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AN IMPROVED SUBADDITIVE ERGODIC THEOREM!

By THoMAS M. LIGGETT
University of California, Los Angeles

A new version of Kingman’s subadditive ergodic theorem is presented, in
which the subadditivity and stationarity assumptions are relaxed without
weakening the conclusions. This result applies to a number of situations that
were not covered by Kingman'’s original theorem. The proof involves a rather
simple reduction to the additive case, where Birkhoff’s ergodic theorem can be
applied.

1. The result. Subadditive ergodic theory is one of the major achievements
in probability theory of the past twenty years. The development of this theory
began with Hammersley and Welsh (1965) and was most fully realized by
Kingman (1968). An extensive discussion of the theory, which includes a treat-
ment of many examples and applications, has been given by Kingman (1973,
1976) and by Hammersley (1974). Other examples occur in Smythe and Wierman
(1978) and Steele (1978). A generalization to multiparameter processes was
carried out by Smythe (1976).

In order to put our discussion in context, we will begin by stating Kingman’s
theorem. Suppose {X,, ,} is a collection of random variables indexed by integers
satisfying 0 < m < n. Kingman’s assumptions are:

(1.1) X, ,<X,,+X,, whenever0<l<m<n.

The joint distributions of {X,,,, ,4+,,0 <m <n} are the

(12) same as those of {X,, ,,0 < m < n}.

(1.3) Foreachn, E|X, ,| < co and EX, , > — cn for some constant c.

His conclusions are:

1 1
(1.4) y = lim —EX, , = inf —EX, ,.
n—oo N ’ nn ’
X() n
(1.5) X = lim —— existsa.s.andin L,.
n—-oc N
(1.6) EX=y.

The original proof of this result was given by Kingman (1968, 1976). Other
proofs have been given by Burkholder (1973), Derriennic (1975), Del Junco (1977),
Smeltzer (1977), Steele (1980), and Katznelson and Weiss (1982). A generalization
of this theorem in which a small error term is allowed on the right side of (1.1)
was obtained by Derriennic (1983).
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As was pointed out above, there are many examples that come from a variety
of areas which satisfy Kingman’s assumptions (1.1), (1.2), and (1.3). However,
many situations that appear at first glance to be subadditive turn out on closer
examination not to satisfy (1.1) and /or (1.2). Examples of this can be found in
the contexts of age-dependent branching processes (see Section 2 and Note 9 of
Hammersley, 1974, and Section 3.3 of Kingman, 1976), first passage percolation
(see Definition 4.3 and Theorem 5.7 of Smythe and Wierman, 1978), and contact
processes (see Theorem 2.1 and the remark following its proof in Durrett, 1980).
In order to treat such examples, the theory of superconvolutive distributions was
developed by Kesten (1973) and Hammersley (1974). This theory is described in
Chapter 3 of Kingman (1976). There are several drawbacks to the superconvolu-
tive theory. One is that in order for it to be applicable, the process must have
something like independent increments. Another is that one can only conclude
from it convergence in probability in (1.5) or almost sure convergence along a
sequence of times which grows exponentially rapidly. In order to obtain almost
sure convergence along the full sequence, it is then necessary to have a separate
argument, which often uses some type of monotonicity.

The foregoing comments are intended to explain why a weakening of the
assumptions in Kingman’s theorem is desirable. By looking at some of the
examples mentioned above, one finds that often (1.1) is satisfied for / = 0 even if
it fails for / > 1. Thus our replacement for (1.1) is

(1.7) Xo,<Xom+ X, , whenever0 <m <n.

Of course (1.2) and (1.7) together imply (1.1), so now we must weaken (1.2). Our
replacement for (1.2) has two parts:

The joint distributions of {X,, ., ,,.z.1, 2 = 1} are the same as those

(1.8) of {X,, nir k =1} for each m > 0,
and
(1.9) Foreach k > 1, { X, (,+1%, 1 > 1} is a stationary process.

THEOREM 1.10. Suppose that (1.7), (1.8), (1.9), and (1.3) are satisfied. Then
(1.4), (1.5), and (1.6) are true as well. If the stationary processes in (1.9) are
ergodic, then X = vy a.s.

This theorem provides an alternate approach to many of the situations which
have been treated using the superconvolutive theory. The weaknesses in that
theory which were mentioned earlier are not present in Theorem 1.10. As in
Kingman’s case, one could replace (1.3) by the assumption that EX{, < oo,
provided that one allows y = — o0 in (1.4) and does not claim L, convergence in
(1.5). This extension of Theorem 1.10 is obtained by a simple truncation argu-
ment as in the proof of Theorem 1.8 of Kingman (1976), and will be omitted.

The proof of Theorem 1.10 will be presented in the next section. An example
that satisfies (1.7), (1.8), and (1.9), but for which (1.1) and (1.2) fail is described in
Section 3.
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2. The proof. Let X, =X, ,, v, = EX,,

and

— 1
X = limsup — X,
n

n— oo

1
X = liminf — X,,.

n—o N

The proof will be broken up into four steps:

(2.1)
(2.2)
(2.3)

(2.4)

1
y = lim —Yn = inf —y, € (— 0, ©).
n— oo n>1nNn
E. X<y and if the stationary processes in (1.9) are ergodic, then
X<va
EX > v.
. 1
lim E|-X, - X|=0
n— oo n

where X is the common value of X and X.

The proofs of (2.1), (2.2), and (2.4) are elementary, and are the same as in
Kingman’s case. In fact, Kingman (1976) observed on page 178 that (1.9) was
sufficient in order to prove (2.2). These proofs are included here for completeness.
The proof of (2.3) (this is the “difficult half”” according to Kingman) is new, but is
based on the proof given by Durrett (1980) of the strong law for the edge of a
one-dimensional contact process.

Proor oF (2.1). By (1.7) and (1.8),

(2.42) Ymin < Ym T Yn-
Define y by
1
vy = inf —
nx>1 n

which is finite by (1.3). Fixan m > 1 and write n = km + [, where 0 < [ < m. By

(2.4a),
< kYm + Yi-
As n - oo, n/k = m, so that
1 1
limsup —v, < —ym.
n— oo n

Since m is arbitrary, we conclude that

1
y < liminf —y, < limsup —v, <v.
n

n—oo n— oo
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ProoOF OF (2.2). Fix k > 1 and use (1.7) repeatedly to write

(2.5) Xpn < > Xr(i-1), kj+
J=1
By Birkhoff’s ergodic theorem and (1.9),
1 n
(2.6) — 2 Xiii-n,ks
n ;o

converges a.s. and in L, to a random variable with mean v,. Therefore
X, 1

2.7 Eli — < —y,.
(2.7) msup " < 7 e

Using (1.7) again,

(2.8) Xin+j < Xin + Xin, kntje

By (1.8) the distribution of X}, ,,., depends only on ;. This distribution has a
finite first moment by (1.3). Therefore by the Borel-Cantelli lemma,

X .
kn,kn+j
——= =0 a.s.

lim
n— oo n
for each j. Hence by (2.7) and (2.8),

EX -
< =Y.
=7 Ve

Letting & — oo, we obtain EX <+v. If the stationary processes in (1.9) are
ergodic, then the a.s. limit of (2.6) is y,, so that X <y as.

PRrOOF OF (2.3). Let U, be a random variable which is independent of all the
X, n» and which is uniformly distributed on {1,2,...,n}, and let

n — —_
Yy =Xpiu, — Xrsv,-1-

Then
1 n
EY} = ~ YE[X,.,— Xpiio1]
(2.9) =1
B[ Xeen~ %) = )
T n k+n k—nYk+n Yr)»
and
+ 12 . 1 =z .
(2.10) () = n 1§1E[Xk+l - Xk”_l] = n lglEXk+l—1,k+l

. < EX}
by (1.7) and (1.8). Therefore by (2.9), (2.10), and (2.1),
(2.11) sup E|Y}"| < o0,
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and
(2.12) lim EY =y foreachk > 1.

n—oo

By (2.11), there is a subsequence n; so that the joint distributions of {Y;*, £ > 1}
converge to those of some collection {Y,, £ > 1}. For any bounded continuous f
on R* which depends on only finitely many coordinates,

1 ™
(213)  Ef(Y,,%,...) = lim — ¥ Ef(X,1y = X, Xpop = XKpasooo)-
= il=1

From this it is easy to see that {Y,, £ > 1} is a stationary sequence. By (1.7) and
(1.8),
Y'=Xy 11— Xy, <Xy, u,41 =4 X,
where =, denotes equality in distribution. Therefore by (1.3), {(¥{")*, n > 1} is
uniformly integrable. By Fatou’s lemma and (2.12), it then follows that
EY, > limsup EY" = v.

n—oo
By Birkhoff’s ergodic theorem,
1 n
Y= lim — ) Y,

n—oo N ,_,
exists a.s. and EY = EY; > v. It remains to prove that X is stochastically larger
than Y. For this, it is enough to show that
(214) (Y'I’Y1+Y'Z:Y'1+Y2+Yz%"°')-<—d(X1’X27X3"')’
where <, denotes (joint) stochastic monotonicity. But this is an easy conse-
quence of (1.7) and (1.8), since by (2.13)
Ef(YI’YI + Y'Z:Y'I + Y2 + YS”")
12
lim — Y Ef( X0, — X, Xpio = X0, Xpig — Xps-)

i— o0 ni I=1

n

1 v
lim — E Ef(Xz,Hv X, 1425 Xz,z+3, .n)

i—oo N; 1=1
= Ef(X,, X,, X;,--.)

for any increasing bounded continuous function on R® which depends on only
finitely many coordinates.

IA

ProoOF OF (2.4). Let X be the common value of X and X, which agree by
(2.2) and (2.3). Then of course EX = y. By (25) with £ = 1, {(1/n)X,;, n > 1} is
uniformly integrable. Therefore

* .
lim E[—Xn— X] = 0.
n— oo n

Conclusion (2.4) follows from this and (2.1).
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A final comment about the proof of (2.3) is in order. In Kingman’s original
proof, he constructed a stationary process {Y,, £ > 1} with EY, = y such that

(2.15) Yy i+ - +Y,<X,, as.

whenever 2 < m. By (2.14), the random variables Y, and X, can be constructed
on a common probability space in such a way that (2.15) holds for £ = 0. It is not
hard to check that under Kingman’s stronger hypotheses, our construction can be
used to obtain (2.15) for all k&.

3. An example. In this section, we describe an example which satisfies (1.7),
(1.8), and (1.9), but not (1.1) and (1.2). It is rather typical of the application of
Theorem 1.10. The example is from oriented percolation. [See Durrett (1984) for
much more on this model.] Let

I={(m,n)€Z% n>0and m + niseven}.

A pathin [ is a sequence (m, n,),...,(m,, n,)such that foreach i, n,,, = n; +1
and m,;,, = m; + 1. Each edge joining an (m,n) to (m + 1,n + 1) or to (m —
1, n + 1) is independently labelled open or closed with probability p or 1 — p,
respectively. A path is said to be active if all the edges joining successive points in
that path are open. For n > 0, let

X, = max{m: 3 an active path from (Z,0) to (m, n) for some / < 0}.
For 0 < m < n, let

X

m7

Then X, , = X, and (1.7) and (1.8) are easily verified. To check (1.9), it suffices
to note that for each k, the random variables {X,, (1 7 = 0} are indepen-
dent and identically distributed. A realization of the process which illustrates
how (1.1) can fail is given in the figure below. The edges which are drawn in are
open; the ones which are not are closed. This shows also that (1.2) fails, since as

. = max{k: 3 an active path from (I, m) to (k, n) forsome ! < X, } — X,,.
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mentioned earlier, (1.2) and (1.7) imply (1.1). In this realization, X, = 1, X, = -2,
Xl‘2 =-1X,3=0, and X,; = —1,s0 that X, 3> X, , + X, 5.

Of course, this example does not necessarily satisfy assumption (1.3). It clearly
does satisfy EX;, < oo, and does satisfy (1.3) for p sufficiently close to one (see
Durrett, 1984).
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