If to a given Q € A there exists a Py € I1'( &) or P, € Il'( & | %), respectively,
such that D(P, || @) < « then

DM'(F) Q) = DI(F) 1Q),

DII'(¥ | #)1Q =DI(F | £) | Q).

This follows from the facts that for any P, € II( %) (II(Z | %)) we have P, =
(1-a)Po+aP,€I'(F) (I'(F | ¥))if 0 < a <1 and, by convexity,

lim supe—1D(Pe || Q) < lime—a[(1 — &)D(Po[ Q) + aD(Py | Q)]

(3.10)

- (3.11)

= D(P, " Q). ‘

The main tool to the proof of Theorems 2 and 3 is the following generalization
of Csiszar (1975, Theorem 3.1).

LEMMA 3.4. Suppose that & is a convex cone, le.,; € & «;=0, i=1,

-+, n implies
2?=1 aifi € Z

a. If Q € A is a pm with D(II(¥) | Q) = D < ® whose I-projection P* on
II(F) exists then log(dP*/dQ) — D belongs to the L,(P*)-closure of &

b. If Q € A is a pm with DII(F | #) || Q) = D < ® and P* is its generalized
I-projection on II(F | ') then there exists a sequence of functions f, € & such
that
dpP*
dq

PROOF. a. Let # be the set of functions of formf +g, f€ & g£=0, ¢

(3.12) log =D + limpof,  [P*].
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bounded. We first show that if

*

(3.13) P*eIl(¥), DP*|Q) =D, ¢=Ilog dbr _ D

dq

then ¢ belongs to the L,;(P*)-closure of %. In fact, else ¥ could be separated
from the convex cone %4 by a hyperplane in L,(P*), i.e.,

(3.14) f Ph dP* < infre.; f fh dP* =0

would hold for some h € L.(P*). As % contains the nonnegative bounded
functions, here necessarily h = 0 P*-a.e., and h can be chosen to satisfy [ h dP*
= 1. Since F C £, (3.14) implies that the pm P, with dPo/dP* = h belongs to
II(%). We also have P, € Aq since P* € Aq and h is bounded. Thus (3.2) gives

dP*
f‘Ph dP* = f (log 4Q D) dP, = 0,

a contradiction to (3.14).
By what we have proved, there exist functions f, € & and g, = 0, g, bounded,

such that
(3.15) fot 8 —9% in L(P*).
By (3.13) we have [ f, dP* = 0, [ ¢ dP* = 0. As (3.15) implies

ffndP*+fg,,dP*—>f¢dP*,

it follows that || g, ||, = | & dP* — 0. This and (3.15) complete the proof of
. part a.

b. For n so large that D, = D(II(Z | K,) | Q@) < o, let P} denote the
I-projection of Q on II(# | K,,). This I-projection exists, since (3.8) implies that
II(Z | K,) is variation-closed. By part a, ¢, = log(dP}/dq) — D, belongs to the
L,(P¥)-closure of % in particular, there exists f, € % such that

(3.16) |¥,—f.l <1/n except for aset A, with P}(A,) <1/n.
Further, as by (3.9)
Pre(¥ | %), DP:|Q =D.—D=DI(F|X)|Q),

we have | P¥ — P*| — 0 by the definition of generalized I-projection. In partic-
ular, P¥(A,) — 0 implies P*(A,) — 0, hence from (3.16)

(3.17) Y, —f.— 0 in P*-measure. -

On the other hand, from | P} — P*| — 0 and D, — D it follows that
‘ dp* )

(3.18) Y, — ¢ =log — D in P*-measure.

(8.17) and (3.18) show that f, — ¢ in P*-measure. Since any sequence of
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functions converging in measure has an a.e. convergent subsequence, this proves
(3.12).0

PrROOF OF THEOREM 2. It suffices to prove the theorem in the special case
S=R*flxy, -+, x)=2x, i=1,---, k when

(3.19) H=<|[P:fx,~dP20,i=1,---,~k}.

In fact, in the general case consider the mapping y¥: S — R* defined by y(s) =
(fi(s), -+, fe(s)). Then (2.20) is the set of those pm’s P € A whose y-image
belongs to (3.19), and Lemma 3.3 gives that if Theorem 2 is true in the mentioned
special case then it is true in general.

We henceforth consider I as in (3.19) and a pm Q on R* such that P < Q for
some P € II. Let II, be the subset of II consisting of pm’s with bounded support,
ie.,

H0=-{P: P(K,) = 1 for some n;fxi dP=0,i=1, ---,k}

(3.20)

where K,={x:|x;|<n,i=1,-.. k}.
We will prove that
(3.21) Do= DL, | Q) <

and characterize the generalized I-projection P¥ of @ on II,. Then the proof will
be completed by checking that D(II | @) = D(Il, || ), P* = P¥.

The set (3.20) of pm’s on R* is of form II(F | %), cf. (3.9), with the convex
_ cone ¥ of linear functions f(x) = Y&, %x;, 9 = (&4, - - -, %) € R%, and with the
sequence of “cubes” K, defined in (3.20). As the a.e. limit of a sequence of
functions in this & is itself a.e. equal to a function in % Lemma 3.4 gives that

dP§
dQ

supposing that (3.21) holds.
Let M designate the smallest linear subspace of R* with the property

(3.23) P(M)=1 forevery PET with P < Q.

Then, of course, Q(M) > 0. We are going to show that, for every n, the set of
pm’s on R* with the properties

(3.22) log (x) = Do + 3k, 9Fx; [P*] with 9* € R%,

P <« Q, bounded,

dpP
dQ
(3.24) P
dq

contains some P, € II. Since then P, € II, and D(P, || @) < =, this will prove
(3.21). Further, as (1.5) then implies P, < P§, n=1, 2, ..., hence and from

MﬂKnC{x: (x)>O}CMﬂKm for some m=n
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(3.23) it will also follow that
dP¢
dqQ

Let us denote by E, the set of expectation vectors of all pm’s with the properties
(3.24). We have to prove that E, N R% # @. Let F C M be the closed convex hull
of the support of the restriction of @ to M, and let F; be the interior of F relative
to its affine hull. Clearly, E, C F and E, is dense in F. Since E, is convex, it
follows that E, D F,. Hence it suffices to show that Fo N R% # &. Supposing the
contrary, Fo and M N R% could be separated by a (dim M — 1)-dimensional linear
subspace M; of M, thus a pm P < @ with P(M) = 1 could not belong to II unless
its support were contained in M, . This contradicts to the minimality of M subject
to (3.23). According to the previous paragraph, thereby we have established (3.21)
and (3.25). )

Now we show that D = D(IT | Q) equals Do = D(Il, || @) and the generalized
I-projection P* of Q on II equals P§. By (3.23) and (3.25), every P € Il with P
< Q satisfies P < P¥. Hence from (3.22) and (3.19) we obtain for every such P

(3.25) is positive exactly on M [Q].

dP} \
(3.26) log o dP = Do+ Tt 97 | xidP = Do.

By Lemma 3.1, the infimum for all P € Il with D(P || Q) < = of the first integral
in (3.26) cannot exceed D, and would be strictly less than D were P§ not equal
to P*. Since D < D, by definition, this proves the asserted equalities. Thus we
have proved, cf. (3.22), (3.25), that

P 0 = [exp(D + ¥y dFx} if x€M
daQ 0 else

If there exists a P € II with P = @ then (3.23) implies Q(M) = 1, hence (3.27)
holds with M = R*. In this case P* belongs to the exponential family {P,: ¢ € 6}
where

(3.27) where 9* € Rk.

dP, . exp 3 dix
dQ (x) = [ exp(Th vix;) dQ’
(3.28) .
0= {0: f exp(Yh, vix) dQ < °°} .

We notice that (3.27) gives
(3.29) D = —log f exp(3k, 9Fx) dQ if Py = P*

Finally, applying (3.3) to f(x) =-3%, 9:x; with 0 € R%, we see that

D = —log f exp(3k, 9;x;) dQ for each ¥ € RY,

and this inequality is strict unless P, = P*. This and (3.29) prove that if P = @



786 L. CSISZAR

for some P € II then
(3.30) D = maxyert [—log f exp(Tk, dix) dQ},

where the maximum is attained iff P, = P*.

This completes the proof of Theorem 2 for the case S = R*, fi(xy, - - -, xx) = x;,
i=1, .-, k. According to the first paragraph of the proof, thereby Theorem 2 is
proved in general. The corollary follows from the theorem simply by applying it
to the 2k functions f1, —f1, - -+, fr, —f&. 0

PrOOF OF THEOREM 3. We first prove that
(3.31) D(IIy(int C) | Q) = D <o, P*=Q,
where P* denotes the generalized I-projection of  on Ily(int C). By assumption,
some Vo € int C belongs to the convex hull of the support of @, i.e.,
(3.32) vo=Yki i, ;>0, i=1,---,k Yhiai=1,

where Q(v; + N) >0, i=1, ..., k for each 0-neighborhood N in V. Pick a
convex and closed 0-neighborhood N such that vy + N C int C, and let ny be so
large that the compact, convex sets A; = (v; + N) N K, i =1, ---, k have
positive @-measure, where the compact convex sets K; C K, C - - - with Q(K,,) —»
1 are those appearing in (2.27). Then for the pm

Po = Y& a;R; with R(-) = Q(- N A)/Q(A)
we have for n = ny
(3.33) E(Po) €Eint C, D(P,|| Q) <o, Po(K,) =1,

where the first property follows from (2.25), (3.32) and the condition vy + N C
int C. This already proves the first part of (3.31). Further, as the pm’s P, defined

by
Pn = (]- - an)PO + anQny Qn() = Q( n Kn)/Q(Kn)y m= no
with sufficiently small o, > 0 also satisfy (3.33), we have
Q. < P, <P*<«< @ forevery n=ny.

As Q(K,) — 1, this proves the second part of (3.31).

Since the assertions of Theorem 3 are invariant under translations, we hence-
forth assume that 0 € int C and that in (3.33) we have E(P,) = 0. Then by the
bipolar theorem (Ko6the, 1960, page 248)

(3.34) cl C=C® = {v: 9(v) <1 for all ¥ € CY
where
(3.35) C'={:9€ V,d@v) <1 for all v € C}

is the polar of C with respect to the duality (V, V’). By the Alaoglu-Bourbaki



SANOV PROPERTY AND CONDITIONAL LIMIT THEOREM 787

theorem (Kothe, 1960, page 250), C° is compact in the weak topology of V', i.e.,
in the topology of pointwise convergence of funtionals.

On account of (2.24), (2.25) and (3.34), IIo(cl C) and IIy(int C) defined by
(2.27) can be represented in the form (3.9):

(3.36) Oocl O) =¥ | ¥), Ho(intC)=II"(¥ | ¥) '
where % is the sequence K; C K, C - - - appearing in (2.27), and & is the convex

cone of functions f = a(l — ¢) (a = 0, ¥ € C° on V. In particular, by (3.10) and
Lemma 3.2

D(Ilo(cl €) || Q) = D(I1o(int C) | Q) = D

and the generalized I-projection of @ on Ily(cl C) and Ily(int C) is the same P*.
As we already know that P* = @, Lemma 3.4 gives

dP*
dq

= D + limn—man(l - 071) [Q]
(@.=0, 9,€C°% n=1,2,...).

log
(3.37)

Using the compactness of C°, hence it is easy to conclue that P* belongs to the
exponential family (2.29). In fact, if a, — 0 then the right side of (3.37) equals
the constant D; then necessarily D = 0 and P* = Q. Suppose therefore that a,,
— ao > 0 for some sequence {n;}, where gy = o is not yet excluded. Then the a.e.
convergence of a,(1 — 9,) to a finite limit implies the same for ¥,,; moreover, a,
= w is possible only if ¥, — 1 [Q)]. Let 9o € C° be a “cluster point” of the sequence
Y5, in the topology of pointwise convergence. Then lim ¢,,(v) = ¥o(v) for each v
€ V such that the limit exists, i.e., for @—a.e. v € V. The possibility of J¢(-) =
1 []] and thus that of ay = = is ruled out by (3.33) with E(P,) = 0, cf. (2.24).
Thus (3.37) yields

*

338  log L —D4afl—v) [Q (a0=0,d € C,

dqQ

and P* belongs to the exponential family (2.29), with ¥ = —ayJ,.
Now, writing 9* = —ae¥, we have 9*(v) = —a, for all v € C by (3.35), thus
(3.38) gives

D = —log f explao(1 — Jo(+))] dQ

(3.39)
= —qy — log f exp 9*(-) dQ < inf,ec¥*(v) — log f exp 9*(-) dQ.

On the other hand, applying (3.3) with the choice f = fy = ¥(-) — inf,ecd(v),
where 9 € V’ with inf,ec?(v) > — is arbitrary, we get

(3.40) DI1(C) | @) = inf,ec¥(v) — log f exp 9(-) dQ, v €V,

with strict inequality unless [ [ exp f; dQ] 'exp fs> = dP,/dQ, cf. (2.29), equals the
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Q-density of the generalized I-projection of @ on II(C). Comparing (3.39) and
(3.40) with the obvious inequality D = D(Ily(int C) || @) = DII(C) | @), it follows
that in the latter the equality holds and, in particular, the generalized I-projec-
tions of @ on II(C) and I (int C) are the same. Moreover, we have also obtained
that the necessary and sufficient condition of the equality in (3.40) is Py = P*.
This completes the proof of Theorem 3. '

4. Proof of the limit theorems. We send forwafd two simple lemmas.
LEMMA 4.1. If 11 C A is a relatively o-open subset of IL U Ay, i.e., if every P €
II has a To-neighborhood, cf. Definition 2.2, such that Uy(P, &, ¢) N A; C I, then
(4.1) lim inf, ..(1/n)log Pr{P, € 11} = —D(II || Px).
Further, (4.1) holds for every II C A such that D(I1 | Px) = D(int, I || Px).
ProoF. It suffices to prove the first assertion, for the second one follows by

applying it to the 7o-open set int, II instead of II.
We may suppose that D(II | Px) < «. Given any 6 > 0, pick P € II with

(4.2) D(P| Px) <D(1| Px) + 6

and find & = (B,, ---, B:) and ¢ > 0 such that Uy(P, & ¢) N A; C II. Choose
0 < ¢’ < ¢ so small that for nonnegative ry, - - -, r, with

(4.3) |ri—PB)| <e, rn=0 if PB)=0, i=1,.---,k
we have

ri P(B)) o .
@4 rlog p gy ~ PBNEp By| < T Lk

This is possible since P(B;) > Px(B;) = 0 is ruled out by (4.2). For sufficiently
large n there exist nonnegative integers #,, - - -, 7, such that ¥, /, = n and r;
= /,/n satisfy (4.3). Then

Pr{P, € I} = Pr{P, € Uy(P, % ¢) N A

o AN
=Pr{P,B)=¢i,i=1, ---, k) = f—ﬁ—ﬁﬁ L1 [Px(B))

b

!
¥ > (n + 1) *exp{—n 3. rilog r;

(4.5)

—k _ k . ri
=(n+1) eprl n YL, rilog Pu(B)

Here the last inequality follows because
R
n!

this can be checked by Stirling’s approximation or for a simple elementary proof
cf. Csiszar and Kérner (1981, page 30). Since ry, - - -, ry satisfy (4.3) and therefore
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(4.4), we have by (1.4)

Y rilog 5—— Px (B) = D,(P||Px) + 6 = D(P| Px) + o.

Using this and (4.2), we obtain from (4.5)
lim inf, .»(1/n)log Pr{P € 11} = —D(II | Px) — 2.

Since 6 > 0 was arbitrary, the proof is complete. 0

LEMMA 4.2. IfII C A is completely convex and II’ C I1, Pr{P, € I’} > 0 then
Pxpen €11

PROOF. Write
(4.6) A’ ={s: P,(s, ) €II'}.

Then, cf. (2.7), Pxp,en’ = Px, 4’ is the one-dimensional marginal, not depend-
ing on i, of Pxnp en' = Pxna-; the latter is defined as in (2.6) if A’ € 4" and by
Pxnar = Pxnia else, where A € 4", A D A’ and P%(A) is minimum subject to
these conditions, i.e.,

P%(A) = Pr{P, € I}, cf. (2.4).
Integrating the identity (2.2) with respect to Pxn 4+ yields for every B € &

(4-7) f Pn(', B) dPX"lA' = Zz—l PXlA (B) PXIP €n’ (B)

IfA’ € 4", the integral in (4.7) may be restricted to A’, and Px 5 en € II follows
from (4.6) and II’ C II by the definition of complete convexity. Turning to the
case A’ & %", we notice that since the outer Px» 4--measure of A’ is equal to 1,
there exists a unique pm P’ on the o-algebra of subsets F=A"NE (E€ %"
of A’ such that P’'(F) = Pxn 4/(E). Thus the integral in (4.7) can be written as
an integral on A’ with respect to P’, i.e.,

(4.8) Pxp,en(B) = ‘L P.(-, B)dP’ (B € %).
Hence Px|5,en’ € 11 follows as before.

PrOOF OF THEOREM 1. Let II’ be an arbitrary subset of the almost com-
pletely convex set of pm’s II C A such that Pr{P, € I’} > 0. By Definition 2.3,
there exist completely convex subsets II; C II, C ... of II such that, with the
notation II; = II, N IT’,

(4.9) {s: Pu(s, -) EM'} = U, {s: Pu(s, -) € T}}.

Fixing n, consideAr sets A € B", A,€B", k=1,2, ... withA D {s: Pn(s, )
e I'}, A, D {s: P,(s, -) € I}, whose P%-measure is minimum subject to these
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conditions. On account of (4.9), these sets may be chosen such that

(410) Al C A2 cC.. . A= U;o=1 Ak,
thus
(4.11) P%(A;) — P¥A) = Pr{P, € I’} as k— .

We assume, without any loss of generality, that P%(A:) > 0 for each &, and
consider the pm’s '

(4.12) PX"|13,,en' = Px~a, Pxnﬁ,,en; = PX"|A,,
defined as in (2.6).
Applying the identity (2.11) with the choice P"™ = Pxnja,, Q1= -+ = Qr =

Py, it follows that
—log P%(Ax) = D(Pxna, | P%)
= D(Px~a, | P%1a,) + nD(Pxa,ll Px)
where Pxj4,, the (unique) one-dimensional marginal of Px~a,, satisfies
(4.14) Pxa, = Px)p,en, € II, C I1

by Lemma 4.2. Since (4.14) implies D(Pxy4, | Px) = D(II | Px), (4.11) and (4.13)
give

(4.13)

(1/n)log Pr{P, € I’} = limj_=(1/n)log P%(Ax) < —D(I1 || Px).

This, with the choice II’ = II, already proves (2.16). If D(II | Px) < « (4.14)
implies also

~ (4.15) D(Pxa, | Px) = D(Pxya,| P*) + D(I1|| Px)
by (1.5). From (4.13) and (4.15) we obtain, using (2.11) once more (now with @,
= ... =Qn=P*)’that
(4.16) —log P%(Ax) = D(Pxna,| P*") + nD(I1 || Px).

Here, on account of (4.10) and (2.6),
D(Px~a, | P*") — D(Pxnja | P*") as k— .

Thus, recalling (4.11) and (4.12), the assertion (2.17) follows from (4.16). Under
hypothesis (2.19) we have by Lemma 4.1
lim inf,_«(1/n)log Pr{P, € '} = —D(11 || Px).

This and (2.17) complete the proof of Theorem 1.0
LEMMA 4.3. For any family % of real-valued measurable functions on (S, Z)

and any sequence ¥ = (K, of subsets of S with the properties (3.8), the sets of
pm'sI(F | %) and W' (F | #) defined by (3.9) are almost completely convex.



SANOV PROPERTY AND CONDITIONAL LIMIT THEOREM 791

PROOF. For ur as in Definition 3.3

(4.17) ffdw = f (f f dv(w, ~)> du

for every measurable and bounded f; hence, if »(w, -) € (¥ | K;) for each
w€ Qthenalso ww EN(F | K)). Since II( ¥ | ¥) =UZ, I(Z | K;) by definition,
this proves that II(¥ | %) is almost completely convex. The almost complete
convexity of II'(F | %) follows in the same way. [

REMARK. If the functions f € & are not boundedon S, II(%)and II'(%)
defined by (3.7) are not completely convex, in general, since the left side of (4.17)
need not exist even if [ f dv(w, -) exists and is positive for every w € Q. On the
other hand, if a sequence {K;}i2, with the properties (3.8) exists such that UZ, K;
= S then Lemma 4.3 implies that II(%) and II’'(%) are almost completely
convex.

PROOF OF THEOREM 4. By assumption, the y-image @ of Px is convex-tight,
i.e., there exist compact and convex subsets K; C K, C - .. of V such that

QUL K) = Px({s: ¥(s) € Uy Ki}) = 1.

Without any loss of generality, we assume that ¢(s) € U, K; for every s € S.
Let II, II’ and II” denote the subsets of A consisting of those pm’s whose
Y-image belongs to Ily(cl C), I1o(C) and I (int C), respectively, cf. (2.27). Clearly,
the event (2.35) is the same as P, € I1".

It follows from Theorem 3 and Lemma 3.3 that both D(II | Px) and D(I1’ | Px)

are equal to
D(Ilp(cl C) || @) = D(II(int C) | Q) = D

where D is given by (2.30), and the generalized I-projection P* of Px on II is
given by (2.36). Hence Theorem 4 follows from Theorem 1 if we show that II is
almost completely convex and I1” is 7o-open.

By Lemma 4.3 and (3.36), Ily(cl C) is almost completely convex. Hence, by the
definition of II and Definition 2.3, II is almost completely convex, as well. The
To-openness of I1” follows from the weak *-continuity of the mapping P — E(P)
in the space of pm’s on V satisfying P(K,) = 1, cf. Choquet (1969, page 115). The
latter means that to any P, with Po(K,) = 1 and 0-neighborhood N in V there
exist continuous functions f;, - - -, f» on K, and positive numbers ¢;, - - -, & such
that

EP)e EP) + N if PK,) =1 )

(4.18)
aMWfﬁ@—fﬁ@o

Now, if P, € I1” then its ¥-image P, satisfies E(P,) € int C and Py(K,) = 1 for

<¢g, L=1,--., k
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some n. Then, with N such that E(P,) + N C int C, (4.18) implies the existence
of a 7o-neighborhood Uy(Py, & ¢) C I1”, cf. (2.15), since it is clearly possible to
choose & and ¢ such that the y-image P of each P € Uy(P,, &, ¢) satisfies the
hypothesis in (4.18). Thus I1” is, indeed, 7o-open, and the proof of Theorem 4 is
complete. 0
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