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SAMPLE PATH PROPERTIES OF SELF-SIMILAR PROCESSES
WITH STATIONARY INCREMENTS!

By WIM VERVAAT
Katholieke Universiteit, Nijmegen

A real-valued process X = (X(t))wer is self-similar with exponent H
(H-ss), if X(a-) =q4 a"X for all a > 0. Sample path properties of H-ss processes
with stationary increments are investigated. The main result is that the
sample paths have nowhere bounded variation if 0 < H < 1, unless X(t) =
tX(1) and H = 1, and apart from this can have locally bounded variation only
for H > 1, in which case they are singular. However, nowhere bounded
variation may occur also for H > 1. Examples exhibiting this combination of
properties are constructed, as well as many others. Most are obtained by
subordination of random measures to point processes in IR? that are Poincaré,
i.e., invariant in distribution for the transformations (¢, x) = (at + b, ax) of
R2 In a final section it is shown that the self-similarity and stationary
increment properties are preserved under composition of independent pro-
cesses: X © Xz = (X1(Xa(t)))ier. Some interesting examples are obtained this
way.

0. Introduction. In the present paper stochastic processes are random
functions X = (X(t))er = (X(t, w))ieron T'= R or T = R, := [0, ) with values
in R := [—m, ©]. Two stochastic processes X and Y are said to be equal in
distribution, notation X =, Y, if they have the same finite-dimensional distri-
butions, i.e., (X(t)):e; =4 (Y(t)):es for all finite I C T. We say that X is self-similar
with exponent H € R (H-ss), if X(¢) € R with probability 1 (wpl) for each fixed
t € T and

(0.1) X(a-) =¢a®X forall real a>0.

Lamperti (1962) has .shown that a stochastically continuous process X is ss (i.e.,
H-ss for some H) iff there is a process Y and a positive function d on R, such

that

Y(s-)/d(s) —a X}. as s— o through R..

(0.2) d(s) —> o

Here —; denotes convergence of the finite-dimensional distributions. Actually,
Lamperti introduced the term “semi-stable” instead of “self-similar”, which we
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2 WIM VERVAAT

also abbreviate to “ss”. The present name is due to Mandelbrot (1977). We say
that X has stationary increments, or is a stationary increment (si) process, if

0.3) X(-+b) —X(b) =a X—X(0) forall beT.

It is easy to see that X in (0.2) is si, if Y is discretely si, i.e., satisfies (0.3) only
for b € T N Z. So ss si processes arise as limits in (0.2) with si or discretely si Y.
Futhermore, all nontrivial measurable ss si processes have H > 0 in (0.1) (cf.
Section 1), so all such processes arise in (0.2), as (0.1) yields (0.2) with Y = X,
d(s) = s¥ and =, instead of —,. This explains the importance of this class of
processes.

Classical examples of ss si processes are obtained by the additional assumption
that the increments are independent, i.e., (X(t + b) — X(b)):er, and (X(¢)):em(=«,5
are independent for all b € T. These assumptions characterize the strictly stable
processes. Recall (cf. Taylor, 1973, or Fristedt, 1974) that stable processes are
characterized as processes X with stationary independent nondegenerate incre-
ments such that there exist reals c(a) and d(a) with d(a) > 0 and

(0.4) X(a-) =4 d(a)X + c(a)

for all real @ > 0. It then follows that d(a) = a* for some H € [/, ») and that all
these H indeed occur. In particular, X is Brownian motion if H = %. In our
definition (0.1) of self-similarity we do not allow translations, which amounts to
the restriction ¢(a) = 0 in (0.4). The adverb “strictly” in “strictly stable” refers
to this restriction. In the theory of stable processes one usually refers to a :=
1/H € (0, 2] as the (characteristic) exponent of the process. This terminology is
motivated by the formula Ee*X® = exp(—ct | A |*) for symmetric stable processes
(X =d '—X )

The ss Markov process was the first class of ss processes to be characterized
completely (cf. Lamperti, 1972, Kiu, 1975). The second such class is the class of
ss stationary extremal processes (O’Brien, Torfs and Vervaat, 1984+). Although
the second paper will appear later, its underlying research (1980) preceded that
of the present paper and provided the author with the necessary experience and
motivation. There is already an extensive literature on ss si processes. For surveys
the reader is referred to Major (1981) and Taqqu (1982). Recent papers are
Maejima (1983), Surgailis (1981) and Taqqu and Wolpert (1983). However, the
character of these papers is somewhat different from those concerned with the
other classes of ss processes. So far, all papers dealt with rather special subclasses
of the ss si processes (e.g., Gaussian processes) or described specific methods for
generating such processes (e.g. by stochastic integrals). Although it is nowhere
stated explicitly, the reader can feel the hope that by pursuing this “natural
history” of ss si processes finally so many examples and constructions will be
found, that all ss si processes are covered. However, in O’Brien and Vervaat
(1985) all ss si jump processes are studied, and so many processes arise already
there, that there is no hope for an exhaustive list of examples and constructions.
This changed the author’s points of view and led him to the investigation of
general properties of ss si processes. The present paper deals with sample path
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properties, and a companion paper by O’Brien and Vervaat (1983) with properties
of marginal distributions. They seem to be the first papers in this direction.

The main result of the present paper is in Section 3, with as principal
conclusion that, apart from trivial possibilities for H = 1, an H-ss si process can
have sample paths of locally bounded variation only if H > 1, in which case the
sample paths are singular. Sections 1 and 2 contain preparations of a general
character. Section 1 deals with the impossibility of H < 0, and with fegularity
assumptions like separability for X. Generalities about the variation, absolute
continuity or singularity of sample paths of ss si processes are dealt with in
Section 2. Section 4 starts with a review of the main results of O’Brien and
Vervaat (1985) about ss si jump processes. Such processes can be characterized
most conveniently by their saltus processes, point processes Il in R? whose
distributions are invariant for the transformations (¢, x) — (at + b, ax) (a, b real,
a > 0) of R% Section 4 then introduces the most important production rule for
new ss si processes in this paper, subordination of measures to saltus processes
I as above. A similar subordination was studied by Surgailis (1981) for Poisson
I1. General properties of subordinated processes are studied at the end of Section
4.

Section 5 presents examples of ss si processes, all constructed hy the principles
of Section 4. Some examples serve to demonstrate that possibilities which are
not excluded in the theorems of Section 3 actually do occur, other like fractional
processes (cf. Maejima, 1983, and Taqqu and Wolpert, 1983) are reviewed briefly
because of their intrinsic interest and occurrence in the literature.

In the concluding Section 6 it is shown that the composition X; o X; =
(X1(X2(t)))ser of two independent ss si processes X; and X, is again ss si. By this
principle, examples of H-ss si processes with H > 1 and nowhere bounded
variation can be constructed, that supplement those of Section 4.

In contrast to much of the previous literature on ss si processes, the domain
T and the range R of the processes are one-dimensional. It is not too hard to
generalize several results to higher dimensions, but the wish to keep things
readable and a proper amount of laziness discouraged the author from doing so.

1. Regularity assumptions. Henceforth the domain T of X = (X(t)).er is
all of R unless stated otherwise. The most important regularity assumption on
X is measurability. Recall that X is measurable if (¢, w) — X(t, w) is jointly
measurable. The next theorem contains a useful necessary condition for meas-
urability, which can be seen as a partial converse to Theorem 2.6 of Doob (1953).

THEOREM 1.1. If the stochastic process X is measurable, then there is a subset
To of T such that T\T, is a Lebesgue null set and for each t € T, there is a
decreasing sequence t, | t in To with X(t,) —, X(t) (tonvergence in probability).

. PROOF. Let (2, & ) be the underlying probability space of X, call two
R-valued rv’s on (Q, % P) equivalent if they are equal wpl, and let L, be the
collection of equivalence classes of such rv’s, endowed with the topology of
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convergence in probability. From Theorem IV.30 in Dellacherie & Meyer (1978)
it follows that the mapping ¢: Ty D t — X(t) € L, is Borel measurable, and by
Lusin’s theorem (page 211, Bauer, 1981) that for each ¢ > 0 there is a Borel set
U, C T with Lebesgue measure <e, such that the restriction of ¢ to T\U, is
continuous. Let V, be the union of U, with those points of T\U, which are right-
isolated in T\U, (a countable set). Then the conclusion of the theorem holds
with T\To = Ny~ V3.0

Although H-self-similarity with H < 0 is a relevant possibility for other classes
of processes like extremal processes (cf. O’Brien, Torfs and Vervaat, 1984+), it
is not for si processes, as the next theorem shows.

LEMMA 1.2. If X is H-ss with H # 0, then X(0) = 0 wpl.

PROOF. By (0.1) we have X(0) =; a”X(0) > Owplasa |0if H>0,a—
if H<O.

THEOREM 1.3. Let X be H-ss si.

(a) If H < 0, then X(t) = 0 wpl for each real t, so X = 0 wpl in case X is
separable.

(b) If H = 0 and X is measurable, then X(t) = X(0) wpl for each real t, so
X = X(0) in case X is separable.

REMARK. There are nontrivial nonmeasurable 0-ss si processes. For example,
(X(t)):er iid and nondegenerate.

PROOF OF THE THEOREM. (a) From (0.1) we have
X(t)=q|t|" X(sgnt) >,0 as |t]|— oo

Hence X(t) = X(t) — X(0) =4 X(b + t) — X(b) =40 — 0 as b — o by Lemma 1.2
and (0.3). So X(t) = 0 wpl for each t separately.

(b) Also Y := X — X(0) is 0-ss si and measurable. Moreover, Y(0) = 0. From
Y(a-) =4 Y it follows that Y(a) =4 Y(1) fora> 0,s0 Y(¢t + h) — Y(¢t) =4 Y(1) for
h > 0. By Theorem 1.1 we must have Y(1) = 0 wpl. Hence Y(t) = 0 wpl, so
X(t) = X(0) wpl for each t separately. O

From now on we will restrict our attention to H-ss si processes with H > 0.
Moreover, we want to exclude the trivial event [X = 0]. Therefore we require
that this event has zero probability. If H > 0, then X(0) = 0 wpl by Lemma 1.2
and X is continuous in probability (or stochastically continuous):

(1.1) X(t+ h) — X(t) =4 X(h) =4 | h|*X(sgn h) =40 as h—0.

By Doob (1953, Theorem II.2.6)-or Neveu (1965, page 91) there is a measurable
separable version of X, for which each countable dense subset S of T'is a separant.
Let us explain briefly the terminology. A version of X is a process Y such that
Y(t) = X(t) wpl for each t separately. In particular Y =, X. The process Y is
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separable with separant S (S countable and dense in T), if wp1 the graph of Y is
contained in the closure in T' X R of the graph of (Y(t)):;cs. From now on we will
assume that X is measurable and separable with each countable dense subset S
of T as separant.

Formula (1.1) and the implied continuity in probability might suggest that X
has smooth sample paths. This suggestion is wrong. There are H-ss si processes
X, the so-called fractional stable processes (cf. 5.4 or Maejima, 1983), for which
X is wpl nowhere bounded (the author even conjectures that the graph of X is
wpl dense in T' X R). In this case separability is a meaningless restriction (but
measurability is not).

Nowhere bounded processes occur more often in the literature. For instance,
stationary Gaussian processes are known to have either continuous or nowhere
bounded sample paths (Belyaev, 1960, 1961).

Very often though, X does allow a version whose sample paths have only jump
discontinuities, i.e., wpl X has left and right limits at every ¢t € T. In particular
this is the case if X has locally bounded variation. Making X right-continuous
does not change the finite-dimensional distributions outside the set of fixed
discontinuities

= {t € R: P[lim,, X(u) # lim, X(u)] > 0}.

By Billingsley (1968, page 124) A is countable (i.e., finite or countably infinite),
and by (0.3) A is translation invariant. Hence A is empty. So X allows a version
in D(T), the set of R-valued right-continuous functions on T that have every-
where left limits (except at inf T if lying in T'). Since the distribution of a D(T)-
valued rv is determined by its finite-dimensional distributions (Billingsley, 1968,
page 123), formulae (0.1) and (0.3) now hold with X interpreted as D(T)-valued
Iv.

We now summarize the standard hypotheses that will be assumed throughout

the paper.

STANDARD HYPOTHESES 1.4. The process (X(t))er is R-valued and
X(t) € R wpl for each t € T. We have T = R, unless it is stated that T = R..
The process X is H-self-similar (i.e. (0.1) holds) and has stationary increments (i.e.
(0.8) holds). Moreover, H > 0, X is separable and measurable, each countable dense
subset S of T is a separant for X, and P[X = 0] = 0. Whenever X allows a version
in D(T), we take X equal to this version.

2. Basic properties.

Random measures. Let 2 be the ring of finite unions of intervals (a, 5] N T
(a, b € R). We say that u is a formal measure on %, if p is a finitely additive
function on £ with values in R* := R U {*}. Here * is to be mterpreted as
“undeﬁned” and the measure-theoretic addition conventions in R are extended

to R* by

w—o=—w+00=* *4x=x+*=* forall x€ER*
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If f is an R-valued function on IR, then it generates a formal measure u by

(2.1a) w(a, b] = f(b) — f(a).
If £(0) is finite, we can recover f — f(0) from u by
(2.1b) f(t) — f(0) = u(I)sgn ¢,

where henceforth

I(O,t] if t>0,
(2.2) I:=1(0] if t<0,
l@ if t=0.

Consequently, with each stochastic process X such that X(0) = 0 wpl we can
associate a random formal measure N = Ny by

Ni(a, b] := X(b) — X(a)
X(t) = N()sgn t.

Here N is considered to be an R*-valued random function on Z.
Obviously, X is H-ss (i.e., (0.1) holds) iff N is H-ss as a random function on

R
(2.4) N(a-) =4 a”’N forallreal a>0.

Moreover, X is si (i.e., (0.3) holds) iff N is stationary as a random function on
R
(2.5) N(-+b)=4N forall beT.

The advantage of considering random measures is that the si property (0.3)
translates into the more natural stationarity property (2.5). In particular, the
generalization to T = Ry or RY is awkward for (0.3), but straightforward for (2.5).
In the present paper we will shift freely our considerations hence and forth
between X and N, connected by (2.3), depending on the situation.

Even if f in (2.1a) is R-valued, the measure theory behind u can be virtually
empty, for instance if f has nowhere bounded variation (nbv), i.e., no bounded
variation in any interval. There is a relevant measure theory for the case that f
in (2.1a) is R-valued and has locally bounded variation (lbv), which corresponds
to u being locally bounded, signed and finitely additive. If, in addition, f is right-
continuous then u is a Radon measure, i.e., locally bounded, signed and s-additive.
To this case all of traditional measure theory applies.

We will see below that for H-ss si X there is the following dichotomy. Either
X has lbv, in which case X has a version in D(T') and the corresponding random
measure N is Radon, or X has nbv and the random measure N is purely formal.

If N is a random Radon measure, then N allows a Hahn decomposition
N=N*—- N~ with N*, N~ positive Radon measures, and a Jordan decomposition

N=Nac+Ncs+Nd(=Nac+Ns=Nc+Nd)’

where N, is absolutely continuous with respect to Lebesgue measure, N is
singular with respect to Lebesgue measure and diffuse or “continuous”, and Ny4

(2.3)
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discrete or atomic, i.e., concentrated on a countable set, Inspecting the construc-
tions (J € X#)

N*(J) = sup{X, (N(Jp)*: Ji € &, disjoint, U, Ji C J},

Nac(J) = Lxl(t) dt,

where X’ exists a.e. by Lebesgue’s differentiation theorem,
Ny = Yier (X(t) — X(t—)) s,

where ¢, is the degenerate probability measure concentrated at ¢, we see that N,
N~, Ny, N and Ny all are H-ss and/or stationary, if N is.

Intensive affine properties. Let f be an R-valued function on 7. We consider
properties & that f may or may not have on bounded intervals I C T. We call
property & intensive, if f having property & on I implies & for f on all
subintervals J C I. We call & qffine, if f having property & on I implies & for
af + bon I and for f(a- + b) on (I — b)/a (a, b real, a > 0).

2.1. Examples of intensive affine properties.

f is bounded on I;

f is finite-valued on I;

f has bounded variation on I;

f is continuous on I;

[ is singular on I;

f is nowhere bounded on I, i.e., unbounded on all subintervals of I;

f has nbv in ], i.e., f does not have bounded variation in any subinterval of I.

THEOREM 2.2. If X is a separable measurable H-ss si process and & is an
intensive affine property such that [X has property & on I] is an event for all
bounded intervals I C T, then wpl either X has property & on all bounded
intervals I C T or on none of them.

REMARK. The present paper contains many statements of the type “wpl
either A or B”, as in the conclusion of the theorem. They mean that almost
surely one and only one of the events A and B occur. They do not exclude that

0<P)<1.
PROOF OF THEOREM 2.2. For b € T we have by (0.3), strengthened beyond
finite-dimensional distributions by separability and measurability,
p:=P[X has & on I] = P[X(b + ) — X(b) has & on I]
=P[X(b+ -) has & on I] = P[X has & on I — b].

Let b be an interior point of I. Then 0 is an interior point of I — b =: I, (to be
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replaced by I, N R, in case T = R.). We now have for all a > 0 by (0.1)
p =P[X has & on I)] = P[X(a™) has Z on aly]
= P[a #X has & on aly] = P[X has £ on al,).

Since £ is an intensive property, the last event is decreasing in a, so the last
probability decreases to (consequently, being constant, equals)

P(Na>o [X has & on aly]) = P[X has & everywhere].

It follows that [X has & on I] and the smaller eévent [X has & everywhere]
differ only by a set of probability 0, and so do [X has & on some I] and [X has
& everywhere].

COROLLARY 2.3.  If X is separable, measurable, H-ss and si, then wpl:

(a) X is constant (so X = 0) or nowhere constant;

(b) X is finite-valued, or infinite-valued on a dense subset of T;
(c) X is locally bounded or nowhere bounded;

(d) X has lbv or nbv.

At\.this point it is useful to collect some characterizations of monotonicity of
the sample paths of X.

THEOREM 2.4. Let X be H-ss, si, separable and measurable. Then

(a) [X(1) = 0] = [X = 0] modulo null events,
(b) X(1) = 0 wpl iff X is nonincreasing wpl.

REMARK. Another result on monotone sample paths is Theorem 3.5(c).

PrOOF. (a) By Lemma 3 of O’Brien and Vervaat (1983) both events have
equal probability. Moreover, [X = 0] C [X(1) = 0].

(b) If X increases somewhere with positive probability, then there are
s, t € R with s < ¢t and P[X(s) < X(t)] > 0. By (0.1) and (0.3) it follows that

P[X(t) — X(s) > 0] = P[X(t — 5) > 0] = P[(t — s)"X(1) > 0] = P[X(1) > 0],

so X(1) > 0 with positive probability. This proves one implication in (b). The
other is trivial.

2.5. o-finite measures. So far we have not considered o-finite o-additive
signed measures u. Whenever such a measure arises from finite-valued f by (2.1a),
it is necessarily Radon. However, measures like u(dt) ='| t| ™" dt are o-finite, but
not Radon. So it seems natural to consider also o-finite ¢-additive random
measures N (not originating from-an X as in (2.3)). Now Theorem 2.2 can easily
be rephrased and proved for H-ss stationary random measures in this generality.
Since | N| := N* 4+ N~ being bounded on I is an intensive affine property, an
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H-ss stationary random measure is wpl either locally bounded or everywhere
unbounded. The latter possibility contradicts o-finiteness. So all o-finite H-ss
stationary random measures are in fact Radon.

2.6. Extreme distributions and ergodicity. Let X be a process such that
X(0) = 0 wpl, with corresponding random measure N as coupled by (2.3). Recall
that X is si iff N is stationary iff the dlstrlbutlons of X and N are invariant
under the (equivalent) transformations

X — Xb+ ) — Xb)|
(2.6) N — N@b + )

Similarly X is H-ss iff N is H-ss iff the distributions of X and N are invariant
under the (equivalent) transformations

X - aHX(a-)|
@7 N - a"N(a-)|

for beT.

for real a > 0.

In case T = R, all compositions of transformations (2.6) and (2.7) form a group
isomorphic to the group of positive affine transformations ¢t — at + b (a, b € R,
a > 0) of R with composition of functions as product. In case T = R,, the set of
compositions is isomorphic to the subsemigroup consisting of t — at + b with q,
beER,a>0,b=0.

Let (2.7, H) denote (2.7) with a given fixed H and let * denote (2.6), (2.7, H)
or (2.6) and (2.7, H). Let 7, be the o-field of events which are invariant up to
null sets under *, and let us call X or N * stationary, if their probability
distributions are invariant under *. So X is si iff it is (2.6) stationary, and H-ss
iff it is (2.7, H) stationary. We call X (or N) * ergodic if X is * stationary and
P[XeAl=0orlforallA€ 7,.

We will not pursue an analysis of ergodicity in the examples of the present
paper. In general, they are either very obviously not (2.6), (2.7, H) ergodic, or
they are, but a proof may be complicated. Analysis of ergodicity is more prominent
in O’Brien and Vervaat (1985).

3. Variation of the sample paths. Let X be a strictly stable process with
exponent a = 1/H € [Y, »), i.e., X is H-ss with stationary independent increments.
The following is known in this case. If 2 = H<1 (1 < a < 2), then wpl the
sample paths have nowhere bounded variation (nbv). If H>1 (0 < a < 1), then
wpl the sample paths have locally bounded variation (lbv) and vary only by
jumps. These results are reobtained (for a # 2) in the context of H-ss si jump
processes in O’Brien and Vervaat (1985). The following theorems generalize these
and other well-known properties of strictly stable processes to ss si processes.
They will be proved at the end of this section. Each theorem is followed by a
discussion of its consequences and occasionally an indication of examples.

AUXILIARY THEOREM 3.1. Let Hypothesis 1.4 hold for X and suppose that
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EX(1) exists (i.e., at least one of EX*(1), EX (1) is finite).

(a) If H<1, then EX(1) = 0.

(b) If H =1, then X(t) = tX(1) wpl.

(c) If H> 1, then either wpl X(1) = 0; EX(1) = o and X is strictly increasing,
or the same holds wpl for —X.

COROLLARY 3.2. If H > 1, then the support of the distribution of X(1) extends
to o or is contained in (—x, 0]. If H = 1, then the support of the distribution of
X(1) is unbounded above unless X(t) = tX(1) wpl. A more detailed result for
H > 1 is Theorem 5 of O’Brien and Vervaat (1983). For H = 1 the last section of
the same paper is supplemented by our observation. The author does not know
whether the support of X(1) can be bounded above in case H < 1.

THEOREM 3.3. Let Hypothesis 1.4 hold for X and set A .= [X has lbv). If
P(A) > 0, then either H> 1 and A C [dX(t)/dt = 0 for almost all t] modulo null
events, or H =1 and A = [X(t) = tX(1)] modulo null events.

3.4. Remarks and examples. Note that X has nbv wpl in case H < 1, unless
H =1 and X(t) = tX(1) with positive probability. We will see that even in case
H > 1 the paths of X may have nbv. We briefly discuss the examples.

CASE (A). H < 1. The most obvious examples are Brownian motion and
other strictly stable processes with « = 1/H > 1. Other examples are abundant
in the literature up to 1979. Sample paths can be continuous (cf. Yeh, 1973, for
fractional Brownian motion), vary only by jumps (symmetric stable processes
with & = 1/H € (1, 2) or more generally conditionally convergent jump processes
in O’Brien and Vervaat 1985, with 0 < H < 1) or be nowhere bounded (cf.
* Maejima, 1982, 1983, and Taqqu and Wolpert, 1983, for fractional stable proc-
esses and our Section 5.4 for other fractional processes).

CASE (B). H > 1. Strictly stable processes with « = 1/H € (0, 1) have lbv
and vary only by jumps. The class of all processes with this type of variation is
studied in O’Brien and Vervaat (1984) (cf. also Section 4). Up to 1979 no other
examples than stable processes were known. The first new example was found
by Kesten and Spitzer (1979), with lbv and continuous singular sample paths.
After that, other examples were found by Surgailis (1981), Taqqu and Wolpert
(1983) and O’Brien and Vervaat (1985). Based on the last paper, the present
paper provides a new class of examples of X with Ibv and continuous sample
paths (by subordination to jump processes, cf. 5.1). A similar class could have
been produced within the subordination set-up of Surgailis (1981). The present
paper provides the first known examples of X with nbv (cf. 5.3, 6.5 and 6.6).

CASE (). H = 1. The lbv case is trivial, so we discuss only the nbv case.
The only strictly stable processes with « = 1/H = 1 are the Cauchy processes,
possibly with drift. Examples with continuous sample paths are given by Kesten
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and Spitzer (1979). The examples in O’Brien and Vervaat (1985) vary only by
jumps. No attempt is made in the present paper to construct examples with
continuous paths by subordination to jump processes, but probably it can be
done.

THEOREM 3.5. Let Hypothesis 1.4 hold for X and set fort € T. 3 € R
Dg(¢) := lim sup,ph?(X(t + h) — X(t)),
M; := supo<;<1t?X(t),

Ioo -x  if >0
dp(x) == 1 x if B=0; for x €ER.
lx1[|x|=w1 if B< OJ

Then the following holds.

(a) Dg(t) = Dg(0) wpl for each t separately, and the random set of t for which
Dy(t) # Dg(0) has wpl Lebesgue measure zero.

(b) Dg(0) = ¢ps—u(Mp) wpl. In particular, Dg(0) € {—o, 0, o} wpl if 8 # H.

(c) [M;s =< 0] = [X is strictly decreasing] modulo null events.

(d) Let 7 be the (2.7, H) invariant o-field. Then

Dy(0) = supf{x: P”[X(1) > x] >0} wpl.

In particular, if X is (2.7, H) ergodic, then wpl Dy(0) equals the right end
of the support of the distribution of X(1).

3.6. Corollaries and remarks

CASEB=H. IfH=1and P[X(t) = tX(1)] = 0, then Dy(0) = o wpl by (d)
and Corollary 3.2, unless X is strictly decreasing wpl. In the latter case Dy (0) can
take any value in (—, 0], by Theorem 5 of O’Brien and Vervaat (1983). If H < 1,
then Dy(0) > 0 wpl since X cannot be monotone by Theorems 3.1 or 3.3. The
author does not know whether Dy (0) € (0, ) can occur with positive probability.

CASE 8> H. IfH =<1 and P[X(t) = tX(1)] = 0, then X cannot be monotone,
s0 Dg(0) = o wpl by (b) and (c). If H > 1, then Dg(0) = o unless X is strictly
decreasing in which case Dg(0) = 0 or —. If Dy(0) < 0, then certainly Dg(0) =
—oo, It is unclear what can happen if Dy (0) = 0. The author does not know examples
with Dyg(0) = 0.

CASE 8 < H. If X is strictly decreasing, then D4s(Q) = 0 wpl, since Dy(0) €
(—o, 0] wpl. If X has lbv and H > 1, then D:(0) = 0 so Dg(0) = 0 for 8 < 1, by
Theorem 3.3. If X is nowhere bounded (examples are only known for H < 1, cf.
Séction 5.4), then Dy(0) = . If X is locally bounded but not decreasing, then Dg(0)
= 0 or o, but the author does not know whether Dg(0) = o actually can occur with
positive probability.
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Turning to the proofs, we start with an extension of the Birkhoff Ergodic
Theorem, which may be well known, but for which the author could not find a
proof in the literature.

THEOREM 3.7. Let (£,), be a stationary sequence of rv’s, 7 its invariant
a-field, and let ¢ be a measurable function on R such that E¢(£,) exists ( posszbly
infinite-valued). Then

(3.1) (1/n) Yi-1 ¢(&r) — E] (&) wpl.
PROOF. The theorem is well-known for the case E | ¢(&)]| < o, and we

will reduce the complementary case to this. So suppose E¢(£;) < . Then
E|¢(&) A ¢| < o for ¢ > 0, and applying Birkhoff’s Ergodic Theorem for all

these ¢ we find
lim inf,«(1/n) Xiz1 ¢(€x) = suplim,.«(1/n) ¥i-1 (6(€) A c)
= lim-E”(¢(£1) A ¢) = E7¢(&) wpl.
This already proves (3.1) on [E” ¢(£;) = ). Set for ¢ > 0
Ale) = [E7¢(£) = c] = [E7¢(&) = ],
e = @(En)Laco)-
Then (n,,c)n=1 is stationary, Eni. < E¢(£) < o and
Ene = EE7¢(&)1ae = ElawE 7 ¢(&) < ¢,
80 IE | 11, | < o0. Hence
law - (1/n) Tia1 ¢(&) = (1/n) Thet e = E e
= E7¢() a0 = lawE”¢(£) wpl.
Considering the outmost sides for all ¢ > 0 we see that (3.1) also holds on

U. A(c) = [E”7¢(£1) < o0].0

PROOF OF THEOREM 3.1. Let _7 be the invariant ¢-field of the stationary
sequence (X(n) — X(n — 1));-; completed with the events of probability zero. By
Theorem 3.7 (which also holds with this completed _7') we have

(1/n)X(n) = (1/n) Th1 (X(k) — X(k—1)) > E”X(1) wpl
(recall that X(0) = 0 wpl by Lemma 1.2). By self-similarity
1 IO if H<1,
= X(n) =4 nf71X(1) — 1 X(1) if. H=1,
n loo.xu) if H>1.
It follows that E-"X(1) =, lim,_.-h"X(1).

(a) If H<1, then EX(1) = 0 wpl, so EX(1) = EE”X(1) = 0.
(b) If H =1, then E”X(1) =4 X(1), so by Smit (1983) X(1) = E”X(1) wpl
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(here the completion of _7 is needed). Hence X(1) is _7 measurable, i.e., X(1)
=X(n)—X(n—1)wplforn=12, .-, so X(n) = nX(1) wpl for these n. By
self-similarity X(t) = tX(1) wpl for all positive rational ¢, hence for all positive
real t simultaneously wpl by separability. Since X has si, this identity extends
to negative ¢. :

(c) If H> 1, then E“X(1) =4 ©» - X(1). Since EE”X(1) = EX(1) exists,
E”X(1) cannot assume either value +o with positive probability, so X(1) < 0
wpl or X(1) = 0 wpl. In either case X is strictly monotone by Theorem 2.4(b),
Corollary 2.3(a) and Hypothesis 1.4. Moreover, EX(1) = 0 corresponds to X = 0
wpl, again excluded by Hypothesis 1.4.0

PrROOF OF THEOREM 3.3. The event A is invariant under transformations
(2.6) and (2.7), so the conditional process X given A is H-ss si as well. We
therefore may assume that (A) = 1 for the time being, by considering the
conditioned process.

If X has lbv, then X can be written as a difference of two nondecreasing H-ss
si processes X; and X,: X = X; — X,, corresponding to the Hahn decomposition
of the related Radon measure N (cf. Section 2). Since X;(1) = 0 for j = 1, 2,
EX;(1) exists and Theorem 3.1 applies to either X;. If H < 1, then by Theorem
3.1(a) EX;(1) = 0, so X;(1) = 0 wpl, so X(1) = 0 wpl. By Theorem 2.4(a) X = 0
wpl, which is excluded in Hypothesis 1.4. It follows that H = 1. If H = 1, then
X;(t) = tX;(1) wpl by Theorem 3.1(b), so X(¢) = tX(1) wpl.

Suppose H > 1 and X has lbv. Then by Lebesgue’s differentiation theorem
dX(t)/dt exists (with finite values) and equals D,(¢) (see Theorem 3.5) almost
everywhere. By Theorem 3.5(b) (whose proof is independent of the present
theorem) it follows that dX(¢)/dt = 0 almost everywhere.

Dropping the assumption IP(A) = 1, i.e., returning to the unconditioned process
X, the proof is already complete for H > 1, and is completed for H = 1 by
observing that the process tX(1) has lbv.

PROOF OF THEOREM 3.5. (a) Since X is measurable and separable with each
countable dense subset of T as separant, the process Ds is well-defined and
measurable, and its finite-dimensional distributions depend uniquely on the
finite-dimensional distribution of X. From (0.1) and (0.3) it then follows that Ds
is (H — pB)-ss (except that Ds(t) may assume infinite values with positive
probability), and stationary, i.e.,

(3.2) Dg(a- + b) =4 a"PDy for a,bET, a>0.

The process Dg need not be separable, in fact it is far from separable in many
cases. From (3.2) at 0 with =0, a | 0 or a — o we see Dg(0) € {—o, 0, 0} wpl
in case H # B. From (3.2) with a = 1 at 0 we see that Dg(t) =, Ds(0). Hence
a*?D(t) = D(t) wpl. So the case H # § in (3.2) reduces to the case H = 8 with
the” additional condition that D4(t) € {—o, 0, ©} wpl. From (3.2) we see that
(Dg(b), Dy(b + a)) =4 (Dg(0), Dy(1)) in R?. Letting a | 0, we see by Theorem 1.1
that Ds can be measurable only if Dg(0) = Dg(1) wpl. Hence Dg(t) = Dg(0) wpl
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for each t separately. By arguments similar to those on page 113 of Lamperti
(1966) it follows that wpl Dg(t) = Dg(0) for almost every t.
(b) Interpreting Dg(0) more explicitly, we have

(3.3) Dg(0) = infiso8upo<i<nt PX(t) = limpjosupo<.<nt *X(t),
in particular,
(3.4) Ds(0) £ M.

The limit on the right-hand side of (3.3) refers to convergence wpl, hence also
to convergence in distribution. By self-similarity

SUPo<t=nt PX(t) =4 supo<i=nt PhH¥X(t/h) = supocu=it PhHtX(u) = h¥*M,
S0
(3.5) Ds(0) =q limy)oh Mg = dpp_s(Mp).
Applying ¢x-s to (3.4) and recalling that D4(0) € (—, 0, ) wpl for 8 # H (cf.
proof of (a)), we find
én-5(Dg(0)) = Ds(0) = ¢pu—p(Mg) wpl.
This combined with (3.5) gives D4(0) = ¢pu—s(Mpg) wpl, as in general £ =; 7 and

¢ < n wpl imply ¢ = 5 wpl.
(c) Set

M;(t) := supoar=1 h (X (t + h) — X(2)),
and note that modulo null events
[X nonincreasing] = N;es [Mp(t) < 0],

if S is a separant for X. By the obvious analogue of (a) for Ms(t) we have Mg(t)
= M;y(0) = M, wpl for all t € S simultaneously. Now (c) follows by Corollary
2.3(a) and Hypothesis 1.4.

(d) From (a) and the definition of Dy(0) it follows that Dy is almost invariant
under the transformations (2.7, H) applied to X, so Dy is _#7 measurable.

Furthermore,
P7[X(1) > x] = PPt 7HX(t) > x] wpl
for each ¢ separately. Consequently, we have for countable dense sets S in [0, 1]
[P7[X(1) > x] = 0] = Nies [PT[t77X(t) > x] = 0]
= [P [supest X(t) > x] = 0] = [P7[My > x] = 0]
= [P”[Dx(0) > x] = 0] = [D#{0) =< x]

modulo null events. In the last identity we used that Dy(0) is 7 measurable,
thé second last is based on (b). Part (d) now follows by the identity between the

outmost sides.
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4. Subordination to point processes.

Stationary ss discrete random measures. In O’Brien and Vervaat (1985) H-ss
si jump processes X of lbv are studied and characterized. Here we quote the
results we need, mostly rephrased for the corresponding random ss stationary
discrete Radon measure N, associated with X by (2.3). Throughout thls section

we assume that T'= R.
If X is a jump process of lbv, i.e., if its associated random measure N is Radon

and discrete, then its saltus process is the point process
I := {(¢, N{t}): t € R, Nit} # 0},
a random subset of
E =R x (R\{0}).

If X # 0 wpl, assumed in Standard Hypotheses 1.4, then II # & wpl, and
{t: (t, x) € I1} is dense in R wpl by Corollary 2.3(a). However, II is locally finite
in R X R\{0}. By abuse of notation II is identified with the point process
(= random integer-valued measure) counting its points. So two ways to write
N(A) for Borel sets A C R are

N(A) = E(t,x)EII,tEA X = f xII(A, dx)
R\{0}
In its second interpretation, II is a random Radon measure on the Borel field of

R X (R\{0}). Define
xl“:=|x|*sgnx forreal a and x#0,

and set
I~ := {(t, x1%): (¢, x) € I}

for o € R. Then each random stationary H-ss discrete Radon measure Ny can
be represented as

(4.1) Ny = f *«II7(-, dx) = f 2MII(., dx),
R\{0} R\{0}

where II is a point process in E, locally finite in R X (R\{0}), whose distribution
is invariant under the transformations

4.2) (t, x)r—> (at+b,ax) (a,bER,a>0)

of E. We express this invariance by saying that II is (4.2) stationary or Poincaré.
Let EII be the intensity of II, defined by (EII)(B) := E(II(B)) for Borel sets

B C E. If I1 is Poincaré, then EII is as well, so .

(4.3) EII(dt, dx) = c(sgn x) dt dx/x? for (t, x) E E,

where ¢(x1) =: ¢ € [0, ] and ¢, + ¢_ > 0, since Il # & wpl. We call EII finite
if ¢4 + c- < o, otherwise infinite.
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Let IT be Poincaré and let H be a fixed real. Consider Ny(I) in (4.1) for
bounded intervals I. By Theorem 2.2 it follows that wpl the right-hand sides of
(4.1) either converge absolutely for all such I, or for none of them. Let &,
depending on the sample point w, be the random set of H (necessarily an interval
extending to o or empty), for which there is absolute convergence in (4.1). Then
by Theorem 2.1 of O’Brien and Vervaat (1985) we have &, C (1, ) wpl, and
A, = (1, o) wpl if EII is finite. In the present paper (Section 5.2) we will
construct examples with infinite EII and &, = (H,, »), where 1 < H, < 0,

Conditional convergence in (4.1) is studied extensively in Section 4 of O’Brien
and Vervaat (1985). In the present paper it will occur only incidentally. The
order of summation for conditional convergence in (4.1) is specified by

(4.4) Ny := lim, f xI14(-, dx).
R\(—¢,¢)

We define &, to be the random set of all H such that (4.4) converges at all
intervals (a, b] for almost all (a, b) € R? a < b. It is not hard to see that H € &,
wpl iff (4.4) converges wpl at one fixed interval. However, the author does not
know whether this implies that (4.4) converges wpl at all intervals simultane-
ously.

Both &, and & are (4.2) invariant, so essentially nonrandom, if Ny is (2.6),
(2.7, H) ergodic (cf. Section 2.6), which is the same as II being (4.2) ergodic.

If IT is Poisson with intensity (4.3) then Xy associated with N is strictly
stable with exponent o = 1/H. Several other examples of Poincaré II are presented
in Sections 3, 5 and 6 of O’Brien and Vervaat (1985).

Subordination. Let II be a Poincaré point process in E, and let u be a formal
measure on the ring # of finite unions of finite intervals (a, b]. Let Ny for

- H > 0 be the random measure

(4.5) Ny = Z(zx)en x! #< ) ff x1H < )H(dt dx),

supposed to be convergent in some sense. Then Ny is obviously stationary, and
moreover H-ss:

Np(a-) = Teoen 2@ - t)/|x])

= Yewen 2u((- — ta™)/[x]a™)

“6 = Yar,arren (@2 )Hu((- = t)/|x"|)
=4 a” Yo nen x"u((- — t)/|x|) = a”Ny for a>0.
Consequently,
(4.7) Xu(t) == Ny(I)sgn t

defines an H-ss si process. We call Ny the random measure subordinated to II
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by u, and II the subordinator in (4.5). By setting u = ¢ (probability measure
concentrated at 0) in (4.5) we reobtain (4.1). The random measure expression
(4.5) is simpler and intuitively more appealing than the corresponding expression
for Xy. With

(4.8) F(t) := u(l;)sgn t
it becomes

Xu(t) = Ywwen xM uw((T; — w)/1x|)sgn t
= Ywwen x(F((t — w)/|x]) — F(—u/|x|)).

Formulae (4.5) and (4.9) allow a generalization in which also the measure u is
random. To this end, let ((¢,, x»))»-1 be an enumeration of the points of IT which
is measurable, i.e., such that (¢,, x,) is an R2-valued rv for each n (cf. Kallenberg,
1976, Lemma 2.3). Let (u,)n=1 be a collection of iid random formal measures on
%, independent of II. If 7 is a random permutation of N and = is independent of
(un)m=1, in particular if = depends functionally on II, then (u.n)m=1 =d (in)m=1 and
is independent of II. The generalization of (4.5) and (4.9) now reads

(4~10) Ny = Z:=l szH#n< |x ) ff xt ﬂn(t,x)( l )H(dt dx)

Now an analogue of (4.6) and the stationarity of Ny remain true.

A special case of (4.9) occurs in Surgailis (1981), where II is replaced by IT —
EII and II is Poisson. In this case (4.9) can be written down only with integrals
whose integrators have uncountable support, and a random u version like (4.10)
then seems hard to define.

Expressions analogous to (4.5) and (4.9) in the context of extremal processes
were discovered independently and exploited thoroughly in the research leading
to O’Brien, Torfs and Vervaat (1984+). In fact this was the main hint for the
present author to investigate (4.5) in its present context. It turns out that
fractional stable processes (cf. Section 5.4) as studied by Taqqu and Wolpert
(1983) and Maejima (1983) are a special case of (4.5) with II replaced by IT —
EII, IT Poisson.

Several examples will be presented and discussed in Section 5. The remainder
of the present section is devoted to the following question. If the subordinator IT
is concentrated on E, := R X (0, ) and u is nonnegative, when will Ny in (4.5)
be Radon, i.e., finite on bounded intervals? We will find sufficient conditions.
The following are our assumptions.

(4.9)

HYPOTHESES 4.1. (a) Il is Poincaré and concentrated on E, with finite
intensity EII(dt, dx) = c.dt dx/x? and measurable enumeration ((t,, x,))n=1 of its

points.
(b) (un)n=1 is a sequence of iid. nonnegative Radon measures, independent of I1.

Recall that Ny in (4.10) is stationary and H-ss, whenever convergent, under
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Hypotheses 4.1. For the next lemmas we decompose Ny in (4.10) into Ny =
NP + N2 where

(4 11) (1) = zn :x,=<1 Xn ﬂn(( - n)/xn)

is the sum of the contributions by the small jumps x, < 1, and N := Ny —
N the sum of the contributions by the large jumps x, > 1.

LEMMA 4.2. If Hypotheses 4.1 are satisfied and Eu,(R) < o, then NP(I) <
oo wpl for each bounded interval I and each H > 1.

PROOF. Obviously, N{ is stationary and increasing in I, so we may assume
I=1,= (0, a] for some a > 0. Set m := Eu,(R) (m > 0, otherwise Ny = 0 wpl)
and p := m™Eu,. Then u is a (nonrandom) probability measure on the Borel
field of IR. Since (u,) and II are independent, we have

EN(D(Ia) = f f x Hn(t, x)(
SR O
= mec, J(: xf- ( L wlye + w) du) dx.

Since p is a probability measure, we have

) w(dt, dx)

) cy dt dx/x?

a

f Iy + u) du = -
R

X

Hence

1
ENY(L) = mc.a f 22 dx = I—;n—c"fl- <
A _

if H>1, s0 N¥(I,) < o wpl.

LEMMA 4.3. Let Hypotheses 4.1 be satisfied. Let u,(R) < o wpl and let S be
wpl a common support of up,: p.(R\S) = 0 wpl. Set

(4.12) SY = Ujpi<y (S+b) for y>0
and suppose that

1
(4.13) J; A(S?) dy/y < =,

here \ denotes Lebesgue measure. Then N@(I) < o wpl for each finite interval
I and each H > 0.
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PROOF. Obviously, N? is stationary and increasing in I, so we may assume
I = (—a, a) for some a > 0. For this I we have

NPU) = Seem1 25 un((I = t0)/2%)
<= 3 {xunen(R): (¢, x) €I, x > 1, —t/x € SY*} wpl.
The latter series is finite, if it has finitely many terms, i.e., if
(4.14) I{(t, x) E E+: x> 1, —t/x € SY*} < .
The left-hand side has expectation

c+ J: xS dx/x? = c, f A(S?) dy/y,
(1)

which is finite iff (4.13) holds. So (4.14) holds wp1, and the lemma follows.

REMARK 4.4. Since S? = (clos S)?, we may assume S to be closed in Lemma
4.3. For closed S, Condition (4.13) is equivalent to

[S is bounded,

(4.15) \(S) = 0,
| 551 4 1log 4] < o,

where (4,)n-1 is an enumeration of the lengths of the disjoint open intervals
whose union is [inf S, sup S]\S. This follows from the lemma on page 326 of
Carleson (1952) (reference due to John Hawkes).

THEOREM 4.5. Let Hypotheses 4.1 be satisfied. Let Eu,(R) < %, and let S be
wpl a common support of u,: u,(R\S) = 0 wpl. Suppose, moreover, that S is closed
and satisfies (4.15). Then Ny in (4.10) has domain of absolute convergence

o= (1, ®) wpl.

PrROOF. From Lemmas 4.2 and 4.3, Remark 4.4 and the independence of &,
of Iin Ny(I) as noted after formula (4.3) it follows that (1, ©) C &, wpl. Observe
that ‘Ny is nonnegative, so X is nondecreasing. By Theorem 3.3 it follows that
(1, ©) D &, wpl, unless N, converges and N; = N,(I;)\. If u, had a singular part
with positive probability, then N; would have some, so u, is absolutely continuous
wpl if N; converges. Consequently, Ny is absolutely continuous wpl for H > 1,
which contradicts Theorem 3.3 and excludes the possibility N; = N;(I;)\.

5. Examples. In the present section we discuss examples of random H-ss
stationary measures Ny subordinated to Poincaré point processes II as in (4.5)
or (4.10). In particular we will show that several combinations of H, lbv or nbv,
continuity or discreteness, not excluded in Theorem 3.3, indeed do occur. Recall
that £ = R X (R\{0}) and E, = R X (0. ).
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5.1. A process of lbv with continuous singular sample paths. Let II be a
Poincaré point process with finite EII in E,. Let C be the Cantor set:

C := {x € [0, 1]: x has a triadic expansion without digits 1}.

Then C satisfies (4.15) referred to in Theorem 4.5, so Ny in (4.10) or (4.5)
converges wpl for H > 1 if u, = u is a fixed nonrandom probability measure
concentrated on C. Let u be the uniform .distribution on C, i.e., the probability
distribution of Yn-; £,3™" with (£,)n-1 iid such that £, = 0 or 2 with equal
probability. Then u is diffuse’ (nonatomic) and nonnegative, and so is-Ny for
H > 1 (II is concentrated on E.). Hence the corresponding H-ss si Xy is
continuous and nondecreasing, even strictly increasing by Corollary 2.3(a). By
Theorem 3.3 X must be singular. For other examples with the same properties,
see 6.5 and 6.6.

5.2. Absolute convergence boundary > 1. Recall the definition of domain of
absolute convergence &, for Poincaré II in the first part of Section 4. If EII is
finite, then &, = (1, ©) wpl, whereas &, C (1, ©) wpl if EII is infinite (O’Brien
and Vervaat, 1985, Theorem 2.1). Here we present examples with strict inclusion
in the latter case.

We construct a process subordinated to the Poisson process II in E, with
intensity EII(dt, dx) = dt dx/x? and measurable enumeration ((t,, %.))s=1. The
subordinated measures (u,) are nonnegative and finite wp1l, and concentrated on
a countable subset of the Cantor set C. By Lemma 4.3 and Remark 4.4 the sum
N of the contributions for x > 1 to Ny in (4.10) is finite wpl for H > 1 in this
case. By Lemma 4.2 the sum N} of contributions for x < 1 to Ny would be finite,
if Bun(R) < oo, but this condition will be violated in our example. Let (v,)n-; be
a sequence of iid nonnegative rv’s, independent of II, with Laplace-Stieltjes
transform Ee ™™ = exp(—7°) for 7 = 0, so v, is one-sided stable with exponent a.
Let (c,)n-1 be an enumeration of the endpoints of the disjoint open intervals
whose union is [0, 1]\C, and set

[vn)

Mn = Zm:O Lc,,-

Then pu, is discrete, and so is Ny in (4.10) whenever convergent. Since N2
converges wpl1 for all H > 1, Ny in (4.10) converges wpl for such an H iff Ni in
(4.11) does. For H > 1 and a > 1 we have

f f e o TI(dE, o)
(0,a—1] +/(0,1]
= NP (0,d] = f f % + DINGE, d).
(~1,8) Y(0,1]

Since the last expression with v, omitted is finite wpl, it follows that
N}})(O, a] is finite wpl iff

Z = ff Xy oI1(dt, dx) < ©  wpl
1 v(0,1]

for finite intervals I. As Laplace-Stieltjes transforms can be considered for
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[0, ®]-valued rv’s, we have for all H > 0 and 7 > 0, whether Z is finite or not,

Ee % = exp — J;J: ] (1 — Eexp(—7xfv)) dt dx/x?
0,1
=exp — A(I) J(; x7%(1 — exp(—7°x"%)) dx
a

= exp — /() f y72(1 — exp(=y™)) dy.
0,74

The last expression is positive and converges to 1 as 7 | 0 iff He > 1,80 Z < »
wpl in this case only. If Ha < 1, then Eexp(—7Z) = 0, so Z = « wpl. We
conclude that Ny converges wpl, iff H € &, = (1/a, ®).

Variants. The convergence of N can be investigated by direct inspection of
the sample paths, without Laplace-Stieltjes tranforms or appeal to Lemma 4.3,
if one takes as subordinator II not a Poisson process, but the left points of
neighboring pairs in the triadic lattice process Il ., introduced in Section 3 of
O’Brien and Vervaat (1985). The result is the same: &, = (1/a, ») wpl. If one
replaces v, by nonnegative integer-valued rv’s v, such that

Plv, = m] ~ (m(logm)?)™ as m-—®
with 0 < a <1 < 8, then &, = [1/a, ©) wpl. If one takes
Plv,=zm]~1/logm as m— oo,
then &, = @ wpl. If
Plv,Z2m]~1/m as m— oo,

then &, = (1, ©) wp1, whereas the saltus process of Ny still has infinite intensity.
We omit the details.

5.3. Processes of nbv with H > 1. Let Il be a Poincaré point process in E.,
with measurable enumeration ((t,, x,))n=1. Then its symmetrization is the Poin-
caré point process in E defined by

II, := {(t,, énxn): n € N},

where (e,)i—; is a sequence of iid rv’s, independent of Il and such that ¢, = *+1
with equal probability. Obviously, <, is the same for II and II,. Let & be the
domain of conditional convergence of II,. Then &, = % &, by Theorem 5.1 of
O’Brien and Vervaat (1985). Consequently, Ny in (4:1) with II, instead of II
converges only conditionally wpl for H € &\ &,, hence has nbv wpl.

For given H > 1 we can find a € (0, 1) such that 1/(2a) < H < 1/, and a
Poincaré point process II on E. with &, = (1/a, ) (cf. 5.2). Hence its symme-
trization I, produces a convergent Ny in (4.1) for the given H > 1, with nbv.
Obviously, the present Ny is not continuous. For an example with continuous
sample paths, see 6.6.
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5.4. Fractional processes. This time we consider (4.9) rather than (4.5), since
w in (4.5) need not be Radon in the present example. Set

5.1) F@it) =vy7'(Jt|*"=1) for t#0,0 for t=0 (y#0),
) Fo(t) :=log| t| for t#0,0 for t=0.

Formula (4.9) now becomes

g &Myt = w)|Y = |u]|")I(du, dx) for v # 0,
(6.2)  Xu, () = ]IIE xM(log|t — u| — log|u|)I(du, dx) for ~ =0.

Again X}, is H-ss and si, if it converges in some sense. We call X} ., the fractional
process generated by II. These processes have been studied in the literature for
II Poisson, or rather II Poisson with II — EII instead of II in (5.2), and have
been called fractional stable processes. Our present choice for ¥ = 0 seems to
have been overlooked so far, but all quoted results hold for v = 0 as well. Maejima
(1983a) proves that (5.2) converges in probability (easily to be strengthened to
“wpl”) in the sense of

(53) lim,,_mlimcw f f
1/n<|u|,|lu—t|<n & |x|=e

incase 0 < H< 1, H— v > %. Taqqu and Wolpert (1983), who consider the one-
sided fractional stable processes with F.(t) = 0 for t > 0, Fo(¢) = 1 for t < 0 in
(5.1), obtain convergence in probability in (5.2) for the same H and v, as an
application of a newly developed stochastic integral.

For us it is important that Xz, in (5.2) can converge for negative v. In this
case Xy is wpl nowhere bounded, as already observed in Maejima (1983b), since
I1(dt, R\{0}) has a dense support in R. The author conjectures that the graph of
X is wpl dense in R%

If H = 1, then Xy does not converge in the sense of (5.3). So we have here a
domain of convergence bounded away from +o, which contrasts the results for
subordination of positive measures at the end of Section 4.

If II is replaced by a general Poincaré point process II on E with finite
intensity, then an explorative analysis suggests that Xy ., in (5.2) converges wpl
in the sense of (5.3) if

where &, is the domain of conditional convergence of II.

In the special case that II is symmetric and Poisson, it is easy to see that the
marginal distributions of Xy(¢) in (5.2) are symmetric and stable with exponent
1/(H — v). Nevertheless, Xy is H-ss, and not (H — +)-ss. Therefore fractional
stable processes are interesting examples when one studies the properties of
marginal distribution functions of ss si processes, as is done in O’Brien and
Vervaat (1983).

@

5.5. Polynomial processes. Analogues of the polynomial processes in Surgailis
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(1981) for centered Poisson II are obtained for general II by considering

n n n ds — t ds — ta\\""
NG = (f L) ) (“( ] ) ”< EY >>

. H(dtl, dxl) s H(dtn’ dxn)

for bounded intervals I C R, whenever -convergent in some sense. Here the
measures u are o-additive o-finite and signed, and

(5.4)

duy 11/n
(3= pa(ds))TV" = <HZ=1 ﬁ (3)> v(ds)

for any measure » dominating u;, ug, - - -, un. The left-hand side is well-defined,
since the right-hand side is the same for all such ». It is easy to see that N} is
H-ss and stationary. The proof is the same as for n = 1 after formula (4.5). For
n > 1 we cannot interpret (5.4) for formal measures u, as we did for n = 1 in
(4.5). In the particular case that u is absolutely continuous with respect to
Lebesgue measure with density f, the inner integral in (5.4) takes the form

_ _ 11/n
[ %125+« xn| ™" f(f(s_ﬁ> f<s__t£>> ds
r\\ 2] | % |

(actually, Surgailis, 1981, considers this particular case, rather than (5.4)). More
particularly, let N7, for ¥ € R be defined by (5.4) for p with density

fls) = 1D,

Then N, = Ny, as in 5.4, so N§7, is the polynomial analogue of the fractional
process and the (two-sided) analogue of the Hermite processes (with Brownian
motion instead of II and the one-sided f(s) = —|s|*™* for s < 0, 0 for s > 0) in
Taqqu (1979).

In the particular case that II is Poisson, the polynomial processes (5.4) with
absolutely continuous p play a role in series representations for L*(Q, o(II)),
where o(II) is the o-field generated by II (cf. Surgailis, 1981). A similar theory
does not seem to be available for general Poincaré II.

6. Composition of processes. In the present section we investigate the
preservation of the ss si properties for composition of processes

(6.1) X, ° Xo = (Xi(Xo(t)))eer = (Xi(Xa(t, w), w))ier-

Note that T = R. We do not assume the regularity conditions of Hypotheses 1.4,
but from the right-hand side of (6.1) it is obvious that X; must be assumed to be
measurable (i.e., (¢, w) — Xi(t, w) is measurable) in 'order to guarantee that
X, ° X, is a stochastic process (i.e., w — X; ° X(t, w) is measurable for each t).
The most general condition that guarantees X; ° X, to be ss si is that X; is
conditionally ss si given X, and vice versa. The rather delicate interpretation of
this condition and proofs of results in this generality can be found in Vervaat
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(1982), the first version of the present article. Here we restrict ourselves to the
much more tractable and most important subcase that X; and X, are ss si and
independent. The results for this subcase are more or less implicit in pages 115-
118 of Major (1981), and a particular case is treated by Lou (1983).

THEOREM 6.1. If X; and X, are independent processes, X is measurable and
X; is Hj-ss for j = 1, 2, then X, ° X, is H, Hy-ss.
PRrROOF. In shorthand the proof reads
X © Xo(a-) =4 Xi(a™2X) =4 (a1 X, o X, for a>0.
More extensively, we have for finite-dimensional measurable subsets B of RT
P[X; ° Xo(a-) € B] = EPYM[X, o X,(a-) € B] = EPM[X,(a™X,) € B]
= EP¥[X,(a"2X,) € B] = EP*[(a")"X, ° X, € B]
= P[a™X, ° X, € B].
THEOREM 6.2. If X, and X, are independent si processes, X, is measurable
and X5(0) = 0 wpl, then X; ° X, is si.
PRrROOF. We give the proof only in shorthand:
X0 Xo(b+ -) — X5 © Xo(b)
= X1(Xa(b) + Xs(b + -) — Xp(b)) — X1(X2(b))
=¢ Xi(Xa(b + ) — Xo(b)) — X1(0) =4 X; ° Xo — Xu(0)
=4 Xj ° X, — X; © X5(0).

COROLLARY 6.3. If X; and X, are independent and satisfy Hypotheses 1.4
with ss-exponents H, and H,, then X, ° X, is H1Hj-ss si. - :

We now present three examples, based on Corollary 6.3.

6.4. Strictly stable processes. The particular case of Corollary 6.3 with inde-
pendent increments and X, nondecreasing is well-known (cf. Fristedt, 1974, Ex.
7.2). If X, is a strictly stable process with exponent a; = 1/H; € (0, 2] and X is
a nondecreasing stable process with exponent a, € (0, 1), then X, ° X, is strictly
stable with exponent a; a,. Note that for X; ° X, to have independent increments
it is essential that X, is nondecreasing. For instance, if X; and X, are strictly
stable with exponents ay, a; € (1, 2] such that a;a, > 2, then X; ° X; cannot be
stable, whereas X; © X, is 1/a; az-ss and si by Corollary 6.3.

6.5. An H-ss si process with H > 1 and nbv. (due to Terry R. McConnell, oral
communication). Let X and B be independent, where X is an increasing stable
process with exponent a; = % = 1/H; and B is standard Brownian motion
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(so as =2 =1/H;). Then X ° B is 2-ss si by Corollary 6.3. The process X increases
by jumps only. Let 7 := inf{t: X(¢) — X(t—) = 1} be the location of its first jump
=1, and let o := inf{s: B(s) = 7} be the hitting time of 7 by B. Then ¢ is a stopping
time for B with its filtering o-fields enriched by the independent o-field of X.
Hence B(c + ) — B(o) =4 B. In particular, B assumes wpl both values greater
and less than B(s) in any right neighborhood of B(s). As X(B(0)) — X(B(s) —)
= 1, it follows that X o B makes infinitely' many jumps of size at least 1 in any
right neighborhood of s, so does not have bounded variation in any such
neighborhood. As ¢ with these properties can be found wpl, X has nbv wpl by
Corollary 2.3(d).

6.6 An H-ss si process as in 6.5, but with continuous sample paths. Let X and
B be independent, where B is standard Brownian motion and X a 4-ss si process
as in Example 5.1 with H = 4, but with x replaced by v := u¢ !, where ¢ is an
increasing differentiable function on [0, 1] with ¢(0) = 0 and bounded derivative.
Then X has continuous sample paths by the arguments at the end of Example
5.1, provided that the defining sequence in (4.5) or (4.9) converges. It does by
Theorem 4.5, since with the Cantor set C also ¢(C), the support of », satisfies
(4.15). To see this, note that if ((a,, b,))n=1 is the sequence of gaps in C, then
(#(an), o(bn))m=1 is the sequence of gaps in ¢(C), whereas ¢(b,) — ¢(a,) <
(b, — ap)sup.¢’(t). We conclude that X o B is a 2-ss si process with continuous

sample paths.
Let 7 := inf{t: (¢, x) € II, x = 1} and let ¢ := inf{s: B(s) = 7} be the hitting
time of 7 by B. As in 6.5 it follows that

By :=B(c + -) — B(s) =4 B.

At B(o) = 7 the process X starts increasing by a new contribution x*»((- — t)/x)
_(withx = 1), so

X(r + h) — X(7) = *(0, h/x] = x*u(0, ¢ "*(h/x)]
for h > 0. From u(0,3™]=2"forn=0,1, 2, - -- we obtain
w0, t] =1 A %t? with B :=log2/log 3 € (0, 1).
Consequently,
X(r + h) — X(1) = x*(1 A %(¢~'(h/x))?) for h>0.
Set

xBo(27") if Bo(27") >0 and By(s) =0 for some s € (27", 2",
bn = 0 else.

Then the total variation of X ° B right of 7 = B(o) is greater than some tail sum
of the series

(6.2) 2 9%, (X(r + &) — X(1)) = 2% Ty (2 A (674E))).

Since By =; B is Y%-ss and has a trivial tail o-field at 0 (by the Blumenthal-
Getoor 0-1-law, cf. Freedman, 1971, page 106), the sequence of processes
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((2*2By(527"))sei0,1)) =1 is stationary and ergodic, and so is the sequence (5,)%=; :=
(2"2¢,)7-1, obtained by applying one fixed functional. Choosing finally ¢(¢) :
et 50 ¢7(t) = 1/log t ™ for 0 < t < e, we find that the two sides of (6.2) are
minorized by
(6.3) x* Twy (2 A (%2n log 2 — log 1,)7%).
Since P[¢, > 0] = P[5; > 0] > 0, there is a real ¢ such that ®[log 1, > c] > 0. By
ergodicity we have for each natural n,
(6.4) Ny := (1/1) Shengs1 Liogn=a — Pllog m > c] wpl.
Take no such that 4™'n, log 2 > c. Then (6.3) is minorized by

x* Trangr1 (2 A (470 108 2) ) Lpogn, > = x* Tnirln (2 A (4770 log 2)7°),

which diverges to o wpl, as N, converges in (6.4) to a positive constant wpl. We
conclude that X ° B has wpl no bounded variation in any right neighborhood of
g, 50 has nbv wp1l by Corollary 2.3(d).
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