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DEPENDENCE BY TOTAL POSITIVITY

By MEI-LING TING LEE!

Boston University

A multivariate generalization of Shaked’s bivariate families which are
dependent by total positivity (DTP) is introduced. Some interrelationships
and inequalities are generalized. Monotonicity properties of conditional haz-
ard rate and mean residual life functions of some multivariate DTP families
are investigated. Relationships with other positive dependence concepts are
given.

0. Introduction. Shaked (1977a) introduced a family of concepts of de-
pendence by total positivity (DTP) for bivariate distribution functions which
was motivated by reliability concepts. He showed the equivalence of some of
these concepts with some other concepts of positive dependence and characterized
some of them by notions from reliability theory. At the time of his investigation,
multivariate dependence concepts and multivariate reliability concepts were not
fully understood and so the investigation was restricted to the bivariate case.

Although Shaked’s definitions have straightforward extensions to the multi-
variate case, proofs of results analogous to those of Shaked require more care. In
this paper these multivariate extensions are attempted. Up-to-date concepts of
multivariate dependence are considered and many related questions are studied.
In Section 1 we review the bivariate case. The appropriate multivariate DTP
families are introduced in Section 2. The major result is Proposition 2.4 which
shows that DTP of a fixed order implies DTP of higher orders. Multivariate
analogs of Yanagimoto’s (1972) bivariate families are introduced in Section 3
and their relationship with the DTP families is discussed using some of the
positive dependence concepts of Block, Savits and Shaked (1982). In Section 4
relations with concepts from reliability theory are discussed. Various examples
are given in Section 5.

1. Shaked’s bivariate family. Define, for s >0

—4)s—1
,Y(s)(t) — {é’ t) /F(S), ii g

For s = 1, v (x — y) is TP, in x and y (see Karlin, 1968).
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Let (X, Y) be a random vector with joint density f(x, y), and consider

Wm,n(x,y)=£f Iff --~ff(xo,yo)dxo~~'dxm-1dyo~~~dy,.-1
1 x *1

In—-1 *m—1

= f f Y™ (x = %0)¥ ™ (y = ¥0) dF (%o, 0)-

For the case m = 0, n = 0, define ¥, (x, y) = f(x, ¥). Also define ¥, ,(x, y) =
JZe Y™ (y — ) f(x) dG(yo | x), where G(y | x) is the conditional distribution
function of Y given X = x, and f is the density function of X.

DEFINITION 1.1. For m = 0, n = 0, the random vector (X, Y), or its
distribution function F, is said to be dependent by total positivity of order (m, n)
(denoted by DTP(m, n)), if ¥,,,(x, y) is TPz in x and y.

2. Dependence by total positivity of multivariate distributions. In
this section we introduce the multivariate definition of dependence by total
positivity. We give conditions under which a subset of DTP random variables is
DTP, and we also notice that the joint distribution of two independent sets of
DTP random variables is again DTP. The translation invariant property holds
as in the biviarate case. Some interrelationships and inequalities are also gener-
alized. A fundamental property is given in Proposition 2.4.

Let Xi, ---, X, be random variables with joint distribution function F. Let
v®(t) be defined as in Section 1.

For k; > 0, define the n fold integral ¥, ..., (x1, - - -, x,) by

\I,kl,-u,k,,(xl’ Tty

Xn)
= j: J: y® (=) - y®(x, — t,) dF (b, - - -, t,)

and define ¥, ... o(x1, - - -, x,) = f(x1, - - -, x,) if the joint density exists.
Also define ¥q,...04,,,....,, (%1, - - -, %,) to be the (n — i) fold integral

»[ o f ’Y(kiﬂ)(xkiﬂ - ti+1) e V(k")(xk,. - tn)gi(xl’ ) xi)
< AdF(tirr, ooy b | X1y oy 20)

where g; is the joint density of X, - - -, X;, and F(t41, -+ -, ts | x1, - - -, &;) is the
conditional distribution of X4, - - -, X, given X; = x;, - - -, X; = x;, for kiyy > 0,
-++, ky > 0. Similarly, we can define ¥, ..., (%1, ---, x,) with any subset of
{k1, - -+, k,} consisting of zeros.

DEFINITION 2.1. Xj, ---, X, is said to be dependent by total positivity with
degree (ky, - -, k,), denoted by DTP(k,, -- -, k,), if Wik, (X1, - -, %5) is TPy
in pairs of x;, - - -, X,.
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For example, if (X1, X;, X3) is DTP(1, 1, 1), then [, [% [% dF(ty, to, t3) is
TP, in pairs of x;, x; and x3.
We have the following properties for multivariate DTP families.

PROPOSITION 2.2. Assume X = (Xl,. -+, X,) is DTP(ky, ---, k,) with
ki=0or 1 for some 1l <i < n, then X® = (X, ---, Xi_1, Xis1, -+, X,) is
DTP(ky, -, ki_1, Biz1, - - -, ko).

PROOF. Assume first that i = 1, ., = 0, and k; > 0 for j = 2, - - -, n. Then by
the definition of DTP(0, ks, - - -, k,) we have

‘Ifo,kz,...,k"(x)

= I o I 7(k2)(x2 - tZ) e V(k")(xn - tn)gi(xl) dF(tZ’ ceey ta | xl)

is TP, in pairs of x;, x2, ---, x,. Hence by Theorem 5.1, page 123 of Karlin
(1968), .

0

\I/kz,.‘.,kn(xz, cee, Xp) = I ‘I’O,kz,---,kn(xl, Xoy 00y xn) dx,
is TP, in pairs of x,, - - -, x,,, i.e. (X3, --+, X,,) is DTP(k,, - - -, k,). Now assume
ki=1,and k; >0 forj = 2, - - -, n, then by the definition of DTP(1, ks, - - -, k)

\Ill,kz,~ <ok (X)

=f_ f f Yy = tg) - y*(n — 1) dF(ty, -+, t)

is TP, in pairs of x;, x5, - - -, x,. Thus let x; tend to —ox,

Wiy (X2, <oy %) = limy e Wrp, . .op (X1, -, X5)
is TP in pairs of x, - - -, x,, i.e. (Xs, ---, X,,) is DTP(k,, -- -, k,). The proof is
similar if i = 2, 3, . - -, n, or if there are more than one i such that k; = 0 or 1.

PROPOSITION 2.3. Let (Xi, - - -, X) be independent of (Y4, ---, Y,). Assume
(Xl’ ) Xm) PS DTP(kl, ] km), and (Yl, ) Yn) is DTP(/I, ) /n)~ Th’en
(le “"Xm’ Yl’ Tty Yn) "SDTP(kl, ""km’/ly ”',/n)-

Proor. This follows from the fact that
\I/kl’...,km’/l'...’/n(xl, sty Xmy yl, ) yn)

= ‘I’kl,...,k,,,(xl, tey xm)‘I'/I,...,/,,(yl, ey Yoo

Bivariate DTP families of distributions were shown to be closed under linear
transformations. A similar result holds for multivariate DTP families; that
is if (Xy, ---, X)) is DTP(k,, ---, k,), then (a;.X; + by, ---, a, X, + B,) is
DTP(ky, - -, k), for any a; >0, ---, a,>0, and any b,, - - -, b, real.
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By using Theorem 5.1 of Karlin (1968), we have the following generalization
of Proposition 4.1 of Shaked (1977a).

PROPOSITION 2.4. Assume (Xi, -+, X,) is DTP(ky, ---, k), ki=0fori=1,
-+, n. Then (Xy, ---, X,) is DTP(sy, - - -, s,) for any S,E { U ,+1,00),i= 1,
.., n.

ProoOF. Foru>0,v>0,

y @) () = f Y@ (t) Yy (x — t) dt for all x,

hence

\I/sl,~~~,s,,(x1, MY xn)

o o
= f ce f ‘I’kl,m,k,,(wl, T wn)‘Y(sl_kl)(xl - w,)
—00 —o0

e ‘Y(s"_k")(xn - wn) dw‘l e dwn

=f ( f (f Whyyoo W1, =5 W)y 7 (11 — 1) dwl) )

‘7(3"_k")(xn - wn) dwn-

By assumption, ¥, ..., (w1, - - -, wy) is TP, in pairs of Wi, -y Wh. Now using
the fact that v =% (x; — wl) is TP, in w; and w; for any j = 2, - - -, n, we have
by Theorem 5.1, page 123 of Karlin, that the integral

0o
f Wi, (W1, -y W)y (1 — wy) duwy

denoted by ¢, (x;, wy, - - -, w,), is TP, in pairs of ws, - - -, w,.
On the other hand, the composition formula implies that ¢, (x;, ws, - - -, wy)
is TP, in x, and w; for any j = 2, ..., n, with w, fixed for any k # j, k = 2,
-+, n. Hence ¢1(x1, we, - - -, wy) is TP, in pairs of x2, wy, - - -, w,.
Similarly, [Z. ¢1(x1, wa, - -+, Wa)y“* ™ (x; — ws) dw,, denoted by ¢a(x1, *2,
ws, -, Wy), is TP, in pairs of x;, xs, ws, - - -, w,. Iterating the same procedure
gives ¥, ..., (x1, - - -, %n) is TP, in pairs of x;, xa, - - -, X,.

COROLLARY 2.5. If (Xy, ---, X,) have density f ixl, . ++, X,) which is TP, in
pairs of xy, - - -, %, then the joint survival function F(x,, - - -, x,) is TP, in pairs
of X1, -+, Xn.

Proor. DTP(O, ---, 0) implies DTP(1, ---, 1), and DTP(1, --., 1) means
that ¥,,.. ;(x1, - -+, x,) = F(x,, - - -, x,) is TP, in pairs of xy, - - -, x;..

ProPOSITION 2.6. If (X, ---, X,) is DTP(ky, - - -, k), then L 2SN € AR
%n) is TPy in pairs of s1, - -+, Sp, With s; = ki, i =1, .-+, n, for all x,, - - -, %n.
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PrOOF. Fors;>k;, ¥, ..., (%1, - - -, x,) can be written as

J: (J: p1(s1, e, -+, wa) ¥ (0 — wy) dwz) e YR (o, — wy) dwn,

where
p1(s1, We, + -+, Wy) = f Wpoooy W1, -y W)y @78 (2 — wy) dw,.
—00

If we prove that p;i(s;, ws, -, w,) is TP, in pairs of s;, ws, - -+, wy,, then the
result follows by iteration. Now

7(31—191) (xl — wl) = P(S] — kl)_l(wl - X )sl_kl_l is TP, in s; and ws,

hence by the basic composition formula, p, (s, we, -- -, w,) is TP, in s;, w; for
j=2, -+, n. And since Yy (x; — w,) is also TP2 in w; and w;, we have
¢1(s1, we, -+ -, wy,) is TP, in pairs of ws, - - -, w, again by Theorem 5.1, page 123
of Karlin. Thus p;(s;, we, - - -, w,) is TP, in pairs of sy, Wy, + -, W,.

PROPOSITION 2.7. If (X4, - -+, X,) is DTP(ky, -+, ka) fork, >0,/ =1, - -,
n, then ¥, ..., (%1, - - -, %,) is TPy in pairs of s;, (%1, - - -, Xi-1, Xi+1, -+ *, Xn) Where
;= ki, s, € (kU [Rse1, ®), 7/ # 1, and forany x;,i=1,---, n

The proof is similar to the one in the above proposition.

Shaked showed that if (X, Y) is DTP(m, n) with m, n = 0, 1, 2, then
cov(X, Y) = 0, provided it is defined. In the multivariate case we have the result
that if (X, -+, X,) is DTP(k;, ---, k,) with k;=0or 1fori=1, ... n, then
cov(X;, X;)=0forany i#j,i,j=1, ---, n, provided it is defined.

We give an example such that (X, Y) is DTP(0, 0), (Y, Z) is DTP(0, 0), and
(X, Z) is DTP(0, 0), but (X, Y, Z) is not DTP(0, 0, 0).

EXAMPLE 2.8. Let
PX=0,Y=1,Z=0=%, PX=1,Y=0,Z=0) =14,
PX=0,Y=0,Z=1)=%, PX=1,Y=1,Z=1)="%
Then it is easy to check that X and Y are TP;, Y and Z are TP,, Z and X are
TP,. But X, Y, Z are not TP, in pairs.

3. Relations with other notions of positive dependence. Yanagimoto
(1972) defined families of positively dependent bivariate distributions 2(i, j), by
considering four two-dimensional intervals.

We consider a multivariate analogue of Yanagimoto’s families of dependent
d.f’s. First recall that Block, Savits and Shaked (1982) define a measure to be
TP, inpairsifforalll <i#j<n

(30) ”’(Il, Tty Ii’ Y Ij’ Y In)ﬂ(Il’ ] Ii,, Sty Ijl, 0y In)
. = /-"(Il’ ) Iil’ ] Ij’ Sty In)l-"(Il’ "”Ii’ tt Ijl’ 0y In)
for all intervals I, ---, I, I/, I} where I; < I/, I; < I{. The notation I < I’
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means x < y for any x € I, y € I’. Restricting the form of I;, I/, I and I/ we
obtain the following definitions. Among these, the first one is in fact equivalent
to the Block, Savits and Shaked definition.

DEFINITION 3.1. Let X = (Xj, - -+, X.) be a probability measure u.

(1) X is said to be #(3, 3, ---, 3) if (3.0) holds for all intervals with the
restriction that for the components with the primes the intervals are of the form
I=(a,b)and I’ = (b, c) wherea<b<ec.

(2) X is said to be 28, ---, 3,27, 8, ---, 3) with 2’ in the ith coordinate, if
(3.0) holds for all intervals with the restriction that for the components with the
primes, the intervals are of the form I; = (a, b), I/ = (b, ©) where a < b and for
J#i,I;=(c,d)and I/ = (d, e) wherec <d <e.

(3) X is said to be #(2’, 2’, - -+, 2") if (3.0) holds for all intervals with the
restriction that for the components with the primes the intervals are of the form
Ii = (a,~, b,'), I,', = (b,', °°) where o< b,' and Ij = (aj, bj), Ij’ = (bj, °°) where a; < bj.

REMARK. If u is TP, in pairs according to Block et al. (1982), it implies that
X is #(8, - - -, 3). Conversely, if X is #(3, - - -, 3), then u is TP, in the sense of
Block et al. See Lee (1982) for a proof.

PROPOSITION 3.2.

(a) Let X be a random vector with a density f with respect to a product measure
m=m; X --- X m, of o-finite measures such that f is continuous on the support
of m (denoted by S) and zero off S, then X is 2(3, ---, 3) implies that X is
DTP(0, - - -, 0). If we assume that {f >0} NS = S is a product space, and f is TP,
in pairs on S, the the converse holds, i.e. X is DTP(O, - - -, 0) implies that X is
P8, -+, 3).

(b) Let (Xy, ---, X,) be absolutely continuous. If X is 2@, ---, 3, 2/, 3,
..., 8) then X is DTP(O, ---,0,1,0, ---,0).

() IfXis<(2',2",---,2") then X is DTP(1,1, ---, 1).

See Lee (1982) for the proof.

Now we investigate the relationships with other multivariate positive depend-
ence concepts discussed, e.g., in Barlow and Proschan (1975), and Block and
Ting (1981).

In the bivariate case, the random vector (X, Y) is DTP(1, 1) if and only if
(X, Y) is RCSI (see Harris, 1970). However, the multivariate generalization of
the “only if” part does not hold without a condition on the support of the joint
survival function as we will see in the following proposition.

For random vectors U = (U;, ---, U,) and V = (V,, ---, V,), we use the
following notations. Let K C {1, 2, - - -, n} be any subset and K = {1, 2, - - -, n}
— K be the complement. Denote Uk to be the vector obtained from the set
{U;, i € K} by placing subscripts in ascending order. And denote Vi to be the
vector obtained from {V;, i € K} by placing subscripts in ascending order.

ProposiTioN 3.3 If (X;, ---, X,) is RCSI, then (X, ---, X,) is
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DTPQ, ---, 1). Conversely, if (X, ---, X,) is DTP(1, ---, 1) and such that
F(x,, - - -, x,) takes positive values on a product space, then (X, - - -, X,,) is RCSL.

ProOOF. Theorem 3.2 of Brindley and Thompson (1972) shows that X =
(X, ---, X,,) is RCSI if and only if for every KC {1, 2, - - -, n}
P{Xx > xx + Ax | Xk > xk, Xg > xg} is increasing
in xz for all xx and all Ax > 0. It is not hard to show that this is equivalent to
_Fx) _FxVy)
FxAy)~ F(y)

Then the result follows from Theorem 1 of Block and Ting (1981).
Relationships with CIS and RTIS will be stated in the next section.

for any x,vy.

4. Relations with reliability theory. Shaked showed that in the bi-
variate case some of the DTP distribution functions can be characterized through
monotonicity properties of conditional hazard rate or mean residual life functions.
In the multivariate case, we have similar but necessarily weaker results. Let X
be an absolutely continuous random vector with distribution F and density f. Let
Sx = {x: f(x) > 0}. Denote X® = (Xi, ---, Xi1, Xis1, -+, Xu), Sx(i) =
{x: g(x?) > 0, where g is the joint density of X?}. Let A be a Borel set in Sx (i),
consider the conditional hazard rate defined by

fx:| X €A)
Fx; | X9 € A)’
and the mean residual life function defined by
. T F(t] X9 € A)
. @ = _— 1= =-7
miz | X7 € 4) f Flx; | X9 € 4)

If X is also nonnegative, denote the conditional hazard function of X; given
X9 € A by

rix | X9 € A) =

dt = E(X; — x; I X > x;, X9 e A).

R(x | XY € A) = f ru| X9 € A) du = —log P(X; > x; | X? € A).
0

PRoOPOSITION 4.1. Let X be a random vector as above.
(1) IfXis DTP(0,0, ---,0,1) then r(x, | X = x”) is decreasing in x™” €
Sx(n), for any x,.
(2) If X is DTP(0, 0, ---, 0, 2), then m(x, | X™ = x™) is increasing in
x™ € Sx(n), for any x,.
(3) IfXis DTP(0,0, ---,0,m), for m> 1, then
El(Xn = %)™ | X > %n, X = x]
El(X, — %)™ % | X5 > %0, X™ = x™]

is increasing in x™ € Sx(n), for any x,.
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(4) X is DTP(, ---, 1) if and only if r(x; | X9 > x¥) is decreasing in x,
foranyx,j=1,2,.---,n

Proor. By Theorem 1.5, page 158 of Karlin, ¥y(x,, - - -, x,,) is TP; in pairs
of x;, ---, x, is equivalent to the condition that for any i # j, 1 < i, j < n,
(8/3x;)log Vi (x1, - - -, x,) is increasing in x;. Now

f(xl, M) xn)

i)
—_ log ‘I,O,---,O,l(xl, sy xn) = = r(xn I X(n) = X(n))’

ax,
f(xl’ sty Xn—1, t) dt
and
-2 log ¥ (x Xn)
o, g Yo,...,o,m X1, » Xn
t— x,)"2
f ( )2)' f(xh ccy Xn—1, t) dt
t— x,)™"
(_(m——)l)'—f(xl’ cey Xn—1, t) dt

_ (m = VE[(X, — 2,)"? | X > %, X™ = x]
- E[(X, - xn)m_l | X, > x,, X® = x(n)] ’

thus assertions (1), (2) and (3) follow. As for assertion (4), since
—(8/dx;)log ¥y,... 1 (%1, -+, Xn)

f f f f f(tl’ ° 1—1’ Xjs t}+l, Tty tn)"ri#j dtj

Xj+1 Y Xj-1

f f f(tl, "',tn) dt,, <o, dt,
Xp x

= r(xj | X(j) > x(j))

for any j = 1, - - -, n; hence, the equivalence relation holds.

Denote 7;(x) = r(x; | X9 > x%), then (r,(x), - - -, r,(x)) is the gradient of the
hazard function R(x) = —log F(x,, - - -, x,) as was pointed out by Johnson-Kotz
(1975). Johnson-Kotz define that a random vector X has an increasing hazard
rate (IHR) distribution if forj =1, - - -, n, r;(x) = —(8/dx;)log F(x) is increasing
in x;. Harris (1970) defines X to be IHR if

F(x,+ 8, ---, %, + 6)

(a) Fx %) is decreasing in x,, ---, x, forany é>0,
1y ° %y An

and (b) X is RCSL

PROPOSITION 4.2. Let X be a random vector with differentiable density func-
tion. If X is IHR (Harris) then X is IHR (Johnson-Kotz).
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ProoF. The condition (a) of Harris implies that

] 4 = . .
— + ... + —)log F(x) is decreasing in x,, -- -, Xy,
6x1 axn

hence foranyj=1, --- n,

9 3’ 9° _
(6x,-ax1 + 9x;0x; + + axjaxn)bg (x)=0 forall x

Condition (b), RCSI, implies DTP(1, -- -, 1), thus by (4) in Proposition 4.1, we
have
(0%/0x;0x;)log F(x) = 0 for all x,i# .

Therefore (9%/dx?)log F(x) < 0, or r;(x) is increasing in x; for all j and all x.
Note: (1) Marshall’s (1975) definition of IHR requires that r;(x) is increasing
in x, which implies that (32/dx;0x;)log F(x) < 0, hence F(x) is SR, in pairs but

not TP, in pairs. Here a function K(x, y) is said to be SR, if for'all x; < xs,
y1 < ¥, there exist an ¢ either +1 or —1 such that

K(x1, y1) K(x1, ¥2)
¢ K(x2, y1) K(x2, y2) z0.

(2) A similar comment applies to the IHR definition of Block (1977).
By using Proposition 4.1, we have the following results.
PROPOSITION 4.3. Let X be a nonnegative random vector.

(1) IfXis DTP(O, ---, 0, 1) then X is CIS (see Esary and Proschan, 1968).
(2) IfXis DTPQ, ---,1,1) then X is RTIS (see Block and Ting, 1981).

ProOF. By Proposition 2.2, if (X, ---, X,) is DTP(O, ---, 0, 1) then (X,
..., X;) is DTP(0, ---, 0) for any 2 < i = n — 1. But DTP(0, ---, 0) implies
DTP(O, ---, 0, 1) hence by Proposition 4.1 r(x; | X1 = x1, - -+, Xi1 = %) is
decreasing in x;, - - -, x;—; for any x; and for 2 < i < n — 1. Now assertion (1)
follows from the fact that

R (x; | X1 =%, -+, Xic1 = %im1)
= f r(u | Xy =21, -+, Xic1 = %i-1) du
0

=-log P(X;i>x; | Xs = %1, -+, Xi1 = Xi-1).

Assertion (2) follows similarly. Since (X, - - -, X,,) is DTP(3, . - -, 1), this implies
that (X3, .-+, X;) is DTP(1, ---, 1) for any 2 < i < n — 1 by Proposition 2.2.

5. Examples. In this section we give examples of the DTP families.

ExXAMPLE 5.1. Let Ty, T, ---, T, be independently distributed with a
common p.d.f. f, such that P(T; < 0) = 0. Then the joint probability density of
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Xi=%iaTiuj=1,---,nis Px(x1, -+, %,) = [1 71 f(x; — xj—1), where 0 < x, <
<. < x,, with xp = 0. If f is a Polya frequency function of order 2, then
Xy, -+, X, is DTP(O, - - -, 0).

EXAMPLE 5.2 As in the bivariate case, the DTP family can be constructed in
the following way. Let W be a r.v. with continuous or discrete d.f. G(w) and let
Fi(x:; | w) be the conditional d.f.’s of X; given W= w for i = 1, ..., n. Assume
Xi, -+, X, are conditionally independent given W = w, then the joint d.f. of
X, -, X, 18

H(xy, -+, %) = f [ Fi(x; | w) dG(w).

Now, if (X;, W) is DTP(k;, 0) for i = 1, ..., n, then (X3, ---, X,) is
DTP(k, - - -, k,). To prove this, assume W is absolutely continuous with density
k(w), then for k;>0,i=1, ..., n

\Irk(x)=f_ f M2 v ™ = &) dH(t, - 1)

= [ ( =1 J: v* (x; = t:)k(w) dF;(t; | w))(k(w))—(n—l) dw

where the inner integral [Z. v ®) (%, — t;) d(w) dF;(t; | w) is TP; in x;, w for
i1=1, ..., n, hence ¥y(x) is TP, in pairs of x;, - - -, x, by the basic composition
formula.

EXAMPLE 5.3. Let (X;, ---, Xi) be RCSI, and let T; = minjesX;,
i=1,---,n,whereJ; C {1, .--, k}. Then (T4, .-, T,) is DTP(1, ---, 1). This
follows from the fact that sets of minimums of RCSI r.v.’s are RCSI (see Harris,
1970) and the relation that RCSI r.v.’s are DTP(1, ---, 1).

Esary and Marshall (1979) give several conditions of multivariate IFRA.
Among them, the random vector (T4, - --, T,) satisfies Condition D if for some
independent IHRA r.v.’s X, ---, X, and nonempty subsets S; C {1, ---, k},
T;=minjes,X;,i =1, -- -, n. Hence it is clear that if T satisfies the Condition D
of MIFRA by Esary and Marshall, then T is DTP(1, ---, 1).

Note: By the way of Example 5.2 we can construct many DTP random
vectors which are also mixtures of independent n-variates d.f.’s with equal
marginals (called positive dependent by mixture (PDM) by Shaked, 1977b).
However, a r.v. X is DTP(k, - --, k) for some k& = 0 does not imply that X is
PDM. See Shaked (1979, page 72) for a counterexample.

Acknowledgement. Iam very grateful to my dissertation adviser, Professor
Henry W. Block, for his guidance. Also I thank an associate editor and the
referees for their helpful comments.



582 M.-L. T. LEE

REFERENCES

AHMED, A. N., LANGBERG, N. A., LEON, R. and PROSCHAN, F. (1978). Two concepts of positive
dependence with applications in multivariate analysis. Technical Report M486, Depa}t-
ment of Statistics, Florida State University.

BARLOW, R. E. and PROSCHAN, F. (1975). Statistical Theory of Reliability and Life Testing. Holt,
New York.

BLOCK, H. W. (1977). Monotone failure rates for multivariate distributions. Naval Research Logistics
Quarterly 24 627-637.

BLoCK, H. W. and TING, M. (1981). Some concepts of multivariate dependence. Comm. Statist. A
10(8) 749-762.

BLock, H. W, Savits, T. H. and SHAKED, M. (1982). Some concepts of negative dependence. Ann.
Probab. 10 765-772.

BRINDLEY, E. C., JR. and THOMPSON, W. A. (1972). Dependence and aging aspects of multivariate
survival. J. Amer. Statist. Assoc. 67 822-830.

ESARY, J. D. and MARSHALL, A. W. (1979). Multivariate distributions with increasing hazard rate
average. Ann. Probab. 7 359-370.

ESARY, J. D. and PROSCHAN, F. (1968). Generating associated random variables. Boeing Scientific
Research Laboratories Document D1-82-0696. Seattle, Washington.

HARRIS, R. (1970). A multivariate definition for increasing hazard rate distributions. Ann. Math.
Statist. 41 1456-1465. .

JoHNSON, N. and KoTz, S. (1975). A vector multivariate hazard rate. J. Multivariate Anal. 5 53-66.

KARLIN, S. (1968). Total Positivity, Vol. I. Stanford University Press, Stanford, California.

LEE, M.-L. T. (1982). Dependence by total positivity. Technical Report No. 82-17, University of
Pittsburgh.

MARSHALL, A. W. (1975). Some comments on the hazard gradient. Stochastic Process. Appl. 3 293—
300.

SHAKED, M. (1977a). A family of concepts of positive dependence for bivariate distributions. J. Amer.
Statist. Assoc. 72 642-650.

SHAKED, M. (1977b). A concept of positive dependence for exchangeable random variables. Ann.
Statist. 5 505-515.

SHAKED, M. (1979). Some concepts of positive dependence for exchangeable bivariate distributions.
Ann. Inst. Statist. Math. 31 67-84.

YANAGIMOTO, T. (1972). Families of positively dependent random variables. Ann. Inst. Statist. Math.
24 559-573.

DEPARTMENT OF MATHEMATICS
111 CUMMINGTON STREET
BOSTON UNIVERSITY

BoSTON, MASSACHUSETTS 02215



