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ON COMPLETE CONVERGENCE IN THE LAW OF
LARGE NUMBERS FOR SUBSEQUENCES

By ALLAN GUT

Uppsala University

Shorter and more elementary proofs of some results of Asmussen and
Kurtz are given. We determine first those subsequences for which mean zero
is the necessary and sufficient requirement for complete convergence and then
give integrability conditions in terms of the growth of the subsequences in the
case when a moment of order greater than one exists.

1. Introduction. A sequence {U,}_, of random variables is said to converge
completely to the constant c if

Y P(U,—c|>¢) <o foralle>0.
n=1

This definition was introduced in Hsu and Robbins (1947), where it was shown
that the sequence of arithmetic means of ii.d. random variables converges
completely to the expected value of the summands provided their variance is
finite. The converse was proved by Erdos (1949, 1950).

This result has been generalized in various ways; in particular, motivated by
the study of supercritical branching processes, Asmussen and Kurtz (1980) solved
the Hsu—Robbins—Erdos problem for subsequences, i.e. complete convergence for
subsequences of the sequence of arithmetic means of i.i.d. random variables is
considered. In this context we also refer to Athreya and Kaplan (1976), Proposi-
tion 1; Athreya and Kaplan (1978), Lemmas 4.2 and 4.3; and Nerman (1981),
Proposition 4.1.

The purpose of this note is to present shorter and simpler proofs of the results
of Asmussen and Kurtz (1980). Their proofs are very technical and some of the
steps depend in turn upon technical results from Kurtz (1972). Further, their
assumptions are expressed in terms of a “smoothing function,” whereas our
assumptions will be more directly related to the subsequence.

As mentioned above, finite variance is required for complete convergence.
However, since the law of large numbers really is a first-moment problem we
characterize those subsequences for which finite expectation is necessary and
sufficient for complete convergence. This is done in Section 3. In Section 4 such
sequences are considered for which the summands have a finite moment of some
order > 1 (and < 2). .

Since we do not cover all possible subsequences with this approach, Section 5
contains some remarks on “missing” sequences as well as some other comments.
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2. Preliminaries. Throughout, X and {X,}?_, are i.i.d. random variables
and S, = X}_, X, n > 1. Further, {n,)%_, is a strictly increasing subsequence of
the positive integers, whose inverse, ¢, is defined by

Y(x)=Card{k;n,<x}, x>0 and y(0)=
Set M(x) =X \n,, x> 0,8, =n,,,/Mk)and v, =n,/n,,, k= L2....

LeEMMA 2.1.  For any random variable X,

() 2 n,P(1X| = n,) = EM(y(|X))).
k=1
(z2) If
(2.1) 0< hmmf,Bk < limsupp, <
koo ko0
then

EM(4(|X]) < 0 = E|X| < co.

Proor. Since {|X| > n,} = {(|X|) > k} (i) follows by partial summation.
Further, (2.1) implies that there exist C; > 0 and C, < oo such that C,x <
M(Y(x)) < Cyx, from which (ii) follows. O

LEMMA 2.2.
(2) If X3_,P(|S,,| = nye) < oo for all € > 0, then
EM(4(1X)) < co.
If, in addition,
(2.2) limsup B, < o,

k— o0

then E|X| < oo and EX = 0.
(@) If Z5_,P(IS,,| = M(k)e) < o for all ¢ > 0 and (2.2) holds, then
E\X|<o and EX =0.

PRrOOF OF (i). To prove that EM(y/(]X|)) < o one can use an argument due
to Erdos (1949) (see also Katz (1963), p. 317 Baum and Katz (1965), p. 114; and
Gut (1983), Section 7).

If (2.2) also holds, then there exists C < oo, such that x < CM(y(x)), from
which it follows that E|X| < co. Finally, the law of large numbers yields
EX =0.

The proof of (ii) is similar. O

3. The case 0 < liminf(n, ., /M(k)) < limsup(n, .,/ M(k)) < . It
follows from Lemma 2.2 (i) that EM(y(|X|)) < o is always a necessary condition
for complete convergence. For E|X| < oo to be the correct integrability condition
one would need something like M(y/(x)) < Cx for some finite constant C. The
following theorem emerges.
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THEOREM 3.1.

(i) Suppose that
(3.1) liminf g, > 0.

k— o0
(a) If E|X| < oo and EX = 0, then
(3.2) ¥y P(|S,,k| > nge) < oo foralle> 0.
k=1

(b) If (3.2) holds, then EM(y(|X|)) < oo.
(it) If, moreover,

(3.3) limsup B, < o,

k— o0

then E|X| < o and EX = 0 are necessary and sufficient for (3.2) to hold.

REMARK 3.1. The following example, given to me by an associate editor,
shows that (3.2) may hold even though the expected value does not exist. Let X
have a symmetric distribution. A necessary and sufficient condition for the weak
law of large numbers to hold is that xP(|X|> x) — 0 as x — co. Now, choose
{n,) such that P(|S,,|>n,27%)<27%

REMARK 3.2. A particular case for which (3.1) holds is when
limsup,, ., v, < 1, i.e. the case when there is at least geometric increase.

REMARK 3.3. The sufficiency has, for limsupy, < 1, been proved in Athreya
and Kaplan (1978), Lemma 4.2 (in a more general setup), by essentially using the
method which is used to prove the classical strong law of large numbers (see e.g.
Chung (1974), pp. 126-7).

PRoOOF OoF THEOREM 3.1

Sufficiency. Thus, suppose that EX = 0 and set T, = Sy ) — Syx-1)- The
strong law of large numbers in particular implies that (M(k))™" - Sy, — 0 ass.
as k — oo and hence also that

(3.4) (M(k)) ' -T,—>0as. ask— o,
which in view of (3.1) yields
(3.5) n,'-T,—>0as. ask — 0.

Since {T,)7., are independent random variables it follows from the
d
Borel-Cantelli lemma and the fact that T), = S, for all & that

[e e}

(3.6) Y P(|S,,| = en,) = Y P(|T,| = en,) < o foralle >0,
k=1 k=1

i.e. (3.2) holds.
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Necessities. Immediate from Lemma 2.2 (i).

ExAMPLES. Sequences like n, = 2%, n, = k!, n, = 22 are covered by Theo-
rem 3.1 (cf. also Gut (1979), p. 1060 and Gut (1983), Section 2).

4.

THEOREM 4.1. Suppose that

(4.1) x"-M(y(x)) > © asx — oo for some r > 1.
The following are equivalent:
(4.2) EM(y(|X])) <o and EX=0
(4.3) (IS,,| = npe) < o forall e > 0.
k=1

REMARK 4.1. If n, =k, then M(k)= k(k + 1)/2, (4.1) holds and (4.2)
amounts to EX2 < co and EX = 0, i.e. the classical result of Hsu—Robbins—Erdos
is obtained.

REMARK 4.2. The typical case covered by Theorem 4.1 is n, = k<, where d is
a fixed, positive integer.

REMARK 4.3. The restriction (4.1) is due to the fact that we have been unable
to produce a proof covering all possible subsequences for which (3.1) fails to hold.
For some further comments, see Section 5C.

The proof of Theorem 4.1 consists of a modification of the proof used in Gut
© (1978), p. 474, in which an iteration of an inequality of Hoffmann-Jergensen
(1974), p. 164, is fundamental.

PrOOF. Suppose that (4.2) holds and that the random variables have a
symmetric distribution. From (4.1) we know that E|X|" < oo for some r > 1. We
can, and do, choose an r < 2. Choose j so large that 2/(r — 1) > 1.

By applying the above mentioned inequality, Markov’s inequality and the
moment inequalities of Marcinkiewicz and Zygmund (1937) (see also Gut (1978),
Lemmas 2.3 and 2.4), we obtain

P(IS,,| = 3'nse) < CnyP(IX| = nye) + D P(1S,,| = nge))”

< Cny P(1X| = nye) + Dy((nye) "Bn,E|X|")”,

where C; and D, are numerical constants depending on j only, and B, depends on
r only. Thus .

0 0 o0
Y P(|Snk| > 3/n4e) < G Y nyP(|1X| = nye) + Di(e"B.E|X|")” ¥ ny¥¢V,
k=1 k=1 k=1
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Now, the first sum on the RHS is finite by Lemma 2.1 (i) and the second sum
is dominated by ¥%_,n~2"~D, which converges since the exponent was chosen to
be > 1. In view of the arbitrariness of ¢ this proves (4.3) in the symmetric case.
The desymmetrization is standard.

The implication (4.3) = (4.2) follows from Lemma 2.2 (i) and the law of large
numbers. .

5. Some remarks

A. The integrability condition (1.4) used in Asmussen and Kurtz (1980) is
[ty(8)P(|1X| > t)dt < oo, where y(¢) is the derivative of the inverse of the
smoothing function mentioned in Section 1. In our notation this condition can be
compared with Xn(y(n)—y¢(n - 1)P(|X|=n)=Xn, -1-P(|X|=n,) < oo,
which in view of Lemma 2.1 is the same as EM(y/(|X|)) < o in general, and
E|X| < oo if (2.1) holds.

B. In the proof of the sufficiency in Theorem 3.1 the assumption (3.1) was
only used in the transition from (3.4) to (3.5). If, instead, one uses independence
and Borel-Cantelli on (3.4) (as was done on (3.5) in the proof) the sufficiency of
the following result emerges. The necessity follows from Lemma 2.2 (ii).

THEOREM 5.1. Suppose that

(5.3) E|X|< o and EX =0.

Then

(5.4) Y P(IS,,| = eM(k)) < oo forall e > 0.
k=1

If (5.4) holds and limsup,, _, B, < o, then (5.3) holds.

C. As mentioned in the introduction, our results do not cover all subse-
quences. In Sections 3 and 4, alternative proofs have been presented for those
cases where short and simple proofs are available.

A sequence like n, = [e k] is, for example, not covered by the above results.
For this case, one notes that 8, — 0as & — o0, ¥(x) ~ (logx)?, M(x) ~ 2Vx - e”
and hence that M(y(x)) ~ 2xlogx as x - oo. Thus E|X|log*|X|< oo and
EX = 0 are necessary conditions for L P(|S,,| = n,¢) < co for every & > 0 in view
of Lemma 2.2 (i). However, by following, essentially, the proof for the classical
strong law, see e.g. Chung (1974), pp. 126-7, together with Hoffmann-Jergensen’s
inequality (cf. Section 4) applied to S; = ¥7* X;I{|X;| < en,}, one can also
prove sufficiency for this case. (Corollary I of Asmussen and Kurtz (1980) applies
to this example with (in their notation) () = exp(V¢) and t, = k).

More generally, under certain assumptions on the regularity of how the
subsequence increases, together with the assumption that

(5.5) n; Y, (M(k)) '<C< o foralli,
k=i
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a positive result can be proved by this procedure. Since such proofs do not
introduce an important novelty we do not give any details.
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