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Let {X,,X,,...} be a stationary process with probability densities.
f(X,, X,,..., X,) with respect to Lebesgue measure or with respect to a
Markov measure with a stationary transition measure. It is shown that the
sequence of relative entropy densities (1/n)logf(X,, X,,..., X,) converges
almost surely. This long-conjectured result extends the L' convergence ob-
tained by Moy, Perez, and Kieffer and generalizes the Shannon—-McMillan—
Breiman theorem to nondiscrete processes. The heart of the proof is a new
martingale inequality which shows that logarithms of densities are L!
dominated.

1. Introduction. Let (2, #, P) be a probability space and let {X,, X,,...}
be a stochastic process with each X, taking values in a standard Borel space.
Suppose that the joint distribution P, for (X, X,,..., X,) has a probability
density function f(X,, X,,..., X,,) with respect to a sigma-finite measure M,,.
Assume that the sequence of dominating measures M,, is Markov of order m > 0
with a stationary transition measure. Familiar cases for M, are Lebesgue mea-
sure, counting measure, or a Markov probability measure serving as an alterna-
tive in a hypothesis test. Let f(X,,,|X},..., X,,) denote the conditional density
given by the ratio [f(X;,..., X, )]/[f(X,,..., X,)] for n = 1, and by f(X,) for
n = 0. Let E denote expectation with respect to P and let log be the natural
logarithm. If {X,} is stationary, then the relative entropy D, =
Elogf(X,,,|X,,...,X,) is nondecreasing for n > m. (Indeed, if D, > — oo, the
difference D, , — D, is a mutual information which is nonnegative by the
concavity of the log.) The limit D = lim D, is called the relative entropy rate. We
are interested in the asymptotic behavior of the density f(X,, X,,..., X,). In
particular, what is the exponential rate of growth? Our main result is the

following.

THEOREM 1. If {X,} is a P-stationary ergodic process with densities
f(X,, X,,...,X,)=dP,/dM,, and if D, > — oo for some n > m, the sequence of
relative entropy densities (1/n)logf(X,, X,,..., X,)) converges almost surely to
the relative entropy rate i.e.,

1
lim—logf( X,, X,,..., X,) =D P-as.
n
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STRONG LAW FOR DENSITIES 1293

The condition D, > — oo is automatically satisfied if M, is a finite measure
(since flogf > —e™'). Indeed, if M, is a probability measure then D, is nonnega-
tive.

Theorem 1 extends the L' convergence obtained by Moy (1961), Perez (1964),
and Kieffer (1974). Moreover, it generalizes the Shannon-McMillan-Breiman
theorem which asserts almost sure and L' convergence for discrete processes with
counting measure for M, [see Shannon (1948), McMillan (1953), Breiman (1957,
1960), Carleson (1958), Chung (1961, 1962), and Parthasarathy (1964)]. For L”
convergence with p > 1, see Ionescu Tulcea (1960).

The proof of Theorem 1 is given in Section 3 and uses Breiman’s (1957)
generalized ergodic theorem. The key to the proof is a new inequality for
logarithms of supermartingales, derived in Section 2. In Sections 4 and 5 we
extend our result to nonergodic and asymptotically mean stationary processes.
Analogous convergence results for mutual information densities are obtained in
Section 6.

Kieffer (1973, 1976) has provided counterexamples showing that without the
Markov property for the dominating measures M, the sequence of relative
entropy densities need not converge.

The following remarks indicate some applications of results such as Theorem
1. Let {X,)} be a stationary ergodic process with P, and M, as in Theorem 1 and
suppose the relative entropy rate D is finite. From convergence in probability of
(1/n)logf( X, X,,..., X,) to D, it follows that the least asymptotic M, measure
of P-probable sets A,, is given by M,(A,) = e "? [specifically, lim P(A,) = 1
implies lim inf(1/n)log M, (A,) > —D] and this rate is attained when A, is the
set of typical sequences with density near e"?. (A sequence (X,, X,,..., X,) is
said to be typical if the density f(X,, X,,..., X,) is between ¢~ and e*P ")
where ¢ may tend slowly to zero as n — o00.) For a hypothesis test between
distributions P, and M,, this property is a generalized Stein’s lemma for the best
exponent in the probability of error [see Chernoff (1956), p. 17 for the stationary
independent case]. In the information theory context, McMillan (1953) called this
property the AEP (asymptotic equipartition property). For processes with densi-
ties with respect to Lebesgue measure, the AEP states that the distribution P, is
asymptotically uniform on the set A, of typical sequences and that this set has
the least asymptotic volume e~ P among sets of high probability. Theorem 1
ensures that random sequences (X, X,,..., X,,) are indeed typical, for all large
n, with probability one (not only in probability).

Our convergence result has potential applications to the theory of statistical
inference. Let {M% 6 € ©) be a parametric family of Markov probability mea-
sures with stationary transition probabilities, and let 7,(8) = dM/ /du, be the
likelihood functions with respect to sigma-finite measures p,. Assume that the
true but unknown distribution P with densities p, = dP,/dp,, is stationary and
ergodic but not necessarily Markov. Events that order the likelihoods /,(8) (for
instance {l,(6,) > 1,(8,)}) are the same as events that order the unknown
relative entropy densities (1/n)log p,/!,(8). These relative entropy densities
converge P-a.s. to the corresponding relative entropy rate D, In particular, if the
parameter space @ is a finite set, then with probability one, for all large n,
the estimate @,,;, which maximizes the likelihood is equal to that 6 for which the
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realtive entropy rate DY is minimum. Similar arguments have been used in the
stationary independent case (where convergence of the relative entropy densities
reduces to the ordinary law of large numbers) to yield the classic proofs of the
following results: the consistency of maximum likelihood parameter estimates
[see Wald (1949)], the consistency of Bayes estimates [see Schwartz (1965)], and
the exact slope of the likelihood ratio statistic [see Bahadur (1971)].

2. Logarithms of densities are L' dominated. In this section we establish
a supermartingale inequality and apply it to sequences of densities.

Let {Z,} be a sequence of nonnegative real-valued random variables adapted
to an increasing sequence of sigma fields. Let log' and log denote the positive
and negative parts of the natural logarithm.

LemmMma 1. If {Z,} is a nonnegative supermartingale, then

(2.1) Esuplog ' Z, < (1 +e)+esupElog Z,.

n —
n n

PROOF. An inequality due to Doob (1953, p. 317) asserts that if {Y,} is a
nonnegative submartingale, then for any r > 1

ro\’
(2.2) EsupY, < (—Al) supEY,.
r—1,

n n

Fix r > 1 and define Y, = ¢(Z,)) = max{1,(log Z,)"""}. The function ¢ is nonin-
creasing and convex, so {Y,} is a nonnegative submartingale. From Doob’s
inequality we obtain

N

-
(2.3) Esuplog 7 <1 +»(—~ ‘1) (1 + sup K log Z">.
n / i

7
WA

Ik

Taking the limit as » — oo completes the proof of Lemma 1. O

The next lemma shows that legarithims of densities are L' dominated. Let @
and R be probability measures on a measurable space and let @, and R, be the
restrictions to an increasing sequence of sigma fields .# . Expectations are taken
with respect to @.

LEMMA 2. If the densities p, = dQ,/dR, exist, then p, = limp, exists
Q-a.s., Klogp, increases to Elogp,,, Esup,log p, <1, and

(2.4) Esupllogp,| < eElogp,, +(e + 3).

n
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PrOOF. The density sequence {p,} is an R martingale. Thus by concavity
{I;,, -0y} 1s an R supermartingale, or equivalently, {1/p,} is a @ super-
martmgale with expectations E(1/p,) = Ep I, ., bounded by one. Hence p,
converges @-a.s. to a (possibly 1nﬁn1te) limit p,. By Lemma 1 we have

(2.5) Esuplog™1/p, < esupElog 1/p, +(e + 1).

On the other hand,
(2.6) Esuplog*1/p, <1

Inequality (2.6) is due to Ionescu Tulcea (1960) and the proof is as follows. The
expected supremum equals [°Q(A,) dt where A, is the event {sup,(log1/p,) > t}.
Write A, as the disjoint union of events A, , = {log1/p, > t,max, _,log1/p, <
t}. Then Q(A, ,) = [4, p,dR. But within A, »» the density satisfies p, < e/, so
that Q(A, ,) < e ‘R(A, »)- Summing over n yields Q(A,) < e ’. Integrating
yields (2.6)

The relative entropy satisfies Eglogp, = Egp,logp, (if we define 0log0 = 0).
From p,logp, > —e ' we obtain Elog*p, < Elogp, + e . Therefore inequali-
ties (2.5) and (2.6) yield

(2.7) Esupllogp,| < esupE logp, + (e + 3).
n n

Now by concavity {logp,} is a @ submartingale and hence has nondecreasing

expectation Elogp,. If Elogp, is bounded, (2.7) shows that logp, is L'

dominated, so by the dominated convergence theorem

(2.8) limE logp, = supE logp, = E logp,,.

n n
From (2.6) E sup,log p, < 1, so even if sup,E logp, = 0, (2.8) holds by Fatou’s
lemma. This completes the proof of Lemnma 2. 0

Note that if the relative entropy sequence E logp, is bounded above, then the
densities p, are uniformly R-integrable (because E,p, L, .., <
(Egxp,log* Pn )/log T < (Eglogp, + e™')/log r which tends to zero umformly inn
as 7 — o0), in which case @ is absolutely continuous with respect to R on the
limit sigma-field %_ with density given by p_.. (Because if A is any set in %, for
for any n, then Q(A) =1lim@Q@,(A) = lim [,p,dR = [,limp,dR = proo dR but
the sequence %, generates %, so Q(A) = [,p,. dR for any event A in F..)

Now we recall some basic properties of conditional distributions and mutual
information densities of random variable.

Let (2, %, P) be a probability space. We assume throughout that the random
variables U,V, W, W,, etc. take values in standard Borel spaces. A measurable

' space is standard if it is (sigma isomorphic to) a Borel subspace of a complete

separable metric space [see Parthasarathy (1967)]. The standard space assump-
tion guarantees that conditional probability distributions Py exist. Specifically,
P,y 1s a probability measure for almost every V, it is a measurable function of V
for each U-measurable event, and it integrates to give the unconditional probabil-
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ity Pyy(A) = [Py (Ay)dPy for each event A in the product sigma field where
Ay = {U: (U, V) € A} is the section of A at V.

Let U, V, and W be random variables. The conditional mutual information
density is defined as i(U; W|V) = logp(U; W|V) where p is the conditional
density of Py, with respect to Py, X Py, if this density exists, otherwise set
i = o. The conditional density p(U; W|V) is almost surely the same as the
unconditional density of Py with respect to Py, Pyy, [see Pinsker (1964),
Section 3.1]. Therefore, an equivalent exprssion for the information density is

dPyyw
d(Puvaw)

Here Py, Pyy is the set functioi (on the product sigma field) defined by
(PyyPyw)(A) = [Pyy(Ayw)dPyy, where Ay is the section of A at VW.
(Note that Py, Pyy has transition probability P, instead of Py from VW
to U.) Because Py, is a probability measure for almost every V, it follows that
Py yPyy is also a probability measure [as noted in Feinstein’s translation of
Pinsker (1964), p. 55].

The conditional mutual information is defined by I(U; W|V) = Ei(U; W|V). If
V is degenerate, this reduces to ordinary mutual information I(U; W)=
Ei(U; W) = ElogdP,y/d(Py X Py). Well known properties of conditional
mutual information include positivity I(U; W|V) > 0 (with equality if and only if
U and ‘W are conditionally independent giver Vj and the chain rule
I(U; W, W, |V)) = I(U; W, |V) + I(U; Wy|W,, V). The chain rule also holds point-
wise for the information densities.

For convenience, we use W, , toc denote segments of a sequence of random
variables {W,}. Specifically let W, = (W,,W, ,,...,W,) for k < n. Similarly
define W, = (W,, W, ,,...) and W =(...,W,_,W)). For k > n, regard
W, , as degenerate.

The following lemma shows that sequences of information densities are L'
dominated.

(2.9) i(U; VIW) = log

~oc, n

LEMMA 3. Let UV, V', W,,... be random variables. The sequence of condi-
tional mutual informazion densities (U; W, ,|V) converges almost surely, '
KU; W, V) increases io I(U; W, |V), Esup, («(U; W, ,|V)) <1, and

(2.10) Esup|i(U; W, |V)| < el(U; W, |V) +(e + 3).

1,n

Proor. This result follows from Lemma 2 with @ = Py, , R =
Py Pyw, , and %, the sigma field generated by U,V,W, . O '

3. Proof of Theorem 1. Given the one-sided stationary process { X, X,, ...}
with distributions P, for X, ,, we extend it to a two-sided stationary process
{...,X_,, Xy, X,...} in the usual way. In particular, we let (2, £, P) be the
probability space consisting of two-sided infinite sequences with the product
sigma field and let P be given by the extension of the distributions Py ;= P,
with ¢ <. Let the transformation T: @ —  be the left shift.

—i+1
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By stationarity the conditional density f( X, ,[X, ,) (regarded as a function of
the infinite sequence ) equals the composition of f( X, |X_,, _y) with n+1
shifts. Therefore, the relative entropy density has the expansion

n—1

1 .
(3.1) —logf(X1 W)= Z log f( XX _;, 1) T/" .

The almost sure (and L') convergence of (3.1) follows by Breiman’s (1957)
generalized ergodic theorem whenever the sequence log f(X,[X _, ) is a.s. con-
vergent and L' dominated.

Let m > 0 be the Markov order of M,. By assumption there is a 2 > m such
that D, > —oo. By stationarity D, = Elogf(X, ,[X, ,) = Elogf(X,X_, ).
From the Markov property for M, and the chain rule for densities we have for
n>k

(3.2) lng(X()len,—l) = Ing(X0|X7k,~1) + i(X(); an,—k—-llele,—l)‘

Hence by Lemma 3 the sequence f(X,[X , ) converges a.s. [let f(X,[X 0. 1)
denote the limit] and the relative entropy D, increases to the relative entropy
rate given by

(3.3) D= D, + I(Xo; X—oo,~k—llx—k,71) = EIng(Xolx—w,—l)-

If this relative entropy rate is finite, then by (3.2) and Lemma 3 the sequence
log f(X,[X _, _,)is L' dominated and hence by Breiman’s theorem

1 .
(3.4) lim —logf(¥X, ,) =D P-as.
n n ’

To handle the infinite entropy rate case, a lim inf version of Breiman’s theorem is
used. In general, if (2, #, P,T) is stationary and ergodic and if a sequence of
. random variables g, is dominated from below (F sup,g, < o), then
liminf(1/n)L1-(g, o T/ > Eliminf g, P-as. In particular, g, = log f( XolX_, 1)
is dominated from below. Hence lim inf(1/n)logf(X, ,) = D P-as. Therefore
even if the relative entropy rate is infinite, the sequence of relative entropy
densities converges as in (3.4). This completes the proof of Theorem 1.

Even if D, = — oo for all n, convergence as in (3.4) still holds if we assume
(XX o ,|X_n _1) is finite for some n [so that logf(X,X_, _,) is
dominated above]. Therefore, it is enough that either D, > —o0 or
(XX o _,4X_, 1)< oo for some n.

We remark that finite relative entropy rate implies a form of asymptotic
conditional independence. Indeed, by (3.3) if the relative entropy D, tends to a
finite limit, then the conditional mutual information, I(X; X __ _,_ IIX_,, )=
D — D,, decreases to zero as n — oo, which means that the present X, is
asymptotlcally conditionally 1ndependent of the far past X _ | given the
recent past X | .

Gan Markov processes closely approximate non-Markov stationary processes?
Let the Markov distribution M be constructed from P by using levm as the
initial distribution and Py | X, 8S the stationary transition probability. Then
the relative entropy rate is 51mply the conditional mutual information



1298 A. R. BARRON

(XX - 1X_, _1), which is near zero for sufficiently large Markov order
m (provided it is finite for some m). Thus the distribution P is approximated by
the Markov distribution M in the relative entropy rate sense.

4. Extension to nonergodic processes. In this section we investigate the
convergence of relative entropy densities (1/n)logf(X, ,) for stationary but not
necessarily ergodic processes. We find that the sequence of relative entropy
densities converges almost surely to a shift invariant random variable. However,
the proof requires the additional assumption that the relative entropy rate is
finite.

Breiman’s generalized ergodic theorem is readily extended to nonergodic
processes. We find that if (2, &, P, T') is stationary and if a sequence of random
variables g, is L' dominated and a.s. convergent with limit random variable g,
then the sequence (1 /n)Z;‘_;‘(}g o T’ converges almost surely and in L' to the
conditional expectation E-“g. Here £ is the sigma field of invariant events
(events A such that T"'A = A).

Set g, = logf(X,X_, _)). Section 3 established that if the sequence D, =
Elogf(X,X_, .,) is bounded [such that the relative entropy rate D =
Elogf(X, X ) is finite], then the sequence log (XX , ,)is L' dominated
and almost surely convergent with limit given by log f( X,|X_  _,). Applying the
generalized ergodic theorem, we conclude that the sequence (1/n)logf(X, )
converges almost surely and in L' to E”logf(X,[X__ ). Thus we have estab-
lished the following result.

THrorEM 2. If {X,} s a P-stationary process with densities (X, )=
dP,/dM,, where M, is a Markov measure with stationary transitions, and if the
relative entropy sequence D, is bounded, then the sequence of relative entropy
densities (1/n)logf(X. ) converges P-almost surely and in LY(P) to the shift

invariant random variable E” log f(X X ).

Why do we require that the relative entropy rate be finite? If
Elogt( X X, )= oo, then the sequence log f( XX , ) is dominated from
below but not from above. For the ergodic case the lim inf argument in Section 3
established that the limit is infinite. Applying the same technique t. the non-
ergodic case yields liminf(1/n)logf(X, ) = E”logf(X,[X . . 1) as. The limit is
not resolved in the case that the expectation E log f( XX, ) is infinite but the
conditional expectation is finite.

5. Asymptotic stationarity. In this section we generalize our density con-
vergence result to asymptotic mean stationarity. )

A probability space (w, %4, P) together with a measurable transformation
T: Q - Q is called asymptotically mean stationary if (1 /n)Z’,LJP(T’ JA) is
convergent for all A € # [see Gray and Kieffer (1980a)]. Suppose that ({2, &) is
the one-sided sequence space for random variables (X, X,,...) and that T is the
left shift. Let .%_ be the tail sigma field: that is, the intersection of the sigma

fields generated by (X,,, X,,. |,...). A probability measure P is said to asymptoti-

\



STRONG LAW FOR DENSITIES 1299

cally dominate P if A € # and P(A) = 0 implies lim P(T "A) = 0. Gray and
Kieffer (1980a) demonstrated several useful properties of asymptotic stationarity
and asymptotic dominance. In particular, if P is stationary then asymptotic
dominance is equivalent to absolute continuity of the measures restricted to the
tail sigma field [if A € %, and P(A) = 0then P(A) = 0]. If P is asymptotically
dominated by a stationary measure, then P is asymptotically mean stationary.
Conversely, if P is asymptotically mean stationary, then P = lim(1/n)L}_)PT "/
is a stationary measure that asymptotically dominates P. Furthermore, asymp-
totic mean stationarity is necessary and sufficient for an ergodic theorem to hold.

The following theorem generalizes the result of Gray and Kieffer (1980a) who
treated the discrete case with counting measure for M,. The generalization is
made possible by our Lemma 3.

THEOREM 3. Let P be an asymptotically mean stationary distribution for a
stochastic process {X,, X,,...}. Suppose that for each k > 1 there exists an
m = m(k) such that Ip(X, 1; X}, mi1,00Xrs1,k+m) IS finite. Let P be any sta-
tionary distribution which asymptotically dominates P. If the distributions P,
and 1_3,, for X, , have densities {(X, ,) and f(X, ,) with respect to M, (a sigma
finite Markov measure with stationary transitions), and if for some shift-
invariant random variable D

1 _ _
(5.1) —logf(X, ,) > D P-as,
n
then also
1
(5.2) —logf(X, ,) » D P-as.
n :

Proor. First we show that there exists a subsequence k(n) — oo sufficiently
slowly that

1 1
(5.3) —logf(X, ,) — —logf(X,,, .) =0 P-as.
n : n ‘

For fixed &, I(X, 1; X}, 110X i1, k1 m) 18 decreasing in m, so we may assume
that m(k) exceeds the Markov order of M, . Then for S, = sup,[log (X, ,1X,,, ,)I
the chain rule for densities yields S, < [log (X, ,IX,,, s, +
sup,|iX, 45 Xp i m 11,2 Xr 1,2+ m), Where the supremum is over all n > &k + m(k).
By Lemma 3, the expected supremum is finite and hence S, is finite P-a.s.
Therefore we can choose k(n) — oo slowly enough that S, ,/n— 0 P-as.
[Specifically, choose increasing c(k) large enough that P{S,/c(k)>2 *} <2 *
and let k(n)= 4k for c(k)<n <c(k +1). From the Borel-Cantelli lemma
lim,S,/c(k) = 0 and hence lim S, ,,/n = 0 P-as.] Therefore,
limsup(1/n)llog f(X, ,)/f(Xjn) )l < limsupS,,, /n =0 P-as. which verifies
(5.3).

Similarly, since information densities are dominated below, k(n) can be
chosen such that liminf(1/n)log f(X )/f-(X,i(,”,")z 0 P-as. With (5.1) this

\

L,n
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yields
‘ 1. _
54 lim sup —log f(X <D P-as.
n k(n),n

From Markov’s inequality T’{f_(Xk(m,n) < f(Xpny,n)e "} <e " and hence by
the Borel-Cantelli lemma liminf(1,/n)log f(X,,,, ,)/f(Xs(n), ) = 0 P-a.s. Thus

1 —
(5.5) limsup—logf(X,,, ,) <D P-as.
" ,

Now the event in (5.5) is in the tail sigma field, since k(n) > c and D is
invariant. But P is absolutely continuous with respect to P on the tail sigma
field. Thus the inequality in (5.5) also holds P-a.s. and using (5.3) we obtain

1
(5.6) limsup—logf(X, ,) <D P-as.
n .

It remains to show that liminf(1/n)logf(X, ,) > D.

By asymptotic dominance, given € > 0 there exists £k such that
lim(1/n)logf(X,, ,) = D except in a set of P probability less than e. From
Markov’s inequality and the Borel-Cantelli lemma we find that
lim inf(1/n)log f(X,e',,)/f_(X,,‘,,) > 0 P-a.s. Therefore,

1
(5.7) liminf—logf(X, ,) > D
n ,

except in a set of P probability less than . But liminf(1/n)log f(X, ,)/f(X, ,) =
0 P-a.s. [Compare with (5.3); here we only need that information densities are
dominated from below.] Therefore,

1
(5.8) liminf—logf(X, ,) > D
n :

except in a set of P probability less than €. Letting € — 0, we find that (5.8) holds
P-almost surely. Together (5.6) and (5.8) show a.s. convergence of the sequence of
relative entropy densities for the asymptotically mean stationary process. This
completes the proof of Theorem 3. O

6. Convergence of information densities. Let {(U,,V,)} be a jointly
stationary stochastic process. The random variables U, and V,, take values in
standard Borel spaces (U, %) and (V, 8,,). For information theory applications
we call elements of U and V input and output symbols, respectively. A central
issue in information theory is the asymptotic behavior of the mutual information
densities (1/n)i(U, ,; V, ,). As an important example we mention channel coding
theory. If the sequence of information densities (1/n)i(U, ,;V, ,) converges in
probability to a constant limit R, say, then by Shannon’s random coding
technique there exists a channel code of rate R: that is, there exists a sequence of
codebooks containing e"® different codewords (length n sequences of input
symbols), such that if a codeword U, , is chosen (according to the uniform
distribution over the e"® codewords) and if the output V, , is conditionally
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distributed according to Py, y, , (the channel) then the codeword U, , can be
recovered by a measurable function of the output with probablhty of error
tending to zero as n — oo.

For discrete stationary processes with finite cardinality for U and V, the
Shannon-McMillan-Breiman theorem readily yields the almost sure and L'
convergence of the sequence of information densities (1/n)i(U, ,; V, ,). Pinsker
[(1964), Theorem 8.2.1] and Gray and Kieffer [(1980b), Theorem 5] used a
discretization approach to prove L' convergence for stationary processes satisfy-
ing a general condition: namely, that the information rate lim(1,/»)I(U, ,; V, ,)
exists, is finite, and equals the Pinsker information rate I* given by the supre-
mum (over all finite partitions of U and V) of the discrete information rates.

We obtain almost sure convergence of information densities for stationary
ergodic processes. We remark that our conditions imply that the information rate
exists and equals the Pinsker information rate, but do not imply that this rate is
finite [see Pinsker (1964), Theorem 7.4.2].

Ergodicity is assumed only for simplicity. The results are easily extended to
the nonergodic case as in Section 4 (if we assume finite information rate).

THEOREM 4. Let {(U,,V,)} be a jointly stationary ergodic process. If
IUpU_ iU, ) andI(VyV_, _,, 1[V_,, _) arefinite for some m > 0,
then the sequence of mutual information densities (1/n)i(U, ,;V, ,) converges
almost surely.

Proor. Set X, = (U,,V,). Suppose the information density i(U, ,;V, ,) is
a.s. finite for all n. [Otherwise convergence is trivial, because if (U, ,; 1’n) is
infinite for some n then it is infinite for all larger n.] The mutual information

densities may be expanded as
1 1 1 1
61) iUy 5 V,,) = logf(X, ) — —logh(Uy ) = —log#(Vy ),

where f(U, ,), f(V, ,), and f(X, ,) are the densities of Py _, PV ,and Py ~with
respect to domlnatlng Markov measures My, , My, , ‘and MU X MV In
particular My, ~can be constructed from the initial distribution PU and the
stationary transition probability PU o . Similarly construct My, . The as.
convergence of the three terms in (6 1) follows by Theorem 1. The limit of
¢! /n)log £(0,, ) is IUy U_,, _p1[U_,, _) which is finite by assumption; like-
wise for (1/n )log f(V, ). Since the hmlts of the last two terms of (6.1) are finite,
the sequence of informatlon densities (1/n)i(U, ,;V, ,) also converges. This
completes the proof of Theorem 4. O

For most information theory applications, the channel is causal. By definition
a causal channel Py .y, = satisfies Py 5 = Py, for all n. Thus for a
causal channel the present output V, depends on past outputs Vi n-1 and past
and present inputs U, , but (condltlonally) does not depend on future inputs. For
such channels we obtain a.s. convergence of information densities under more
general conditions.
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THEOREM 5. Let {(U,,V,)} be a jointly stationary ergodic process with a
causal channel Py . . If IVy;V_ ., [V_, ) is finite for some m > 0,
then the sequence of mutual information densities (1/n)i(V, ,) converges almost
surely to the mutual information rate I(U _ , o; V)[V_ ).

Proor. The information densities satisfy the chain rule (U, s V,,)=
12040, 5 Vi1V, ). For a causal channel, the summands reduce to i( ViV ).
So by statlonarlty we obtain

:1»—‘

(6.2) ;l(U 'Vl,n) =

1,n?

_E ( oV r—j,f—'l)oTjJ(l'

By the chain rule we obtain the expansion
(6.3) i(U_ 2,05 YolV _, ) = UV U_,,V_,, ~m—71|v—m,~-1)
_l(v:)’ V— n, Am'fllvrrm,"l)'

By Lemma 3, these terms converge a.s. and are L' dominated whenever
I(U ;s VIV._ 1) is finite. Hence by Breiman’s generalized ergodic theorem

1
(6.4) lim—i(U, ;V, ,)=IU__;VIV., ) as.
n , , , .
To treat the case (U, ,; Vi[V __ )= oo, note that the sequence of informa-

tion densities i(U_, ,; V[V _,, ) is dominated from below [since by assumption
IV V. iV _p, 1) is finite]. Consequently, liminf(1/n)i(U, ,;V, ,)>
IU_ ;s VyIV_, ) almost surely. Therefore, even if the mutual information

rate is infinite, the sequence of information densities converges as in (6.4). This
completes the proof of Theorem 5. O

In information theory, a common class of channels are the memoryless
channels. A memoryless channel is a causal channel satisfying PvI U
X —1Py;, with the same conditional distribution Py ,, for all n. Given an
mput lf,,, the output V, is conditionally independent of all other inputs and
outputs. In particular I(Vy; V. _|U,) = 0 so by the chainrule I(V,;; V_ ) <
I(V,; Uy, V)= I(Vy; Uy). Hence if I(Uy; V;) is finite, Theorem 5 applies to
show a.s. convergence of the information densities. Thus we have established the
following result which extends the L' convergence obtained by Pinsker (1963) and

Kieffer (1978).

COROLLARY. Let a stationary ergodic process {U,} be input to a memoryless
channel Py, ., . If the mutual information I(U,; V,) is finite, then the sequence of
mutual information densities (1/n)i(U, ,;V, ,) converges almost surely to
IU; VoIV, ).
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