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WHITE NOISE CALCULUS AND NONLINEAR
FILTERING THEORY'

BY G. KALLIANPUR AND R. L. KARANDIKAR
University of North Carolina, Chapel Hill

A self-contained outline of recent work on the white noise approach to
nonlinear filtering is given together with the necessary background of white
noise calculus.

1. Introduction. An informal description of the filtering problem is the
following: Let the unobserved signal process X = (X,) be a stochastic (usually
assumed to be Markov) process taking values in R% Information concerning X is
provided by a process y = (,) which is continuously observed over time

(1.1) yy=h(X)+n, 0<t<T,

where £, is a known function and n = (n,) is a noise process. The problem is to
obtain the “best” estimate of X, given by the set of observations {y,,0 < s < ¢}
or, equivalently, to find the conditional distribution of X, given {y,,0 < s < t}.

A rigorous formulation of (1.1) requires the choice of a mathematical model for
the noise process. The latter is an extremely important question when continuous
time processes are involved. The usual procedure is to regard the noise n,,
heuristically, as the “derivative” W, of the Wiener process and to replace (1.1) by
its “integrated” version

(1.2) Y- [n(X,)ds+ W, 0<t<T.
4 0

In the martingale approach to filtering theory (which we will also refer to as the
stochastic calculus or conventional theory) (1.2) is taken to be the canonical
observation model and it is assumed that X = (X,), W = (W,) are defined on a
probability space (R, .%7,II), h: [0,T] X RY - R™ is a measurable function
satisfying

(1.3) /T|hu(Xu)|2du.< o, Il-as,
0

and W is a standard m-dimensional Wiener process.

Martingale calculus and the theory of Ité stochastic differential equations
(SDEs) have been applied with spectacular success in solving the problem of
nonlinear filtering based on (1.2). The first phase of this development culminating
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1034 G. KALLIANPUR AND R. L. KARANDIKAR

in the derivation of the most general form of the SDE for the optimal filter was
essentially given in the papers of Mortenson (1966), Kushner (1967), Kallianpur
and Striebel (1969), Zakai (1969) and Fujisaki et al. [FKK] (1972).

In the important case when the signal process is an R%valued diffusion most
recent work has led to the study of the existence of unique solutions of stochastic
partial differential equations (SPDEs) of Itd type satisfied by the unnormalized
conditional density of the filtering problem [Rozovskii (1975), Krylov-Rozovskii
(1978, 1981) and Pardoux (1979, 1982)].

Despite its elegance, the power of its mathematical techniques, and the
enormous stimulus it has provided to the theory of SDEs, the practical validity
of the stochastic calculus theory of nonlinear filtering is open to serious criticism.
In a series of papers in which he was the first to advocate a finitely additive (f.a.)
white noise approach, Balakrishnan has expressed the view (shared by some
engineers) that the model (1.2) is not suitable for applications because the results
obtained cannot be instrumented [Balakrishnan (1977, 1980)]. While this objec-
tion to the role of the Wiener process in physical problems may not be new, this
criticism has stimulated a search for a rigorous theoretical framework for nonlin-
ear filtering that is faithful to the observed phenomena.

The purpose of this article is to present a connected and self-contained account
of the work we have done over the last two years in constructing a rigorous white
noise calculus and applying it to develop nonlinear filtering theory.

Two things should be pointed out in connection with our theory:

(i) The natural space of observations and of the noise is a Hilbert space (or a
suitable subspace of it) of Wiener measure zero. An insistence on countably
additive probabilistic techniques would require an enlargement of this space
either to a Wiener space of continuous functions C([0,T']; R™) or to an even
larger space such as &/ (R?), the Schwarz space of tempered distributions.
(The latter is an interesting possibility yet to be fully explored.) The alterna-
tive is to resort to a finitely additive white noise measure on Hilbert space.

(ii) The role of the Wiener process as a model for noise is customarily that given
in (1.2). However, Wiener himself, in a conversation with one of the authors
several years ago at the Indian Statistical Institute, stated that n(f) given
by the stochastic integral [jf(t)dW, can be used to define Gaussian white
noise over the Hilbert space L2[0,1]. The latter is indeed an example of a
(finitely additive) cylinder measure or weak distribution used in later work by
1. E. Segal (1956) and by L. Gross (1960, 1962). It is the model adopted by us
in the definition of the abstract statistical model to be given in Section 4.

The plan of the paper is as follows: We begin by giving, in Section 2, a concise
description of the main results of nonlinear filtering theory based on stochastic
calculus. For more details see Part I of our survey paper [Kallianpur and
Karandikar (1983b)]. Other and more comprehensive accounts of this theory are
available in books. (See the references in Section 2.)

Section 3 and part of Section 4 contain preparatory material on the theory of
f.a. quasicylindrical probability measures (QCPs), for which we cannot find any
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reference in the literature. The notion of a lifting with respect to a QCP is, of
course, based on ideas of Segal and Gross but it has been found necessary to
develop these further for our purpose. The definition of absolute continuity for
finitely additive measures and the version of the Radon-Nikodym theorem given
in the book of Dunford and Schwartz (1958) are not suitable from our point of
view. The same is true of the definitions given in Gross’s paper [Gross (1962)]. We
have introduced new—and for us, the right—definitions of all these concepts.
The development presented is entirely self-contained and culminates in the
abstract nonlinear filtering model and the finitely additive version of the
Kallianpur—Striebel Bayes formula.

In Section 5, the white noise versions of the Zakai and FKK equations are
obtained. We then specialize to the case when the signal is an R %-valued diffusion
process. When the unnormalized conditional density exists it is shown to satisfy a
partial differential equation (PDE) which we call the Zakai equation for the
unnormalized density. The other main results of this section (Theorems 5.5 and
5.6) establish the existence of a unique solution of the Zakai PDE under
conditions which do not assume the boundedness of 4. As mentioned earlier, the
Zakai and FKK equations as well as the PDE are not stochastic differential
equations but “ordinary” differential (or partial differential) equations in which
the observed path occurs as a parameter in the coefficients.

In Section 6 we study the f.a. white noise theory in a more general framework
that includes applications to signal and observation processes taking values in
infinite-dimensional separable Hilbert spaces. In the model (1.2) the state space
of X is assumed to be a complete separable, metric (Polish) space S, e is
Hvalued white noise, where " is possibly infinite-dimensional Hilbert space, and
h: [0,T] X S - X is a measurable function such that E/[]| A% ds < . The
chief difficulty here is that we have no conditional density since there is no
Lebesgue measure (or any natural measure) in Hilbert space. Instead of the PDEs
of the preceding section we obtain f.a. analogues of measure-valued equations of
FKK, Zakai, and Kunita types. The equations (of which the first two are
differential equations) are derived, and the equivalence and the uniqueness of
solutions of these equations are established in Theorems 6.1-6.4. An approxima-
tion procedure is also set forth involving convergence in variation norm.

It seems worth remarking that the white noise calculus approach is seen to its
best advantage in its treatment of problems where infinite-dimensional signal
processes are encountered. This is an important area of application to filtering
and prediction of random fields (though a great deal still remains to be done). At
present, the stochastic calculus treatment has not gone beyond deriving the
SDEs for the optimal filter [see, e.g., Korezlioglu and Martias (1984) and the
references therein]. The difficulties in the way of proving existence of unique
solutions seem to be formidable. '

Section 7 is a brief digression devoted to likelihood ratios in the f.a. frame-
work, a topic whose applications to statistical problems will be considered
elsewhere. Formulas for likelihood ratios for random fields are also given, since in
principle, the white noise theory poses no special difficulties for multiparameter
processes.
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There have been attempts in recent years to modify the stochastic calculus
filtering theory so as to bring it closer to applications. The work on pathwise or
“robust” solutions to the SDEs of the filtering problems [Clark (1978), Davis
(1979, 1980), Pardoux (1979), (1982)] as well as the investigations of the ap-
proximations to Itd SDEs and their solutions [discussed in Ikeda and Watanabe
(1981)] may be viewed in this light. The white noise approach is entirely different
in spirit in that it avoids the complexities inherent in the stochastic calculus
treatment of the subject. Our lack of familiarity with f.a. measure theory
necessitates a careful definition of concepts well known in countably additive
probability theory: conditional expectations, absolute continuity, Radon-
Nikodym derivatives, change of variables formula, etc. Once this is done, how-
ever, the simplicity and the advantages of the new approach are apparent.

The question that naturally arises, however, is whether the white noise
calculus gives the same results as the martingale-theoretic approach to the
subject. This important point is discussed in some detail in Section 8 where we
show that our theory is consistent with the conventional theory. In fact, the
robust filter of the latter can be recovered by using the theorems of Section 8. In
Section 9 we list some of the open problems on which we and some of our
colleagues are working.

2. A brief survey of nonlinear filtering theory based on stochastic
calculus. The stochastic calculus approach to nonlinear filtering theory takes
the model (1.2) as its starting point. Since detailed expositions of the theory are
now available in books and survey articles [Elliott (1982), Kallianpur (1980),
Liptser and Shiryaev (1977), Kunita (1983)], we give here only a highly condensed
account of the principal results concerning the derivation of the stochastic
differential equation (SDE) of the optimal filter and on the existence and
uniqueness of the solution. Qur object is to give the reader a flavour of the
" martingale approach and to enable him to contrast it with the theory described
in the later sections.

In the model (1.2)

Y,=f0th,,du+Wt, 0<t<T,

h, is measurable wrt %X where #,X is the o field generated by the family
{X,,0 < u < t} augmented by the inclusion of zero probability sets. Here X =
(X,), called the signal process, is usually taken to be a Markov process with state
space R¢, though more general infinite dimensional spaces can be considered (see
Sec. 6). The process & = (h,) is taken to be R™-valued and contains information
about X = (X,). Furthermore, it is assumed that

Ef|h,|2dt < 0.
The noise in (1.2) is given by W = (W,), an R™-valued standard Wiener

process. The most general assumptions on the noise and signal process are that
for each ¢, the o fields 6{X,,W,,0 <u <t}and o{W, - W ,t<u <ov < T} are
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independent. An important special case to be treated in greater detail later is the
independence of signal and noise, i.e., of 0{X,,0 < ¢ < T} and o{W,,0 <t < T}.
[The processes (X,), (h,), and (W,) are defined on a countably additive probabil-
ity space (R, «, I1).]

Given the observations {Y,,0 < s < ¢}, the basic nonlinear filtering problem is
to find the conditional distribution II{X, € (-)|%,"} of the “present” state of the
system. A crucial requirement is that the solution be a recursive estimate since in
most applications the data are observed continuously in time so that it is
important to be able to compute the conditional distribution at time ¢ + &¢
(8¢ > 0) using its value at time ¢. In other words, one seeks a SDE for the
conditional distribution or, equivalently, for the conditional expectation II,(f) =
E[ f(X,)|%,Y] for a wide enough class of functions f: R? — R. In most cases of
interest, e.g., if X is a diffusion process it is enough to consider f € CZ.

The following simple result is the natural starting point of the martingale
theoretic approach to the subject.

PROPOSITION 2.1. Leté, = ¢, + A, + M, t € [0,T] be a d-dimensional semi-
martingale relative to (9,). Assume the following conditions hold.:

(@) (A,) is a right-continuous (¥,)-adapted process of bounded variation in
[0,T] with A, = 0.

(i) E|VarpA|®? < co.

(iii) (M,,9,) is a right-continuous L* martingale with M, = 0.

(iv) E|¢y)% < oo.

Then 11,(¢) = E(¢,|%,) is an L*-semimartingale relative to %,, where (%,) is a
right-continuous family of o fields such that (%#,) € (¥,) for all t. Further,

(2.1) I1,(¢) = (&) + A, + M,;

A, is the dual predictable projection of A, relative to

(22) (%) with A, = 0;
(2.3) E|Var Al < oo;
(2.4) (M,, #,) is a right-continuous martingale with My = 0.

Now suppose that the signal process is an R%valued diffusion process with
generator %, given by

af
Lf=o + 4l
for f € C2%([0,T] x R?) and for g € CX(R?).
d 32g d g
25)  (£8)x) =} T aytx) g5 () + Lot 550,

i, j=1

for suitable measurable functions a,; b; such that the matrix ((a;,(t,x))) is

nonnegative definite.

ij»
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The process ( X,) can be realized as a (weak) solution to the SDE
(2.6) dX, = b(t,X,)dt + o(t, X,)dB,,
where B, is an R%valued Brownian motlon and o is such that a(t,x)=
a(t, x)o*(t, x).

For an integrable function f on (£, %7, II), introduce the notation

0,(f)=En(fI1%Y)
and for a function g: R? - R such that E|g(X,)| < oo,
M(g)= ﬁt(g(Xt)) = El’l(g(Xt)l'%y)'
By It6’s formula (or Lemma A.1), we have that for g € CX(R?),

(2.7) M,-g(X,) - fo (£.8)(X,)ds

is an %X martingale. In view of the assumption on the independence of
o(X,,W,u<t)and o(W,— W, t <u < T), this implies that M, is an F*'Y
martingale.

Applying Proposition 2.1 with ¢, = g(X,), A, = [{(ZL.g)XX,)ds, 4, = F*7Y,
and %, = %,", we get

(2.8) I,(g) =o(g) + A, + M,

where M, is an %" martingale. It can be shown that A, = [{II (%,g)ds so that
t —

(29) M(g) = To(g) + [T1(L,g) ds + M.

It will be seen from (2.9) that the problem of obtaining an It6-type SDE for
IT,(f) reduces to the problem of expressing M, as a stochastic integral with
. respect to an (%,Y)-adapted Wiener process. That such a Wiener process exists is
shown by the following result.

PROPOSITION 2.2.
(i) The process v, defined by
(2.10) v=Y, = [Ti(h,)ds

is a Wiener martingale with respect to (%,);

(i) Foranyt, o[v,—v,t<v<T] 1L %"

See FKK (1972) for the proof. The Wiener martingale (,, %,Y) is called an
innovation process. '

Clearly from the definition %,” C %,". The equality of the o fields (for each ¢)
holds in the case of linear (Kalman Bucy) filtering [Kailath (1968)]. For nonlin-
ear ﬁltermg, Allinger and Mitter (1981) extending an earlier result due to Clark
(1969), have shown that equality holds if the processes (%,) and W, are indepen-
dent and E[]|h,|?ds < o0.
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The significance of this result from the point of view of nonlinear filtering is
obvious for the representation of the martingale M, of (1.9) as a stochastic
integral, with respect to »,, is then an immediate consequence of the celebrated
results of Cameron and Martin and of Itd [see Kallianpur (1980)]. However, a
counterexample due to Tsirel’son shows that equality cannot hold in general.
Although the problem is of independent interest, Fujisaki, Kallianpur, and
Kunita have shown that the desired stochastic integral representation is avail-
able without having to prove first that %" = %,".

PRroPOSITION 2.3 [Fujisaki et al. (1972)]. Let (M,, #,¥) be a right-continuous

(or separable) L®-martingale with M, = 0. Then there is a process ¢, which is
-predictable such that

— t m t .
(2.11) M= [(9,d%)= Y [4id
0 i=1"0
Furthermore, ([E|¢,|?ds < o.
The process ¢, appearing in (2.11) is related to the processes (X,),(Y,) as

follows [see Kallianpur (1980)]. Let D! be the %,* Y-predictable process given
by

(2.12) (Bk,W">t=E1~)sk"'ds
and let
N d d _ 9
(213) (Dle)(x) = 5 Dl (s,2) 5 :8().
Then
(2.14) ¢, = I,(g(X,)R.) — O (g)1,(AL) + 1,(D,8(X,)).

The basic SDE given in the next result is a consequence of the above arguments
and Proposition 2.3.

THEOREM 2.4 [FKK (1972)]. Under the conditions stated earlier, for all
f € CAR%),

m,(f)= Ho(f>+f0‘ns<hsf)ds

(2.15) moo ' . . o '
+ X [T(F(X)R) = TL(HDTL(R) + TL(DIA(X,)] do

Stochastic equations for the conditional distribution I1(X, € -|#"). Sup-
pose that the functions & and D [appearing in (2.12)] are given by

(2.16) hi(w) = hi(X(«)) and Dfi(w) = DF¥(X,(w))
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for suitable measurable functions A%, D** from R*x R? to R'. Let
. a d . d
(2.17) Dig(x) = X X Dj'(x)o, ;(s,x)-—=8(x).
k=1 j=1 dx

In view of (2.16), the equation (2.15) reduces to the following equation, which
is a SDE for the conditional distribution I1,(X, € :|%Y) [recall: ITI(f)=
Ji)I (X, € dﬂgfty)]

()= T0(f) + [TI(£1)ds

(2.18) "o |
+ % [Ti(iad) - I()T(R) + T1,(Dif)] .

This equation was first derived by Kushner (1967).
Zakai (1969) obtained a SDE equivalent to (2.18) which is easier to handle. It
may be derived from (2.18) as follows: Let

@19) - el [ E m()axi -4 ' £ (k)] o)
Then,
() v+ 4 [ B [ ()]s |

a,=exp(/0t.

1td’s formula gives

iMs

m m
N\ 2 . .
(2.20) da,=a, Y (I(AY))" + a, X II,(AL)dy.
i=1 i=1
Using (2.18) and applying Itd’s formula to 6,(f) = II(f) - a,, we get
(2.21) do(f)=o (%, f)+ ¥ o(D/f + hif)dY;.
J=1

The equation (2.21) is called the Zakai equation and is a measure-valued SDE.
From the relation o,(f) = II(f) - a,, we have o,(1) = I1,(1) - «, and since a, > 0
a.s., we get '

(222) () - 240

o(1)

Thus, o,( f ) is called the unnormalized conditional expectation of f.

A derivation of the Zakai equation that is closer in spirit to the white noise
approach of this paper, is based on what is known as, the reference probability
method. It is the approach followed by Pardoux (1979) and several other writers.

The following representation for IT,( f ) can be obtained under the assumption
that 4 is bounded (or a suitable integrability condition). Let

N, = exp{ [ mx)ax -3 [ ‘|hs(Xs)|2ds},
i=1
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and let II’ be a measure on ({2, &) given by
dIl’ = Ny ' d11.

By Girsanov’s theorem, II’ is a probability measure and {Y,} is a Wiener process
under IT’. It can be shown that

Eqn(f(X,)N)7Y)
E{(NJFY)

and that the numerator in (2.23) is o,( f ). II” is called the reference probability.

The Zakai equation (2.21) can now be obtained directly from (2.23) which may
be regarded as an “extended” Bayes formula. In Theorem 2.7 below, we employ
this method to give an explicit derivation of (2.21) for the case of interest to us,
viz., when the signal and noise are independent. Formula (2.23) then takes a
simpler form equivalent to the Bayes formula obtained in Theorem 2.6.

(2.23) II(f) =

Stochastic PDE for the unnormalized conditional density. When the (uncon-
ditional) distribution of X, admits a density wrt the Lebesgue measure on R¢,
then (under certain conditions) the functional ¢,( f ) also admits a density, i.e.,

(2.24) o(f) = [ f(x)p(x)dx
R
for a suitable %,"-adapted process p,(x). In view of (2.22), we have
[1(x)p ) dx
(2.25) En(f(X)NF) = ——
/pt(x) dx

and hence p,(x) (if it exists) is called the unnormalized conditional density of X,
given %,”. It follows from (2.21) that p,(x) satisfies the following stochastic PDE
(SPDE)

(2.26) dp(x) = £7p(x)dt + ¥ (D/" + h{)p(x)dY/,
Jj=1
where Z* and D;/" are formal adjoints of %, and D;.

The problem of identifying the unnormalized conditional density as the unique
solution to a SPDE has been studied by Krylov-Rozovskii (1981) and Pardoux
(1979). We state Pardoux’s result using his notation.

Let the system process (X,) and observation (Y;) be given by

dX,= b(t, X,)dt + o(t, X,) dW,,

dY, = h(t, X,) dt + g(t) W, + g(t) AW,
where W, and W, are independent standard Wiener processes with values in R
and R™, respectively, o;,(¢,x) are continuous, bounded on [0, T'] X RY i, j =
1,...,d; b(t,x), h,(t,x) are Borel-measurable, bounded on [0,T] X RY i=
L...,d; k=1,...,m; g (¢),8; ,(t) are continuous on R™, &,7=1,..., m;
i=1,...,d; and g(t)g*(t) + g'(t)g’*(t) = I. Further, assume that oc* and



1042 G. KALLIANPUR AND R. L. KARANDIKAR

g’g’* are uniformly positive definite and for i, j = 1,...,d:

d
‘3—701' J exists and is bounded.
X

Let a = 60*, ¢ = g* and h* = B* — T 1{[6ck,,~(t)]/8x"}. With these notations,
the Zakai equation (2.26) reduces to .

(2.27) dp, = £*p,dt + [Z’tpt —C VD dYt] ’ Do =9,

where ¢ is the density of X, and %, is given by (2.5). Let

w2 {u € LQ(Rd) 25 € Lz(Rd)}

and let %,, &* be defined by

. d du dv
(Lu,vy=(Liv,uy = -1 lefu(tx)a 5 dx
d

du g
+/i=1ai(t,x)'£c—i ,

where u,v € W% and
1 .9 da;;

%= '_—Z 6x"

The equation (2.27) is to be taken as an equation for a W'%valued process.
Pardoux (1979) has proved the following result.

THEOREM 2.5. The SPDE (2.27) has a unique solution p,(x) in the class
L¥(Q x(0,T),W"?) n L*(Q,C[0,T], L(R%)).

Further, p,x) is the unnormalized conditional density of X, given FY [i.e,
p.(x) satisfies (2.25)].

Bayes formula and Zakai equation in the signal-noise independent case. We
now specialize to the important case of nonlinear filtering when the signal process
and noise are independent. Formula (2.23) reduces to a simpler form and can be
looked upon as a Bayes formula. This gives the conditional expectations in terms
of function space integrals. The SDEs for the optimal filter can be derived
directly from this formula without using the sophisticated martingale-theoretic
arguments. [See Kallianpur—Striebel (1969).]

In the model (1.2), let (X,) and (W,) be independent and let A, = A ,(X,(w)),
where h,(x) satisfies

(2.28) fo Nh (X (@) dt< 0, I-as.

Let Z = (Z,) be the canonical coordinate process on 2, = C([0,T],R™), II,,
the standard Wiener measure, and %/, be the Borel o field on £, augmented
with II, null sets.
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THEOREM 2.6 [Kallianpur—Striebel (1968)]. Let g be a %;-measurable inte-
grable random variable. Then we have

Y\ _ T _ Gt(g’Y)
(2'29) EH(gl‘g_t ) - Ht(g’ Y) - 6t(1,Y) )
where 6(8,Z) is defined by
6,2) = [aw)own| ¥ [Hi(X(0) aZ
Q i=1"0

(2.30)
- [ 0) s (o).

The stochastic integral appearing in (2.30) is to be interpreted as a stochastic
integral on (Q X Q,, & X &, I[1 X I1;)). Here, (2.30) defines 6,(g, Z) as a Wiener
functional for ITa.e. Z. Since IIY™! is equivalent to II,, 6,(g, Y(w)) is defined
for Il-a.e. w.

REMARK 2.1. §,(g,Y(w)) can be described directly as follows.

d
5 ¥(0) = o] £ [H(X () %)
(2.31) =l

() e anen,

where the stochastic integral in (2.31) is to be interpreted as a stochastic integral
on (2 X Q, #® 7,11 ® II). That (2.31) is equivalent to (2.30) follows from the
fact that since ITY ! is equivalent to I, [fdZ(under I1,) = [fdZ(under ITIY ')
[see Meyer (1976)].

Now suppose in addition that (X,) is an S-valued Markov process with
generator % [where (S, #) is a measurable space]. Let 2 be the domain of #Z.
Let _#(S, &) be the class of bounded measurable functions on (S, &). Let 2, be
the class of functions f € _#(S, &) s.t. f, defined by

fi(s,x) = f(x)
belongs to 2 and let (%, f )(x) = (Zf,)(t,x). As before, let us write for f €
H(S, %)
o(f,Y)=6,f(X,),Y).

The Zakai equation (2.21) in this special case can be derived easily from the
Bayes formula (2.29). For a proof, see Kallianpur—Karandikar (1983b). Ocone
(1985) has shown that condition (2.32) can be replaced by the conditions
EqfFlh(X,)|?ds < o0 and Ep|h(X,)| < oo for0 <s < T.

THEOREM 2.7. Suppose that

(2.32) En[exp(foT|hs(Xs)|2ds)] < oo.
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Then for all f € 2,,

(2.33) do(1,Y) = o(£f,Y)dt + ¥ o(hif, Y)aY,.
i=1

When the process (X,) is an R%valued diffusion process, the Zakai equation
for the unnormalized conditional density p,(x,Y) (2.27) reduces to

m
(2.34) dp(%,Y) =% p,(x,Y)dt + 3 hi(x)p,(x,Y)dY/.

i=1
The existence of a solution to (2.34) and its identification as the unnormalized
conditional density follow from Pardoux’s result (Theorem 2.5 above).

A different approach to the solution of the filtering problem due to Davis

(1980) is as follows. For each Z € C([0,T],R™), define a two parameter semi-
group acting on #(S, %) by

(17,1)(x) = Bl 1| 1 {~Zini(x)
(2.35) +ZiR(X,) + ['hi(X,) dz}
_%ft(hfl(Xu))zdu}) X, - x).
It is easy to verify that
@) a7 - [ o] o) o) anco,

where p is the distribution of X,. If we assume that %,(X,) is a continuous
semimartingale, then by the integration by parts formula, we have

(XJexp| - [ ¥ ziani(x,)

S j=1

(Tf,g)(x) =Eq

(2.37)

—é/sﬁhu(Xu)Pdu} X, = x)

Observe that the path Z appears as a parameter in (2.37). If (X,) is an R “%valued
diffusion and 4 is smooth, it is possible to compute the generator {AZ} of T/, for
each Z. This, in view of (2.36), gives a “pathwise solution” to the filtering
problem since, given an observation path Y, we can construct the semigroup Tsyyt
from its generator {A!} and then compute o,( f,Y) by (2.86). Davis (1980) has
obtained an expression for {AZ} when (X,) is a Lévy process.

Another approach to the pathwise solution of the filtering problem will be
discussed in Section 8.
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3. Some basic ideas of finitely additive white noise theory. As ex-
plained in the Introduction, in our approach to filtering theory, the noise is
defined by a Gaussian cylinder measure whereas the signal (or system) process is
understood to be a stochastic process in the usual customary sense, i.e., a process,
usually assumed to be Markov, defined on a countably additive probability space.
For a rigorous treatment of a noise independent signal model we first need to
define several important definitions and concepts upon which our work is based.
The major thrust of these definitions is to create a theory general enough for the
purpose of nonlinear prediction, filtering, and estimation theory. We introduce
integration with respect to a quasicylinder probability measure (QCP) of suitable
classes of cylinder functions, followed by a definition of absolute continuity of
QCPs. The notions of a representation and lifting associated with a QCP are
indispensable and, though very similar ideas are met with in the works of Segal
and of Gross [Segal (1956), Gross (1962)], our problems are sufficiently different
as to require a detailed and independent treatment. One of the most useful and
important of our concepts is that of a quasicylindrical mapping (QCM), which
has most of the desirable properties of a random variable in the countably
additive theory. A QCM defined on a quasicylindrical probability space induces a
QCP on the range space and an associated induced representation. Furthermore,
it enables us to give a definition of conditional expectation more inclusive than
the one to be found in an earlier paper of ours [Kallianpur and Karandikar
(1983a)].

Let H be a real separable infinite-dimensional Hilbert space with inner
product (-, -) and norm | - |. Let 2 = #(H) be the class of orthogonal projections
on H with finite-dimensional range. For P € 2, let

%¢p= { P 'B: B aBorel set in range P}

and
¢=%¢(H) = U €p.
Pexp

DEFINITION. A cylinder measure n on (H, %) is a finitely additive probabil-
ity measure on (H, %) such that for all P € & its restriction to %, is countably
additive.

Gross has defined [fdn for a certain class of functions. We will generalize
Gross’s definition to a space which is a “product” of a measurable space and a
Hilbert space. Such a product space was used in Kallianpur—Karandikar (1983a)
as a model for nonlinear filtering with white noise. There, we did not define
integration on the product space for a sufficiently large class of functions, but
defined conditional expectation by going over to the range.

Let (2, &7) be a measurable space and let

E=QXH.
For P € 2, let
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and
g = U g P
Pez
Here, &/® %p denotes the product o-field on @ X H = E. Thus, &p is a
o-field on E for each P and ¢ is a field. We will denote (E, &) by (2, M)G)(H ?).
(E, &) will be called a quasicylindrical measurable space.

DEFINITION. A quasicylinder probability measure 8 on (E, &) is a finitely
additive positive measure on (E, &) with B(E) = 1 such that for all P € 2, B,
its restriction to &p, is countably additive.

Dunford and Schwartz (1966) have given a definition of integration wrt finitely
additive measures for a certain class of functions. We need to integrate a larger
class of functions wrt 8 using the property that 8, is countably additive for each
P. For this, we need the notion of a “representation” of a quasicylinder probabil-
ity measure, which is defined below.

DEFINITION. A representation of a quasicylinder probability measure 8 is a
triplet (p, L, IT), where IT is a countably additive probability measure on a
measurable space (£, &7), p is a measurable mapping from (&, &7) into (2, & ),
and L is a mapping from H into the space of real-valued Borel-measurable
functions on (£, #) such that for all A € &/ and for all C € ¥,

(3.1) B(A x C)=T1i{a: p(&) € A, (L(h)(&),...,L(h;)(#)) € B},
where C € € is given by

(3.2) C¢={reH:((hh,),...,(h,k;)) € B}

for 2, € H and a Borel set B in R. (

REMARK 3.1. If (p, L, 1) is a representation of a quasicylinder probability
measure 3, then it can be easily seen that

(3.3) L(a,h, + ayhy) = a,L(h,) + ay,L(h,), T-a.e.

for all A, € H, a;€ R, i=1,2. Indeed, take Ak, = a,h, + a,h, and B =
{(xl,xz,x3) € R% x5 = a,x, + a,x,}. Let C be defined by (3.2) with j = 3 and
let A = Q. Then, B(A X C) = B(E) =TI(Q) and by (3.1),

I1(Q) = 1{&: L(a,h, + ayh,)() = a,L(h,)(8) + ayL(h,) (&)}

Also, if a priori, it is known that L satisfies (3.3) then in order to show that
(p, L, I1) is a representation of B, it suffices to verify (3. 1) (3.2) for j = 1. To see
this, ﬁrst observe that (3.1) is equlvalent to

/ 1A(w>exp( L ai(h, hk>) dBr(w, k)
(3.4)

=ﬁ . 1(£>)exp(iiakL(hk)(a))dﬁ(a,)
Qxp 1(A) he1
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forall Ae«,h, € Ha, €R, j= 1, where P is the orthogonal projection onto
span{h,,..., h;}. [Observe that the integrand on the left-hand side of (3.4) is
&p-measurable and since Bp is countably additive on &p, the integral is well
defined.] If L satisfies (3.3), then clearly, (3.4) is equivalent to

J 1a(w)exp(i(h, b)) dB(w, h)
(3.5) £
= [l @)exp(iL (7o) (@) dTi(3)

for all A €.« and h, € H, P being the projection onto the linear span of A,
which in turn is equivalent to (3.1)-(3.2) for j = 1.

Before we proceed, we remark that the following result, stated here without
proof, guarantees the existence of a representation of B for a large class of
quasicylinder measures.

THEOREM 3.1. Let B be a quasicylinder probability measure on (E,¢).
Assume that there exists a probability measure I1 on (2, /) and a mapping
A: @ X €—> R™ such that

(i) ForallC € %, v = AN w,C) is s£measurable.
(ii) For all w € Q, C - M w,C) is a cylinder probability measure on (H, ).
(ili) ForA e «,C< ¥,
(3.6) B(A X C)= [Q1A(w)x(w,0)dn(w).
Then a representation of B exists.
REMARK 3.2. Given A, Il satisfying (i), (ii) (in Theorem 3.1), the formula
B(F) =fﬂ)\(w,F"’)dH(w), Feeé,

where F* = {h € H: (w, h) € F}, defines a quasicylinder probability measure on
(E, &).

If o is countably generated, then it can be shown that a representation exists
for any quasicylinder probability measure 8 on (&, &)O(H, %).

For the remaining part of this section, we will consider a fixed quasicylinder
probability measure 8 on (E, &) = (2, &)O(H, ¢). We will assume throughout
that a representation of 3 exists and (p, L, 1) will denote a (fixed) representation
of B.

Let S be a complete separable metric space with a distance function d. Let
Z( Q, 7, 11; S) denote the space of S-valued (7, #(S))-measurable functlons X
on §, where two such mappings X,, X, are equivalent if X, = X, a.e. . For
X, X, e 2(Q, #,11;S), let d*(X,, X,) be defined by

d*(X,, X;) = [[d(X,(8), Xy(®))] A 1dT1(&).
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Then, it is well known that d* is a metric on £(Q, <7, I1; S)and d*(X,, X) - 0
if and only if X, » X in IT probability. Also, #(&, «,1I;S) is a complete
metric space under the metric d *. This can be checked using the completeness of
S under d. We will denote #Z({, ,&, I1; R) by £(&, «, IT).

DEFINITION. A function f: E — S is called a (S-valued) cylinder functlon if
it can be written as

(3.7) f(w,h) = fi(w,(k, hy),..., (R, h;))

for some h,,..., h; € H and some measurable function f,: (2 X R/, #® #(R))
- (S, #(S)).

It can be verified that f is a cylinder function if and only if for some P € £,

(3.8) f~1(#(8)) < &p.
For a cylinder function f given by (3.7), define Ry(f) € 2(Q, #,11; S) by
(3'9) Rﬁ(f)=f1(P,L(h1)r---,L(hj))-

If (2, 27’) is a measurable space, then §’-valued cylinder functions f and
Rp(f) for such an f can be defined as above by replacing (S, %#(S)) by (@', «").
LEMMA 3.2. Let f be an S-valued cylinder function. Then

(1) Rp(f)_ ) zs unambiguously defined by (3.7) and (3.9) as an element of
2Q, #,11; 8);

(ii) if P € 2 is such that (3.8) holds, then
(3.10) M[Re(f)] " =Bl 17"

We now extend the mapping Rj to a larger class of functions for which a
useful theory of integration can be developed.

Define a partial order on # by P, < P, if range P, C range P,. It is easy to see
that (2, <) is a directed set. (We also write P, > P,).

DEFINITION. Let Z(E, &, B; S) be the class of functions f from E into S
such that for all P € &, f, defined by
(3.11) fp(w, k) = f(w, Ph)

is (&p, #(S))-measurable and the net {Ry(fp): P € #} is d*-Cauchy (e,
Cauchy in IT probability). For such an f, let

£3.12) Ry(f) = 11}!;%» in IT probability Ry(fp).

The following lemma shows that the class #(E, &, 8; S) does not depend upon
the choice of the representation.
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LEMMA 3.3. Let (¢, L', I1’) be another representation of B and let R}, be the
map defined by (3.9) for cylinder functions. Let f: E — S be such that for all
P e 2, fp [defined by (3.11)] is (&p, B(S))-measurable. Then

() {Ry(fp): P € P} is Cauchyin 1 measure if and only if {Rp(fp): PEP}is
Cauchy in 11’ measure.

(ii) If (i) holds, then denoting the limit of Rj( fp) by Ry(f ), we have
(3.13) T[Ry(f)] ™ =T[R(1)]

The proof is omitted.

Elements of #(E, &, B8; S) will be called S-valued S-measurable functions and
the mapping R, defined by (3.12), Rz: £(E, &, B; S) - 2(Q, #,11;S) will be
called the B-lifting corresponding to (p, L, II).

Clearly, #(E, &, B3; S) contains S-valued cylinder functions. For, if f satisfies
(3.8) with P € 2, then for all P> P,P' €%, fp. =f and Ry(fp)= Rp(f).
This also shows that (3.12) holds for cylinder functions and hence the definition
(3.12) of Rp(f) for a cylinder function f does not contradict the previous
definition (3.9).

An equivalent description of the class Z(E, &, 8; S) which avoids the use of
nets is given by the following result:

LEMMA 3.4. Letf: E — S be such that for each P € P, fp defined by (3.11)
is (&p, #(S))-measurable. Then, f belongs to ¥(E, &, B; S) if and only if

there exists {P,} € P, P, 1 1, such that for all {P}} C 2,
(3.14) P,> P, for all k=1, {Ry(fp)} is a d*-Cauchy se-

quence.
" Further, if (3.14) holds, then for all {P}} C #,P,> P, Vk > 1,
(3.15) Ry(f)= klim in T1-probability R4( fp, )-
— 0

PROOF. Suppose f € Z(E, &, B; S). For each k > 1, get P, € # such that
forall P, PPe®,P> P, P’ > P,

(3.16) d*(RB( fp), RB( fpf)) <

Choose a sequence {P,} C #, P, 1 I such that P, > P, for all k. Then (3.14)
holds for this choice of {P,}.

For the other part, suppose (3.14) holds. Completeness of & (Q, #,11; S) under
the metric d* and the usual interlacing argument gives the existence of Z €
2(0, #,11; S) such that for all {P}) € @, P, > P, Vk > 1,

(3.17) Ry(fp) - Z in I1 measure.

We now show that (3.17) implies that the net { R,( fp): P € 2} converges to Z in
I1 probability. Suppose {R s(fp)} does not converge to Z. Then there exists an
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€ > 0 such that for all P € &, there exists a P’ € #, P’ > P, with
(3.18) d*(Ry(fp),Z) = e.

Now, for each £ > 1, choose P; € P, P; > P, such that (3.18) holds for P’ = P},
Then d*(Rg(fp),Z) 2 ¢ for all k. This contradicts (3.17). Thus, f €
ZL(E,é6,B;S) and (3.15) holds. O

The next result lists some properties of the mapping R 8

THEOREM 3.5.

(i) Let S=R. Then the space L(E,&,B;R) is a linear space and is
closed under pointwise multiplication of functions and the mapping
R, Z(E, &, B;R) - 2(Q, #,1I;R) is linear and multiplicative. Also, if
a<f<b, thenH(a<RB(f)<b)—1

(ii) For each k, let S, be a complete separable metric space and let S = X3 .S,
be the product of S,s with the product topology. S itself is a complete
separable metric space (under a suitable metric). Suppose f, €
L(E,&,B;S,) fork = 1. Let f: E — S be defined by

flw,h) = (fw,h),..., folw, h),...), (w,h) €EE.

Then f € L(E, &, B; S) and further

Rﬂ(f)= (Rﬁ(fl):“-,R[g(fk),...).

(iii) Let S,, S, be complete separable metric spaces and let U € %(8S,). Let g be a
continuous function from U into S,. Suppose f € L(E, &, B; S,) is such that
(rangef) c U and H(RB(f)QE U)=0.Theng-f e ¥(E,&,B;S,) and

(3.19) Ry(g°f)=28(Ry(f)).
Also, if f € ZX(E,&,B; S)) then g o f € #*(E, &, B; S,).
PROOF. (i) and (ii) follow from the definition of the mapping R p and the
properties of convergence in probability on countably additive measure spaces.

For (iii), first observe that for P € &, (g f)p [defined by (3.11)] is equal to
g fp and hence

RB((g °f)p) = Rﬁ(g° fp)
= g(RB( fP))'

Now, fI(RB( f) ¢ U) =0, continuity of g from U into S,, and the fact that
Ry(fp) = Ry(f) in 1I probability implies that Ry((g° f)p) — 8(Rp(f)) in I
probability. This proves (iii). O

(3.20)

We will now define [f dB for a suitable class of functions f. The motivation for
this definition is that the distribution of R;f under II can be considered as the
“distribution of f under B.”
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DEFINITION. Let
LE,.B) = [ €2, 6,6:R): [|Ry(1)1dlT < oo
and for f € Y E, &, B), define
dg= | R dri.
[ja8 = [Ra(f)

In view of Lemma 3.3, the class #(E, &, 8) and the value of the integral [fdf
for fe # Y(E, &, B) do not depend on the particular choice of the representation
(p, L, II).

The definitions given above subsume the definition of integration wrt a
cylinder measure n on (H,%). In fact, take @ to be a singleton {w} and let
A(w, -) = n. Then, we can identify (E, &, 8) with (H, %, n) in the obvious way.
Thus, all the notions defined on (E, &, B) have a similar meaning on (H, %, n). If
B is as above and (p, L, IT) is a representation of B, then since { is a singleton, p
is constant and we will call (L, IT) itself a representation of 8 (or n).

We will now introduce subclasses of #(E,&,B;S) and LE,&,B). The
elements of these subclasses satisfy a stronger approximation property.

Let #*(E, &,B;S) be the class of functions f from E to S such that for all
Pe P, fp defined by (3.11) is (&p, #(S))-measurable and for all sequences
(P,} C 2, converging strongly to the identity (written as P, 31 ), R(feP,)is
Cauchy in II probability. In view of the Lemma 3.4,

(3.21) #*(E,&,8,8) c #(E,&8,B;S)
and for f € ¥*(E, &, B;S),

Ry(foP,) > Ry(f) in II-probability
for all P, > I, {P,} C 2. Let

L(E,&,B) = {f e #%(E, & B;R):V {P,) C 2, P, > 1,

[Rol1z) = Ry D1dIL = o).

Again, it is easy to see that
(3.22) 2'*(E,&,B) c LYE,&,B).

The most commonly used definition of absolute continuity for finitely additive
measures is the following: Let p,, pu, be finitely additive measures on (D, 2),
where 2 is a field on D. Then g, is said to be absolutely continuous wrt p, if
given & > 0, there exists § > 0-s.t. for A € 9, p,(A) < § implies p (A) <e.
However, this does not imply the existence of Radon-Nikodym derivative. We
can only assert the following: Given any & > 0, there exists a simple function f,
s.t. |u(A) — [ f.dp,| < eforall A € 2. This is known as Bochner’s theorem and
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f. is known as an e-derivative of pu; wrt p,. [See Dunford-Schwartz (1958).] The
notion of e-derivative is not suitable for statistical purposes, namely for defining
likelihood ratios or conditional expectation.

Balakrishnan has used this e-8 definition in the context of cylinder measures.
Again, in his setup, absolute continuity does not imply existence of a
Radon-Nikodym derivative.

Gross’s notion of a Radon-Nikodym derivative for cylinder measures is also
unsuitable for statistical purposes, for roughly speaking, his Radon-Nikodym
derivative is a measurable function on the representation space.

We will use a stronger notion of absolute continuity—one in which the
existence of Radon-Nikodym derivative is built into the definition.

Let B, B, be quasicylinder probability measures on (E, &).

DEFINITION. B, is absolutely continuous wrt S (written as 8, < B) if there
exists a nonnegative function f € LY E, &, 8) such that forall F € &

(3.23) B.(F) = /E 1, fdB.

Further, f is defined to be the Radon-Nikodym derivative of 8, wrt 8 and will
also be written as df,/dg.

The following theorem gives some of the properties of the Radon-Nikodym
derivative in our setup.

THEOREM 3.6. Let B, and B, be quasicylinder probability measures on
(E, &), such that B, < B, i =1,2.
() If aj,a, € R, then (a,8; + a,B;) < B and

d d d
(3.24) (alﬂld; ashy) _ aldiﬁl + a271%.

(i) Ifg € #(E,&,B;S), theng € Z(E, &, B; S) and Ry (g) = Ry(g). Further,
ifg e L*E,8,B;S), then g € £*(E, &,By; S).

(iii) Suppose g € L*(E, &, B; R). Then

(3.25) g ¥ (E,&,B,) ifandonlyif g-(dB,/dB)< L (E,¢&,B).
Further, if g € $YE, &, B,), then

(3.26) ng- %%‘ -dp = [g- dB,.

.(v) If dB,/dB > 0 and Ry(dB,/dB) > 0 a.s. I1, then B < B, and

a8 _ [f’_fil_]“,

dp, dp

(3.27)
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PROOF. (i) follows easily from the definition. For the remaining parts, let
X = Ry(dB,/dPB) and let I1’ be the measure on ({2, &) defined by

(3.28) '(A) = fRB( )dH for d e 7.

Now let A € &7, and let C € ¥ be given by (3.2). Let
A={aeQ: p(a)eA,(L(h)(&),...,L(h;)(&)) € B}.
[Recall that (p, L, IT) is a (fixed) representation of 8.] Then,

(3.29) 1= Rp(laxc)
and hence
oo dp,
'(A) = fARB( o )dH
B, ~
(3.30) = Jiallaxe) RB( dﬁ) atl
ap,;
= /;Elec' 'ZE - dB
= ,Bl(A X C)'

Thus, (p, L, I1") is a representation of 8,. Let R, be the B,-lifting corresponding
to (p, L, I1’). Then, it follows from the definitions of R, R, that for a cylinder
function f,

(3.31) Ry(f)=Rp(f).

Since I’ < I1, convergence in II-measure for a sequence implies convergence in
IT’-measure for the same sequence. This observation along with (3.31) and
Lemma_3.4 implies (ii). For (iil), Rz(8) = Rp(g) by (i) and then R,(g) €

LY Q, #,11") if and only if Ry(g)- XE.?‘(Q ,11) which is the same as
(3.25). Also

JRa(&)d Tl = [Ry(g)- R,,( ’j;

whlch is the same as (3.26). For (iv), let g, = [dB,/dB]™". Since Ry(dB,/dB) > 0
a.s. II, (iii) in Theorem 3.5 (with S; =R and U = (0,»), S, =(0,%) and

g(x) = 1 /x) implies that
ap,\|!
e - [0 51

=XL
Thus, for F € &, taking f = 1, ~‘g1 and applying (iii) above, we get

/f -dp = [f-dp,,

)-dﬁ,
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which is the same as
[1rdB = [1,8,d8,.
Since F € & is arbitrary, this proves (iv). O

We will later define conditional expectation on the quasicylindrical probability
space (E, &, B) given a quasicylindrical mapping.

Let (E’, &)= (2, &")O(H’,%’) be another quasicylindrical measurable
space, where (£, o/’) is a measurable space, H' is a real separable Hilbert space
with inner product (-, -), and ¢’ = ¥(H’). Let #’ = #(H’) and for P’ € #’, let

Ch = {(P’) “'B: B a Borel set in range P’}
and as before, &} =/’ ® €}.

DEFINITION. A quasicylindrical mapping from (E, &) into (E’,&’) is a
mapping ¢: E — E’ such that for all P’ € #’, there exists a P € & for which

(3.32) ¢~ (&) S Ep.
LEMMA 3.7.  Let ¢ be a quasicylindrical mapping from (E, &, B) into (E’, &”).
Then, the set function B’ defined by
(3.33) B(F')=B(¢"'F"), Free
defines a quasicylinder probability measure on (E’, &").

PrOOF. Let P’ € 2’ and let B be the restriction of B’ to &4. Get P €
such that (3.32) holds. Then, clearly

(3.34) Bi = Bplo]™
and hence B} is countably additive on &4. O

The quasicylinder measure B’ is the measure induced by the quasicylindrical
mapping ¢ and will also be denoted by B[¢] ' Let ¢ = (¢,,¢,) where

¢,: E - Q' and ¢,: E — H’. The following lemma, stated without proof, gives a
representation Ry of B’ closely related to Rp.

LEMMA 3.8. Leth’ € H'. Then (¢,, ') and ¢, are cylindrical functions. Let
o', L’ be defined by
o= Rﬁ(¢1)
and
L(7') = Rg[(92, 1')'],

h’ € H'. Then (o', L’,T1) is a representation of B’. (o', L’,I1) will be called the
representation of B’ induced by the mapping ¢. Further, for any (S-valued)
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cylinder function g on (E’, &),
(3.35) Ry (g) = Ry(g°9).

REMARK 3.3. It is important to observe that (3.35) may not hold for all g
belonging to Z(E’, &, B’; S). It seems so because the families {gp: P’ € £’}
and {(g°¢)p: P € P} are not comparable.

In view of this, we consider the following class. Let ¢ be a quasicylindrical
mapping from (E, &, B) into (E’, &’). Let
“(¢) = %(E,&,B;S,¢)
={ge?(E",¢,B;5S): g°v€Z(E,&,B;S)
As observed earlier in (3.35), () contains cylinder functions.

We are now ready to define conditional expectation of a function
f e LYE, &, B) with respect to a quasicylindrical mapping ¢.

DEFINITION. If there exists a function g € #(¢) and go ¢ € LYE, &, B)
such that for all F’ € &,

(3.36) [11e(9)dB = [ge6 - 15(s)dB,

E E
then we define g o ¢ to be the conditional expectation of f given ¢ and write it as
(3.37) Ei(fl9) =g°9.

REMARK 3.4. We have not asserted the existence of a function g satisfying
(3.36). Also, in view of the requirement g € %(¢) (3.36) is equivalent to

(3.38) [f1e(9)dB = f glydp’, forall F’ e &
E E’

In our earlier papers, we had used (3.38) as the definition of conditional
expectation without requiring that g € %(¢).

The following theorem shows that the conditional expectation defined above
has the usual properties.

THEOREM 3.9. Let ¢ be a quasicylindrical mapping from (E, &,B) and let
B’ = Bo~\. Letf, f,, f, € LXE, &, B) be such that Ex( f|$) and Ex( f|), i = 1,2
exist. Then

(i) For a,,a, € R, Eg(a,f, + a,f,|¢) exists and
(3.39) E(a,fy + ayf5l9) = a,Eg( f1le) + ar Eg( fold).

(ii) Let g € %(¢) be such that f : g(¢) € LNE, &, B). Then [Eg(f19)]- &(¢) €
- PNE, &,B) and

(3.40) /E f-g(e)dB = fE Ey(10) - &(9)dB.
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(iii) If (f)* € LE, &, B), then [Eg(f|$)]* € LYE, &, B).
(iv) If (f)* € LNE, &, B), then

(3.41) [1i=Edi19)]"dB= min []-g(s)]"dp.

PrROOF. (i) Let g, = Ex(f;|¢), i = 1,2. Then linearity of Rj, R, [Theorem
3.5(1)] implies that a,g, + a,8, € %(¢). Also, for F’ € &7,

J[16(8) [a18(8) + a28:(9)] dB = a1 [ 1:(9)8:(9) dB + @z [ 15(6)8u(9) dB
=a, [ 10:(8)11dB + ay [ 15() FrdB

= j;glF'(¢) '[a1f1 + a, fz]d,B

and hence (3.39) holds.

Let 9, be the ¢ field on Q generated by the family %= {A e 1, =
Rp(1p (cp)) for some F’ € &’} augmented by IT null sets. Since &’ is a field and
the mapping R; is linear and multiplicative on £(E, &, B;R), # is a field and
hence from the definition of conditional expectation, for all D € @,,

(3.42) /DRB(f)df[ - fDRB[EB(ﬂqb)] dil.

We will show first that g € %(¢) implies that R,(&(¢)) is 2 ,-measurable.

If g is a bounded real-valued cylinder function on (E’, &), say g~ (&) C
#(R'), then g can be uniformly approximated by &p-measurable simple func-
tions g,. Since Rg.(g,) = Rg(8, ° ¢), and g, is a &) -measurable simple function,
it follows that Rj(g,) is 9,-measurable. Now g, — g uniformly and hence (see
Theorem 3.5) Rj.(8}) converges to Rg(g) in I1-probability and hence Rp(g)is
9,-measurable. Let g be any cylinder function. Let 7,: R — R be defined by
T(x)=xif —k <x <k and 7,(x)=(sgnx)- & if |x| > k. Then

RB’(Tk(g)) = 'Tk(RB'(g))

and hence Ry (7,(g)) converges to Rp(g). Thus R4(g) is & -measurable.

Now, let g € %(¢) be arbitrary. Then, get P} € %’ such that Rg(gp,)
converges to R (g) in [1-probability. Since Ry(8p,) is P measurable for all
k>1, it follows that R;(g) is 9,-measurable. Since g E «£(9), Ry(8(9)) =
Rg.(g). Thus, for any g € %(¢), Rﬁ(g(qb)) is 9,-measurable. Now, (3.42) implies
that

(3.43) En(Ry(1)19,) = Ry(Eq(f19))-
Now (ii), (iii), and (iv) follovx; from (3.43), the observation that Rg(g(¢)) is

2, measurable for all g € %(¢) and the standard properties of conditional
expectation in the countably additive theory. O
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4. The abstract statistical model and the Bayes formula. We begin by
recalling the definition of the canonical Gauss measure m on (H, %) [see Gross
(1962)]. Fix P € 2. Let dimension (range P) be k£ and let {e,,e,,...,e,} be an
orthonormal (ON) basis for range P. For C € %, given by

(4.1) C={h:(h,e,),...,(h,e,) € B}
for B € #(R*), define

1 \* 1k

(42) mi0)= (5= [ le@_c)exp(_Ej;xg)d,_c,

where dx denotes integration wrt the Lebesgue measure on R*. Using the
rotational invariance of the normal distribution or Gauss measure on finite-
dimensional Euclidean spaces, it can be checked that m , does not depend upon
the choice of {e,,...,e,} and that the family {mp: P € £} is consistent. Let m
on (H, %) be defined by m = mp on €p for P € #. Then by its construction, m
is a (finitely additive) cylinder probability measure on (H,%). m is called the
canonical Gauss measure on (H,%). The measure m is determined by its
characteristic functional

(4.3) fexp{i(h, h,)}dm(h) = exp(—4h,|%), forall h, € H.
H

Let (2, o,11) be a countably additive probability space and let &: (2, o/, 11)
— (H, #(H)) be a measurable mapping. Let (E, &)= (2, Z)O(H,¥). For
P e 2, let ap be the product of II and mp on &, = ' ® ¥p. Then, it is easy to
see that {ap: P € 2} is a consistent family and determines a QCP « on (E, &)
such that @ = apon &p. Clearly, the conditions of Theorem 3.1 are satisfied with
Mw, ) =m.
) We shall be working henceforth with a particular representation of a con-

structed as follows: First let (L, II,) be a representation of m whose existence
and special properties are assured by the following result.

THEOREM 4.1. There exists a representation (L, I1,) where II, is a prob-
ability measure on (R,, %2,) of m s.t. the mapping (w;, h) = Ly(h)(w,) is
measurable wrt o/, ® B(H). Further, if {e;} is any complete orthonormal basis
(CONS) of H, then

(4.4) Lo(h)= Y Ly(e;)(h,e;), Il-a.s.
J=1
Now taking (9, ,11)= (2, o, 1) ® (Q,, #,,11,), define p(&)=w and

L(h)(&) = Ly(h)w,) for & = (w,w,). Then (p, L,11) is the desired representa-
tion of a. It is easy to see that (4.4) implies

(4.5) L(R)(&) = iL(ej)([b)~(h,ej), fl-a.s.

Let e be the identity mapping on H. Considered as a mapping from (H, %, m)
into (H, %), e will be called Gaussian white noise.
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Abstract statistical model. We will adopt the usual convention of regarding a
function defined on either H or {2 as defined on E itself. With this convention, let
y: E - H be defined by

(4.6) y=¢(+e

so that for (w, k) € H, y(w, h) = {§(w) + e(h) = {&(w) + A.

We shall call (4.6) the abstract statistical model. It is the prototype of the
filtering model to be considered in Section 5. It is convenient to list below the
problems that need to be resolved before a satisfactory theory can emerge:

(1) Is it possible to speak of the distribution of the “observation” y in the
abstract model (4.6)? In other words, define the induced measure n = a[Y] ! or
more generally, the induced measure o[ @y] ™!, where Q is an arbitrary orthogo-
nal projection on H. In view of the work of the previous section, this can be
achieved by showing that y (resp. @y) is a QCM from (E, &, a) into (H, ¥) [resp.
into (H',¥’) where H' = QH and ¢’ = ¢(H")].

(2) To show that n is absolutely continuous wrt m and to evaluate the
Radon-Nikodym (R-N) derivative dn/dm.

(3) For an integrable function g on (9, o/, II) considered as a function on
(E, &,a) and for an orthogonal projection @ on H, show that the conditional
expectation E (g|Qy) exists and obtain a formula for it. The latter is the Bayes
formula which is the basic statistical tool in our theory and is the finitely
additive analogue of the formula obtained by Kallianpur and Striebel (1968) in
the stochastic calculus treatment of the filtering problem.

Before we can settle these questions we need several preparatory results. Of
these, Theorems 4.2 and 4.4 are concerned with mixtures of translates of the
canonical Gauss measure m on (H, ¢) and their R-N derivatives wrt m.

Let #(H) be the class of real-valued functions f on H of the form

(4.7) f(h) = fHexp((h,k — k2 dv(k), heH

for some v € A ((H) where # ((H) is the class of countably additive probability
measures on (H, #(H)). Since (h, k) — 1|k|* < |h|?, the integral in (4.7) exists for
each h € H.

THEOREM 4.2.
() F(H)c L'*(H,%,m).
(i) If f € #(H) is given by (4.7), then

(4.8) Ru(1) = [ exp(Lo(k) = 41EI?) do ().

Proor. Fix {P) C @, P, - I. Recall that (L,, II,) is a fixed representation of
m, so that under II,, Ly (k) is a normal random variable with mean zero and
variance |k|?. Also, if £, L k,, then L (k,) and L(k,) are independent. Now, for
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a fixed i, if {e,, e,,...,e;} is a basis of range P,,
fe(h) = f(Ph)
= [ exo((PR, k) = 3I&1%) dv(k)
H

J
- fexp( Y (hye,)(kye,) - %|k|2)dv(k)
r=1
and hence by the definition of the m-lifting R, for cylinder functions,

R,( fr)(wy) = fexp( ¥ Ly(e,)w)(kre,) - akv’) (k)
(4.9) r=1

= /exp(LO(Pik)(wl) - 1|&1?)dv(k), Tl-as.

as Pk =L/_.e(k,e,) and L, satisfies (3.3).
Let

(4.10) V(w,) = [exp(Lo(k)(w,) = 3Ik[?) dv(k).

Since (k, w,) = Ly(k)w,) is B(H) ® o/,-measurable, the integral in (4.10) is well
defined. To complete the proof, we will show that R, ( fp) = Vin £(Q,, ,,11)).
Let

(411) U= [ [ |exp(Lo(Pik) = $1kI?) = exp(Lo(k) — 31kI2)|dv(k) dIL,.
Then clearly

j;ZIRm(fR) - V|dI, < U,

and thus it suffices to show that U; — 0. Let P,* be the orthogonal complement
of P,. Then since k2 = P,k + P.* k, we have, using (3.3)

Lo(k) = Lo(Pk) + Lo( P* k).

This and Fubini’s theorem imply that

v= [/ exp(Lo( Pk) — §Pk|* Jexp(— §I P k*)

‘|1 — exp(Lo(P*%))|d11, | dv.

As observed earlier, under I1,, for fixed k, Ly P.k) and L,(P* k) are indepen-
dent and further, Joexp(Lo(Pik) — 1 P.k|?)dTl, = 1. Thus,

(4.12) U = ffexp —1IP RI2)|1 — exp(Lo( P k)| a1, dv.
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For € > 0, let

1 1
8(e) = ELH - exp(sx)|exp(— §|x|2) dx.
Then, 8(e) = 0 as ¢ — 0 and 8(¢) < 1 + e /2. Also, under II,, the distribution of
L(P* k) is normal with mean zero and variance |P;* k|2. Hence
fg 1 — exp(Lo( P &))|d11, = 8(|1P* k).
1

From (4.12) we then have
(4.13) U= [ exp(= 31" #1%)8(|P* k) dv(k).

H

As 8(|P*Ek|) < 1+ exp(3|P:* k|?), the integrand in (4.13) is dominated by 2.
Since P, 5 I, |P k| — 0 for all £ € H the integrand in (4.13) goes to zero for all
k € H. Since v is a finite measure, the dominated convergence theorem implies
(4.14) U, - 0. |

For C € % and h € H, let C — h € H be defined by
C—h={hy hy+heC).
If C € %, is given by C = P !B, B € %(range P), then
C—h={hy hy+heC}
(4.15) = {hy: Phy + Ph € B)
= {ho: hy€ P"Y(B — Ph)}

and hence

(4.16) C—-he %
Also, (4.15) implies that for C € €,

(4.17) C—h=C- Ph.

LEMMA 4.3. Let h € H and let m’ be defined by
(4.18) m/(C)=m(C - h), forC € .
Then m’ is a cylinder measure and m’ < m with

dm’
(4.19) o (k) = exp((h, k) — 1h?).

REMARK 4.1.  From the properties of Gaussian measures on finite-dimensional
linear spaces, it also follows that for C € %,, the mapping

B > mp(C - K)
from range P into R is continuous and thus for all C € ¥, the mapping
h-> m(C-h)
is continuous from H into R. In particular, ~ - m(C — h) is #(H )-measurable.



WHITE NOISE AND NONLINEAR FILTERING 1061

THEOREM 44. Letp € #(H).
(i) The set function n: € » R defined by

(4.20) m*(C) = me(c — h)du(h)

is a cylinder measure on (H,%).

(i) m* < m and

dm*

= — L2

o (1) = [ exp((, k) = 3141%) du(h).

(iii) #(H) c #*(H, €, m").

(iv) There exists a representation (L’,I1") of m* [11” is a probability measure on
(', &7")] such that

(4.22) (h,w') » L'(h)(«') is o’ ® B(H)-measurable.

™) If (L’,11") is any representation of n satisfying (4.22), and R/, is the
corresponding m*-lifting then for f € #(H) given by (4.8), we have

(423) w(£)(@) = [ exp(L(k)(&) = 3181%) do(k).

(4.21)

We now return to the abstract statistical model (4.6) and the questions raised
at the beginning of this section.

Let @ be an orthogonal projection on H. Let H’ be the range of Q. H’ itself is
a Hilbert space with the inner product (-, -)’, which is the restriction of (-, -) to
H' X H'.Let ¢’ = ¢(H’) and &’ = #(H’).

LEMMA 4.5. @: H — H’ is a quasicylindrical mapping and the induced
measure m[Q] ™! is the canonical Gauss measure m’ on H’.

The first two questions posed at the beginning of the section are answered by
the following result:

THEOREM 4.6.
(1) Qy is a quasicylindrical mapping from (E, &, a) into (H',¥’).
(ii) Letn’ = a[Qy]™!. Then n’ < m’ and

dn’ .
(') = fgexp((h’,%(w)) - 31Q¢(w)[)dIl(w), h' € H’.

4.24
( ) dm’

In particular, if n = a[y]™?, thenn < m and
dn . 2
(425) (k) = [exp((n,£(0)) - }[é(w)*])dTI(e), hEH.

PrOOF. Let C, € €5 C €', for P, € 2’ be given by
(4.26) C,= {h': PN € B}.
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B € %(range P)). Then P = P,Q € # and

D = {(a,h): @(w,h) € C,)
= {(w,h): Py(w, h) € B}
= {(w,h): P£(w) + Ph € B}
€ 6p.

Thus, Qy is a QCM from (E, &, «) into (H’,%’). Now, recall that ap, which is
the restriction of a to &, is countably additive and is equal to IT ® mp. Thus,
using Fubini’s theorem, we have from the definition of n’,

n'(C,) = a(D)
= aP(D)

(4.27)

- fgm,,(h: Ph + P§(w) € B)dTI(w)

(4.28) = [m(h: Qh+ Q¢(w) € P'B)dll(w) a5 P=PQ

= [m(: h+ Qi(0) € €) dTI(0)
asm' =m[Q]",C, = P{'B
= fgm'(c1 - Q(w)) dTI(w).
Thus, if p € #(H’) is given by p = TI[Q¢] ™, then
(4.29) n(C,) = jH m/(C, — k) dp(k)

and now (4.24) follows from Theorem 4.4. Of course, (4.25) is a special case of
(4.24). O

REMARK 4.2. Let C, € €’. Then
n(Q1C,) = a((w, h): &(w) + h € Q7'C,)

(4.30) = a((w, h): Q(w) + Qh € ()
=n'(C,)).
Thus,
(4.31) n=n[Q] "
LEMMA 4.7. Letg: H' — S and let
(4.32) &(h)y=g(Qh), heH.
Then

() g €L*H, ¢, m;S) = g€ UQ)=%H,%mS,Q)
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(i) g, € L*(H,%,n;S) = g€ Q)= %H,%,n;S,Q)
(iii) g, € £L*(H,%4,n;S) and g, € %(y)= %E,&,0;8,y) = g€ UQy)=
UE,&,a;8S,Qy).
THEOREM 4.8. Letg € #(H’). Then

g€ %Qy)=%E,&, a,R)
and
g(Qy) e £*(E,6,0;R).

We are now in a position to prove the main result, which answers the last
question raised at the beginning of this section.

THEOREM 4.9 (Bayes formula). Let g be an integrable function on (2, <7, II).
Then, E (g|Qy) exists and

OQ(ga Qy)

(4.33) E (g1Qy) = @)

where for k' € H’,
(430)  ogla, W) = [a(w)exp((#,Qk(w)) - 31Q¢(w)[') dTI(w)
and

og(1,h) = [exp((H',@¢(«)) ~ 31@¢(«)[') dT1(«).

ProoF. Because of the linearity of E (:|Qy) (Theorem 3.8) it suffices to prove
(4.33) for positive g such that [gdII = 1. For C, € %/, let

(4.35) ,(C,) = /E g(0)16(@(w, k) da(w, h).
We will first show that
(4.36) 4(C1) = [g(e)m(C = Q(w)) dT1(w).

The proof of (4.36) follows the proof of (4.28) in Theorem 4.6. If C, is given by
(4.26) for P, € #’ and P = P,Q, then

6(C) = [ £(@)16(@v(w, b)) da(a, 1)
= fg(w)lB(Pg(w) + Ph)dap(w, h)
(4.37) X
= ng(w)[mp(h: Ph + P§(w) € B)| dl1(w)

- fﬂg(w)m'(cl - Q¢(w)) dII(w).
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Hence, if ' € # (H’) is defined by
(4.38) w(4) = [g(o)a(E(w))dIl(w), A < B(H),
then from (4.36)

9C1) = [ m(C, — k) du(k)

and thus by Theorem 4.4, ¢, is a cylinder probability measure on (H',¢"),
¢, < m’, and

d¢g 7\ — ’ 2 ’
e (W) = [ exp((', ) = 3IRI?) di (k)

(4.39) = [gw)exp{(w,Qe(w) - §1Q8(0) ) d11(s)
= OQ(ga hl)'
Also, as observed in Theorem 4.6 [Equation (4.24)],
dan’
(4.40)

Also, Theorem 4.2 implies that R,,.(dn’/dm’) > 0 as.
Thus, by Theorem 3.6(iv), ¢, < n’ and

d¢g _ 0Q(g’ h,)
(4.41) (P = PXIN)
and hence
_ , GQ(g’ h/) ey
(442) 0(C) = [ LW 7y A ()

By Theorem 4.8, o4(g, ) and oy(l, -) belong to %(Qy). Since R, (0n(1,-)>0
as., R,(0g(1,-)>0as. Hence

OQ(g’ )
(4.43) 2, ) € %(Qy)-
(4.42) and (4.43) imply that for C, € %/,
Q(g Qy)
(4.44) 4(C) = [1a(@) G0y de

Now, (4.35), (4.43), and (4.44) imply that E (£|Qy) = [og(g, @)]/[06(1, Q)] T

. 5. Equations for the optimal filter: R<%valued Markov signal process.
In this section we formulate and solve the nonlinear filtering problem when the
signal process X = (X,) is an R%valued Markov process wrt a family (.%7,) given
on a countably additive probability space (£, .7, II). It is assumed that (X,)
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admits a transition probability function and that the paths X, are progressively
measurable wrt (=Z,), but (X,) will not be restricted to be time homogeneous. Let
m > 1 be an integer and let A: [0,7] X R¢ —» R™ be Borel-measurable such that

(5.1) [ h(X,)dt < 0, Tlas.
0

Here and in what follows, |- | denotes the norm on R™ and, generally on any
Euclidean space.

It is necessary first, to recast the abstract nonlinear filtering model and the
Bayes formula in a form which explicitly brings into focus the role played by the
parameter ¢. Let

H = {17 = (nl,n2,...nm): [0,T] - R™, |n € L2[O,T]}.
Then H is a real separable Hilbert space with the inner product

_ TE .
(5.2) (n,n)=f0 > ninldt
j=1

and norm ||9|| = (n,1)/% Let £{(w) = h(X|(w)),0 < s < T. In view of (5.1), for
IT almost all w, we have &(w): [0,T] > R™ with |&(w)| € L?[0,T] so that
¢ (w) € H. Since no loss of generality is involved we will assume that these
relations hold for all w. The progressive measurability of ( X,) and the conditions
on A imply that the map w — &(w) is (&, Z(H))-measurable, where #(H ) is the
o-field of Borel sets in H.

Let (E, &, a) be the quasicylindrical probability space constructed in Section
3. The abstract statistical model (4.6)

y=£(+e
now takes the form
(5.3) y,=h(X,)+e, 0<s<T,
where e = (e,) is the Gaussian white noise independent of the signal (X,) and y,

is the observation process.
Let @, for 0 < ¢ < T denote the orthogonal projection on H with range

(5.4) H - {n c H: j;T|ns|2ds - 0},

so that for n € H,
(@m)(s) =n(s), for0<s<t,
=0, fort<s<T.

Then, @,y represents the observation {y,: 0 < s < ¢} over the time interval [0, ¢].
Applying the Bayes formula Theorem 4.9 for @ = @,, we obtain the conditional
expectation formula for an integrable function g on (£, &7, II)

(g, )

(5.5) E (81Q.y) = 50)’
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expectation formula for an integrable function g on (£, <, II)

5(f,m) = [f(w)exp((n,Qi(e)) = 11Qé(w)[) dTI(w)
(5.6) n o t
-/ f(w)eXp( L [nini(X(w))ds = § [[1(X ()] dsdll(w)

For a Borel-measurable function f: R¢ > R, such that f(X,) is integrable,
writing

(5.7) "t( f""l)=6t( f(Xt)’n)
we have
ot( f9 y)
5.8 E (f(X = .
(5.8) (f( t)thy) o1, y)
Thus, the family {o,(f,n)} determines the conditional distribution of X, given
{y:0<s <t}

We shall now derive an evolution equation for {o,( f,n)}. This is analogous to
the Zakai equation in the usual nonlinear filtering theory.

Let # be the extended generator of X, and let 2 be its domain. [See the
Appendix for the definitions of .# and £. In the standard terminology, £ is the
generator of the [0, ) X R%valued time homogeneous Markov process (¢, X,)
and 2 is the domain of .#.] Let 9, be the class of functions f from R? into R
such that f, defined by

(5.9) fi(s,x) =f(x),  (s,x)€[0,00) XRY,
belongs to 2. For f € 9,,0 < t < oo, define &, by
(5.10) (Z.f )(x) = (£f)(¢t,x),

where f, is given by (5.9). Observe that by Lemma A.1, for f € 9,),
(5.11) {f(x,) - [(Zi)(x,)ds, &4} is a martingale.
0

The following theorem gives the white noise version of the Zakai equation for
the unnormalized conditional expectation o,( f, y).

THEOREM 5.1. Suppose that
(5.12) E["Ih(X,)[*ds < oo
0
Then, for all y € H and for all f € 9,

d m . o ,
(5'13) am( fs y) = Ot(*’?zf, y) + jglot(h{f, y)yt — Eot(lhtl f, y),

fora.e.t
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ProoF. Let q,(n,w)for n € H, w € Q, and 0 < ¢ < oo be defined by
510 an.0) = o £ [ o ds = 4 [{mOx()] |
Then, recall that [see (5.6),(5.7)]
(5.15) o(f,m) = [1(X(@)an,w)dTI(w).

Since (X,) is progressively measurable, g,(7, -) is #/,-measurable and hence we
have for an integrable g,

(516) Gt(g’ Tl) = &t(E(g/Mt)a 7’)‘
Fix fe 2, and 0 < ¢t < T. Let g2 @ — R be defined by

(5.17) g(w) = (Xp(e)) = [(L1)(X(0))ds.

Then (5.11) implies that E(g,|«,) = f(X,) and hence in view of (5.16), we have

(5.18) Ut(f,'l‘l) = 6t(gt7"7)~

Now, clearly, for all w € Q,n € H, g,, q, are absolutely continuous functions of ¢
and for a.e. ¢

d
(5.19) —8(0) = (Z,1)(X,(w)),
d m. . 2
(5.20) 2 2(me) = ;h{(X,(w))m—%Ihe(Xt(w))I q.(n, ).

Hence, g,q, is also an absolutely continuous function of ¢ and for all w € ,
n € H,and 0 < ¢t < T, we have

g0)ain,0) = go(w) + [(LF)(X()ayn,w)ds
(21) + L [a(@hX(0)nda,(n,0)ds

~ 1 [8)h (X)) g, o) ds.

Recall that by the definition of ¥ and 2, for f € 9,, f,%,f are bounded
(uniformly in ¢) and hence g, is also bounded (uniformly in ¢ for 0 < ¢ < T').
Integrating both sides in (5.21) wrt II and using Fubini’s theorem [which is
justified as %, f, g(w) are uniformly bounded and % satisfies (5.12)] we get for
n€Hand0<t<T, :

- G(gnm) = fggo(w)dn(w,)JrfO‘os(,gpsf,n)dg
(5.22) no t 2
+ L [a(eni(X)nin)ds = § [aln(X,) [ n)ds.
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Also, E(g,|<,) = f(X,) and (5.16) also imply

(5.23) G,(8.hi( X, )nlm) = o ( fhini,m)
and
(5.24) 5 h(X)n) = 0,(F1R,0%,7).

From (5.18), (5.22), (5.23), and (5.24) it follows that

o f.n) = Ego+ [0 & f,n)ds+ ¥ ['o fhini,n)ds
(5.25) ? =170

t
— 3 ['o,(f1h,[2 ) ds.
0
Now (5.13) follows by differentiating (5.25) and substituting y for 5. O

In the recent work on robust nonlinear filtering [e.g., Davis, (1979)] it is
customary to use the Stratonovich form of the Zakai equation of the Itd theory
and then to make the heuristic change from dY, to y, dt. The resulting equation is
precisely Equation (5.13). We shall comment on this in greater detail later in
Section 10.

For f such that f(X,) is integrable let us write

at( f1 17)
a,(Z,m)

so that II,(f, y) is the conditional expectation of f(X,) given @,y. Equation
(5.13) yields the following equation for IT,(f, y) which is the analogue of the
Fujisaki-Kallianpur-Kunita (FKK) equation in our white noise setup.

(5.26) I(f,m)=

THEOREM 5.2. Let h satisfy (56.12). Then for ally € H,

d m o
Eﬂt( f, y) = Hz(%fy y) + Z Hz( fh{ytj: y) - %Ht(flhtlzi y)
(5.27) mj'l
I, »| X Ht(h{ytjry) —%Ht(lhtlz,y) fora.e.t
j=1

Proor. We have, using (5.26)

[(d/dt)o(f,m)]o(L,n) = o f,m)(d/dt)o,(L,m)
[at(l’ 71)]2 .

Now, (5.27) follows from (5.13), (5.26), and the fact:that £1 = 0. O

G2) ST/ -

~ For0<t<coandn€ H,let Ty (n, -) and F(n, -) be measures on R¢ defined
* by

(5.29) Ti(n, 4) = [1(X{0)).(n,0) dT1()
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and
(5.30) F(n,A) = F(n, A)[T,(n,R™)]}, A e aR?).
Then it follows by standard arguments that for f such that E|f(X,)| < oo,

(5.31) o f,m) = [ f(x)T(n, dx)
and
(5.32) Ea( f(Xt)|sz) =II,(f,y) = j';df(x)Ft(y,dx).

Equations (5.13) and (5.27) are actually equations for the measures {I,(7, -)}
and {F,(n, -)}. Under stronger conditions on A, {I,}, {F,} can be characterized as
the unique solutions to (a slight modification of) equations (5.13) and (5.27). We
will consider this problem in a more general (infinite-dimensional) context in
Section 6. We specialize now to the case when X is a diffusion process (see the
Appendix for the definition) so that the paths X, are continuous. Moreover,
Cy%([0,00) X RY) € @ and for f € C}2([0, 00) X R%),

(5.39) (1)) = (51 |(00) (20 0. 9),

where

d 92
(@) =4 T ay(t,0)| om0 (60

(5.34)

.Y bt x)( )(t ©).

i=1

The coefficients a; ;, b; are measurable functions from [0, c0) X R ? into R, and the
matrix (a;;(¢,x)) is symmetric and nonnegative definite for each (¢, x) € [0, o0)
X R4

The following result shows that if the process (X,) admits a density wrt the
Lebesgue measure A on R¢ then the measures I,(7, ) also admit a density
p,(x,m) wrt A (called the unnormalized conditional density) which is a (weak)
solution of a second order parabolic differential equation.

THEOREM 5.3. Suppose that for each t, the distiibution of X, is absolutely
continuous wrt A. Then for all n € H, the measure I',(n, ) admits a density
p(x,m) wrt \. Further, for eachy € H, p,(x, y) is a weak solution of the PDE:

m

(5.35) px,) = Lrpla,3) +| T b)Y R o, ).
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REMARK 5.1. By a weak solution to (5.35) we mean that for all f € CP(R?)

d

ELdf(x)pt(x, y)dA = Ld[ft*pt(x, ¥)] f(x)dx
(5.36) .
+fR( L hi(x)y/ = $1h )| P, y) () d.

Proor. If A € B(R?) is such that A(A)= 0, then by our hypothesis,
El,(X,) =0 and hence clearly [see (5.29)], I,(n, A) =0 for all n € H. Thus,
I',(n, -) is absolutely continuous wrt A and hence admits a (¢, x)-measurable
version of a density, say p,(x,n) wrt A. Now (5.36) is the same as the equation
(5.13). This completes the proof. O

We now turn to the following questions:

(1) Under what conditions on a,b, h does the PDE (5.35) admit a unique
classical solution (unique within a class to be specified)?

(2) Under what conditions is the unique solution obtained in (1) the unnormal-
ized conditional density?

It should be noted that the second question is not trivial, for a priori, we can
only say that the unnormalized conditional density is a weak solution of (5.35).

We present two results which show that the PDE (5.35) has a unique solution
in a certain class, which is indeed the unnormalized conditional density. In both
results, no assumption of boundedness of A2 is made. The first of these assumes
merely that A is locally Hélder continuous and proves uniqueness for y in a
dense subset of H. The following lemma shows that given p,(x, y) for y in a
dense set in H, T,(x, y) can, in principle, be computed for all y in H.

LEmMA 5.4. If n; - m in H, then T(n;, -) converges to I')(n, +) in the total
variation norm.

ProoOF. It is easy to see that for each w € Q, q,(n;, )~ q,(n,») and
further, g,(n;, @) is uniformly bounded by sup,exp(3||n j||2) finite as n; - 7. This
implies the required result. O

THEOREM 5.5. Suppose that h: [0,T] X R¢ > R™ is a locally Holder con-
tinuous function. Suppose that the diffusion and drift coefficients a and b of the
signal process (X,) satisfy

(5.37) i a;i(t,x)z2,2; 2 K, i 22, 'K, <o,
i,j=1 i=1
for all (t,x), forall (z,,...,2z,;) € RY
ad 92 a
(5.38) a;;, a{ai/’a Waij’ b;, "@bt
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are locally Holder continuous functions satisfying the growth condition

(5.39) lg(2,%)] < Ky(1 + )"

for some K, < co. Suppose that the distribution of X, has a continuous density ¢
satisfying for some ¢ > 0, K5 < o0,

(5.40) |o(x)| < exp( K51 + |%?))* "

Let Hy= {y € H: Yy, is Holder continuous}. Then for all y € H,, the PDE

Ip(x,y) o
= =2 y) +| L Al ¥ = 3R P ),

Jj=1

(5.41)

with the initial condition
pO(x7 y) = ¢(x)’
has a unique solution in the class 9, where ¥ is the class of C**([0,T] X RY)
functions g satisfying the growth condition
(5.42) lg(t,x)| < exp(K4(1 + |x|2)1/2)

for some K, < oo.
Furthermore, the unique solution p,(x, y) (for y € H,) is the unnormalized
conditional density of X, given Q,y, i.e.,

(5.43) T(y,B) = fR 15(x)p(x, y) dN()
for ally € H, and for all B € B(R?), or equivalently,
(5.43) o f,) = [ f(x)px,y)dNx)

for every bounded, Borel function f from R? to R.

ProoF. In Equation (5.41), %* is the formal adjoint of %, so that,

() = % a6 s (o)

(5.44) b=t
d dg
+4 2 0(0)| 55 () + (6, 2)a(e ),
i=1
where »
d da;;
(5.45) br(t,x) = —b(t,x) + Y ——(t,x)
jo1 0%
and
ab;(¢t, x d 3%, (t,x
(5.46) er(tx) = — 3 kb __,_(_)
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It is easily seen that a, b* satisfy (5.38) and c* is a locally Holder continuous
function satisfying the growth condition (5.39).

Let c(t, x, y) = L™ hi{(x)y/ = 3|hx)|>. Then, for y € H, c(¢,x, y) is a lo-
cally Hoélder continuous function and
(5.47) c(t,x,y) < 3lyl> < K
for some K < o as y, is continuous. For y € H, fixed, let a differential operator
& be defined for g € C%([0,T] x R%) by

_ )
(5.48)  (ZLg)(t,x) = (Lrg)(t,x) + c(t,x, y)g(t,x) — ag(t,x)-

Taking H(t,x) = exp(K(1 + |x|2)/%#?), it can be checked that Z(H) < 0,
P*H 1Y) <0 for suitable K, B. [See Bodanko (1966) and Kallianpur—
Karandikar (1984a).] Thus, by Theorems 1 and 3 in Besala (1979), £ admits a
fundamental solution G(¢, x, s, z) and

(5.50) px,y) = fR 9(2)G(t,x,0,2) d\(2)

is a solution to Zu =0 with the initial condition py(x, y) = ¢(x). That p,
defined by (5.50) is the unique solution to (5.41) follows from the results of
Bodanko (1966). B _

The formal adjoint £ * of & is easily seen to be

_ ]
(L*g)(t,x) = (Lg)(t,x) +c(t,x, y)g(t,x) + ag(t,x)

= Zg(t,x) + c(t, x, y)g(¢, x).
Fix f € CP(R?) and 0 < ¢, < T and define v(s, 2),0 < s < £,z € R? by

(5.51) o(s,z) = /df(x)G(tO,x,s,z)d}\(z).

R
Then, by Theorem 2 in Besala (1979), v satisfies P =0, ie,
(5.52) ZLo(t,x) +c(t,x, y)o(t,x) =0, 0<t<t, x<R?

with the boundary condition
0(y, %) = f(x).
By the estimates on G in Besala (1979), it follows that v is bounded and hence

by the Feynman—Kac formula, Theorem A.3 (the conditions of Theorem A.3 are
satisfied as v is bounded and c is bounded above)

(5.53) v(0, X,) = En( f(XtO)exp(j:Oc(t, X,, y)dt)|o(X0)).
Thus

J#(2)0(0,2)dA(2) = Eqo(0, X,)
(5.54) = En( f(X,o)exp(fO’%(t, X, y)dt))

= ozo(f’y)'
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Using (5.40) and the estimates on G given in Besala (1979) it follows that

[ )o@ £(2)1G(t0, 5,0, 2) dA(x) dA(2) < oo
rRR
and hence by Fubini’s theorem, (5.50), (5.51), and (5.53), we have

[JGIpi(x, y)aNx) = [ f(x) [ #(2)G(2,x,0,2) dN(2) dN(x)

555 = [ #(2)] [ f®)6(t0,%,0.2) ar(x)] an(z)

= /';dcp(z)v(o, z2)dA(z)

=0t0(f’y)'

Since (5.55) holds for all f € CP(R?), it follows (by the usual arguments) that
(5.55) also holds for all bounded measurable functions. Hence, taking f = 15, we
get (5.43). This completes the proof. O

It is clear from Equation (5.41) that [dp,(x, ¥)]/dt cannot be continuous in ¢
for all y € H. Hence there can be no classical solution of (5.41) for every y € H.
However, in our next result we show the existence of a unique solution of (5.41)
(for every y € H) in a slightly weaker sense.

For reasons of convenience, we shall postpone the proof of parts (i) and (ii) of
the following theorem to Section 8. Here, we only prove (iii).

THEOREM 5.6. Suppose that the diffusion and drift coefficients a, b of the
signal process (X,) satisfy (5.37) and (5.38). Further suppose that the density ¢
of X, satisfies (5.40). For some suitable a > 0 let

Eexp(a|X,|?) < oo,
and for all i, j, k, suppose

(5.56) a;; is bounded;
5 57 B dh* d%h* dh*
(5.57) ’ oxt’ dx'ox’’ at
are locally Hélder continuous in (t,x) and
(5.58) :
dh* dh* d%h* dn*  an* dh*
k — S — . —— + - - - |, b—
ML S ‘?a‘f ox’ Zja,( axiox) | ox' axf) Z “ox

satisfy the growth condition (5.39). Then

(i) for every y € H, there is a unique p,x, y) such that (5.41) is satisfied for
a.e. t and .

(5.59) p(x,y)- exp[— g: hi(x)j(;tysids] €9,
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(ii) The mapping y — p(x, y) is continuous in the following sense: if y, = y in
H, then p(-,y,) converges to p.(-,y) uniformly on compact subsets of
[0,T] X R

(iii) For all y € H, the unique solution p,(x, y) of (5.41) is the unnormalized
conditional density, i.e., (65.43') holds for all y € H and for all bounded
measurable functions f from R¢ to R.

Proor. We will prove (i) and (ii) later. For (iii), observe that for y € H,, as
proved in Theorem 5.4, for all B € Z(R%),

(5.60) T, B) = [ 1a(x)pi(x, y) dN(x).

For B € #(R?%) bounded, by Lemma 5.4 and part (ii) above, both sides of
(5.60) are continuous functions of y and hence the denseness of H, in H implies
that (5.60) holds for all y € H. The restriction that B € #(R%) is bounded can
be removed by the usual arguments. O

REMARK 5.2. Note that A(x) = x3 (the cubic sensor) satisfies the conditions
of Theorem 5.5.

6. Equations for the optimal filter: Markov signal with general state
space. Our purpose in this section is to study the finitely additive white noise
theory in a more general framework so as to include applications to signal and
observation processes taking values in infinite-dimensional Hilbert spaces. The
chief difficulty here is the lack of a conditional density since there is no Lebesgue
measure (or any natural measure) in Hilbert space. The partial differential
equations of Section 5 are now replaced by finitely additive analogues of
measure-valued equations of FKK and Zakai and of a type of equations in-
troduced by Kunita (1971) and studied also by Szpirglas (1978). The equivalence
and uniqueness of solutions of these equations are established in the four
principal results of this section. The proofs, of which only an outline is given, are
based on auxiliary results on equations governing measures induced by mul-
tiplicative transformations of Markov processes. The full details are to be found
in Kallianpur-Karandikar (1984b).

Let & be a Polish space with its Borel o-field #(S) and let {X,}o_,.7,
defined on a countably additive probability space (2, #7,II), be an %valued
Markov process wrt a family (7,) of sub-¢ fields of «Z. We will assume that the
paths of {X,} are progressively measurable and that the process {Xt} admits a
transition probability function. Let {V;°} be the two parameter semigroup associ-
ated with {X,} acting on #(S, #(S)) and let {T,} be the one parameter semi-
group associated with X = (t, X,) acting on _#(S, B(S)), 8§ = [0, 0) X S.

Let % be the extended genera'tOI' of {T}} and let 2 be the domain of .£. (See
the Appendix.)

Let X" be a real separable Hilbert space with the inner product (-, -), and
norm || -||,. Let 0 < T < oo and let & be a measurable function from [0, T'] X
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S — X such that
(6.1) [ (X(o)[pds < o0,  T-as.o.

Let

62)  H=L[0,T],5) = {n:[0,7] > [Tn(s)Iyrds < oo

H is itself a real separable Hilbert space with the inner product
T
(m:m3) = [ (mi(s), mals)) o ds.

Let e = (e,) be the Gaussian white noise on (H, %, m), where m is the Gaussian
measure on (H, %). Let & (R, &, 1) > H be defined by

(6.3) ¢(w) = h(X,(w)), if(6.1)holds,0<s<T,

=0, otherwise.
The measurability of 2 and the assumption that paths of {X,} are progressively
measurable implies that £ is Borel-measurable. Let (E, &) = (2, «/)O(H, %) and
let o be the product of II and m constructed in Section 4. The abstract
statistical model (4.6) with H, ¢ given by (6.2),(6.3) on (E, &, a)

(6.4) y=¢(+e
now becomes
(6.47) ys=h(X,)+e, 0<s<T.
In this section, (6.4”) is our model of nonlinear filtering. For0 < s < ¢t < T, let
s $ 2 T 2
(65) H; = {n e H: ["Indu+ [In(wI’du o).

It is easily seen that H; is a closed linear subspace of H. Let @ be the
orthogonal projection onto H;. For the sake of convenience, we will denote H?
and Q? by H, and Q,, respectively.

For B € #(S),0<t< T, and n € H let T'(n)(B), F,(n)(B) be defined by

(66) T(n)(B) = [15(X,(0))exp|(n,Qut()) - 1|Q()[] aTI(w)
and

(6.7) F(n)(B) = [T(n)(S)] 'T,(n)(B).
Since (7, @ £(w)) — 311Q.£(w)|I* < L|Inl|% it is easy to see that for all n € H, Ly(n)
is a countably additive finite measure on (S, #(S)) and F,(n) is a countably
additive probability measure on (S, #(S)). Let .#(S) be the class of countably
additive finite measures on (S, #(S)). Then, T(n), F,(n) € .#(S).

The Bayes formula (Theorem 4.9) implies that for all bounded Borel-measur-
able functions f on S,

(6.8) E([(X,)|Q,y) = /S f(x)F(y)(dx).
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Thus, F,(y) is the conditional distribution of X, given @,y and in view of
(6.7), I',(y) will be called the unnormalized conditional distribution of X, given
Q.-

The next result shows that I,(y), F,(y) are .#(S)-valued random variables on
(E,&,a). Let n = o[ y]™ .

THEOREM 6.1. For 0<t< T,

(6.9) I‘,,F,e,?*(H,%,n; M(S)),
(6.10) I'(y),F(y) € *(E,&,a; #(S)),
and

(6.11) T,Fe%(y)=%E,&, a;H#(S),y).

Proor. Recall that .#Z(S) is itself a Polish space with a metric d,, given by
®© 1
do(l‘l’l"z) = Zl 57{ ffjdl-'q - ffjdl"z A 1},
j=
where f, = 1 and {f: j > 1} is a countable subset of C,(S) dense in the uniform

norm topology. [See Stroock—Varadhan (1979).] Consider the map g,: #(S) —
R* defined by

& (n)= {<fj’”>}j21’

where (f,u) = [fdp. Let U be the range of g,. Then the form of the metric d,
implies that g, is a homeomorphism onto U. Let g: U — #(S) be the inverse of
&,, which is continuous. Now, in view of Theorem 3.5, to prove the assertions for
{T’,}, it suffices to prove that for all j > 1,

(6.12) (f;,T,) € £*(H,¢,m;R),

(6.13) (1;,Ty)) € £X(E, &, a;R),

(6.14) (£, Ty € #(y) = %(E, &, ;R, ),
and

(6.15) (R.((f,T))} ., €U,  as,

where R, is an n-lifting. Now, it is easy to see that ( f;, I,) € #(H) and hence
(6.12), (6.13), and (6.14) follow from Theorems 3.5, 4.4, and 4.8.

Let L, be a measurable representative of n, L,;: H - £(Q,, #,,11,) say, and
let R, be the corresponding n-lifting. For a fixed ¢t € [0,T'], w, € Q, let A (w,) €
A (S) be defined by :

(6.16) _
Aw)(B) = [15(X(@))exp( Li(@e(@))(w1) = $Q(«)[) dTI(w).



WHITE NOISE AND NONLINEAR FILTERING 1077

Then, using Theorem 4.4, it can be checked that
(6'17) Rn(< fj’rt>) = <fjrAt(w1)>r Jj=1,

so that (6.15) holds. To prove the assertions for {F,}, observe that (6.17) implies
that

(6.18) R, ((1,T,(-))) >0, II-as.

Now, the assertions (6.12), (6.13), and (6.14) for F, follow from the correspondmg
results for I', (proved above), (6.18), and Theorem 3.5.

In Kallianpur—Karandika.r (1984b), it has been shown that the measures {I’,}
and {F,} satisfy equations analogous to Zakai and FKK equations, and can be
characterized as the unique solution to these equations. We will state these
results and outline the proof. We assume that the process {X,} satisfies the
condition A.13 (see the Appendix) and that A satisfies

(6.19) lhx)|x <a(s), VxesS
for a measurable function g on [0, T'] satisfying
(6.20) [a(s)ds < oo

0

THEOREM 6.2. Forally € H, {T(y)} satisfies
(H(E T = (1O, ). To(9) + [<(£1)(s,), T(5)) ds

(6.21) , \
LU0 2= SR} (5, ), T(2)) ds

forallf € 2.
Further, T'(y) is the unique solution of (6.21) in the class of measures {K,} on

(S, #(8)) satisfying

(6.22) for all A € #(S), K(A) is a bounded measurable
function of t and K (A) = El(X,).

THEOREM 6.3. For all y € H, F(y) satisfies
(F(E ) F() = (10,), Fo()) + [(&1)(s,), F )y ds

+ LURLY 2= 1RO (s, ), i) ) ds

= [{(), 2= 3O ), ()
(f(s,-), F(y)) ds '

(6.23)

for allf € 9.
" Further, F,(y) is the unique solutzon of (6.23) in the class of measures {K,} on
(S, #(8S)) satisfying (6.22).
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THEOREM 6.4.
(a) Forally € H, {T'(y)} is the unique solution of

(L)) = (VT
LU0 )= RO VI (), T5) ) ds

for all f € #(S, #(8S)), in the class of {K,} € #(S) satisfying (6.22).
(b) Define T/(y) inductively as follows. For B € %(S), let
Fto(y)(B) = Enlg(X,)

and for j > 0, let {f,T/*'(y)) be the right-hand side of (6.24), with T/(y)
instead of Ty(y).

Then T/(y) converges to T,(y) uniformly in t, in total variation norm on
M(S).

(6.24)

THEOREM 6.5.
(a) Forally € H, {F,(y)} is the unique solution of

(F, F(y)) = V., Fo(9))
+ L) 0)o= SR LVt F(5) ) ds

= LU0 )= HIRO) ()

«(Vef, F(y))ds
for all f € #(S, #(S)) in the class of {K,} € #(S) satisfying (6.22).
(b) Define F/(y) inductively, by

(6.25)

(6.26) F(y)(B) = E14(X,), B < %(S)
and for j >0, {(f,F/*%(y)) by the right-hand side of (6.25) with F/(y)
instead of F(y).

Then F{(y) converges to Fy) uniformly in t, in total variation norm on
H(S).

Outline of proofs of Theorems 6.2—-6.5. All the assertions in these theorems
are proved for each y € H, fixed. Let

2
(6‘27) gs(t’x) = (hs(x)’ ys).?t’— %”hs(!x)".)f‘
Then, by the definition of I,(y), it follows that for all B € #(S),
i ’ A t A
(6.28) LONB) = [l Rexp( [(8.(%,) ds | ar,

where X, = (¢, X,).
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Also the conditions (6.19),(6.20) on A imply that
(6.29) lg,(t,x)| < A(s),
where

A(s) = qZ +1yl%
and A satisfies

(6.30) fTA(s)ds < .

First, using the representation (6.28) and some elementary properties of the
semigroup {V;°}, it is shown that I',(y) satisfies (6.24) and uniqueness is proved
by a Gronwall-type inequality. Part (b) of Theorem 6.4 is proved by obtaining a
recursive estimate of the total variation of T,(y) — I/(y). Theorem 6.2 is de-
duced from Theorem 6.4 by showing that the equations (6.21) and (6.24) are
equivalent, i.e., {K,} satisfying (6.22) is a solution of (6.21) if and only if it
satisfies (6.24). The fact that F,(y) satisfies (6.23) follows from (6.7) and (6.21).
Then it is shown that the equations (6.23) and (6.25) are equivalent in the sense
described above, so that F,(y) satisfies (6.25). The uniqueness assertion in
Theorem 6.5 is proved by a Gronwall-type inequality. This and the equivalence of
equations (6.23) and (6.25) imply the uniqueness part of Theorem 6.3. The proof
of Theorem 6.5(b) is similar to that of Theorem 6.4(b). O

In the stochastic calculus theory of nonlinear filtering, the optimal filter has
been shown to be a measure-valued Markov process [see, e.g., Kunita (1971)]. The
same question arises in our theory. However, the optimal nonlinear filter F(y) is
a measure-valued process defined on a finitely additive probability space and no
definition of the Markov property in this context is available to us in the existing
literature. With a suitable definition of this property we have been able to prove
that F,(y) and I,(y) are Markov processes on (E, &, ). The Markov property
also holds if these processes are regarded as defined on (H, %, n). The proofs will
appear in a forthcoming monograph. Also see Kallianpur and Karandikar (1984c).

7. Likelihood ratios. The theory in Sections 3 and 4 can be used to derive
likelihood ratios in the finitely additive framework. Their applications to detec-
tion problems and to parameter estimation will be postponed for future consider-
ation. Earlier work related to the material of this section will be found in
Balakrishnan (1982).

In order to allow infinite-dimensional processes as well as random fields as
signals in statistical problems, in the abstract statistical model (4.6) we shall take

(7.1) H = L*[o0,T],x),

where " is a separable Hilbert space with inner product ( , ), and norm || - || 4.
H is a Hilbert space with inner product

(7.2) (n,m) = fOT(ns,n’s)xd?-
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Let (X,) be an S-valued process on a countably additive probability space
(2, #,1I), where S is a Polish space. Assume that the map (w, ) = X/(w) is
& X Bo, rmeasurable. Let h: [0,7] XS - X be a measurable function such
that

(7.3) fo "Nay(X) | ds < 0,  T-as.
Take
(7.4) ¢$(w)=h(X(w)), O0<s<T.

Then £ = (§,) is an H-valued random variable on (2, &, IT). Let e = (e,) be the
Gaussian white noise on (H, ¢, m), where m is the canonical Gaussian measure
on (H,%¥). Let (E,&,a)= (R, &, I1)O(H,%,m). Now the abstract statistical
model (4.6)

y=§&+e
considered in Section 4 takes the form
(7.5) y,=h(X,)+e, O0<t<T.

By Theorem 4.6, y is a quasicylindrical mapping from (E, &, a) into (H, €), the
induced measure n = af y] ! is absolutely continuous wrt m and for n € H,

L (n) = [exp{(n, (@) — () ) a1 ()
— (1) = ] exp{(n,s(w)) — 3] s(w @
(76) ™ @

= feo{ [ (ner (@) s = 4 [ )y ds ) aniCo).

For 0 < ¢ < T, let H, be the closed linear subspace of H given by
T
H,= (v H: [MIn,lds = 0}

and let @, be the orthogonal projection onto H,. Again by Theorem 4.6, @,y is a
quasicylindrical mapping from (E,&,«) into (H,, ¢(H,) = €,) and if n,=
a[Q,y] ", then n, < m, and for 4 € H,,

dn,

(7.7) am,

(m) = [l [ n (0)ivds = 1 ['len(0) s | aTi(o)

where m, is the canonical Gaussian measure on H,.
For 0 < ¢t < T, let p;: H — R be defined by

dn,
(@m), meH.
t

(78) pln) = =

It is easy to check that
(7.9) p,€Sf(H), 0=<t<T.
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PROPOSITION 7.1. {p,}y.;<r IS @ “martingale” on (H,%¥,m), i.e.,

(7.10) p:=E,(pr1Q), 0=<t<T.
Proor. First, (7.9), Theorem 4.4, and Lemma 4.7 imply that
7.11 dn, (
. € .
(711) e € (Q)
Now, if C € %, and C, = @;'C, then
dn,
J 1c(medm)dm(n) = [ 1c(n)——(n)dm,(n)  [by (7.11)]
H Ht mt
=n,(C)
(7.12) = a(Qty € C)
=a(y€ ()
=n(C,)
= lecl(n)pT(n)dm(n).

The relations (7.11) and (7.12) imply (7.10). O

In analogy with the usual terminology, we define p,(y) to be the likelihood
ratio for the model (7.5) for observations over the interval [0, ¢].
By the definition of p,, (7.8), and the expression (7.7), it follows that

(7.13) p(¥) = fg g, y)dIl(w),

where
(114)  ge,9) = exp( [(h(X(@), 5)rds = § [ X @) [ ds).

We will now obtain an alternative expression for the likelihood p,( ).
Let us recall that by the Bayes formula (Theorem 4.9) for a function f: S - R

with Byl f(X,)] < oo,
IL,(f) = E(f(X,)Q.7)

(7.15) 1
' =5 [1(X(@)ae, y)dTI(w).
For a measurable function g: S » X" s.t. E|g(X,(w))||%< oo, we define
1 .
(7.16) (&)= 0y [g(Xd@)ale, y)dM(w),

where the integral in (7.16) is a Bochner—Pettis integral. From the standard
properties of the latter it follows that for any k € ¢, .

(Hs(g)’k)f= Hs((g7k)1’)y
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so that for any k& € X", we have

(7.17) (Hs(g)’k)x= Ea((g(Xt)’k)lety)’

Hence we define II (g) given by (7.16) as the conditional expectation of g(X,)
given @,y on (E, &, a).
Formally differentiating, we get

d 1 d
S logrdy) = pt(—y)am(y)
d
- pt(l—y):i?fgq,(w,y)dn(w)
d
(7.18) _ ;(l;yfﬂ&zqt(w,y)dﬂ(w)

B ;(lyjfsz[(h‘(xt(“’)’yt)x) - %||ht(Xt(w))”if] g.(w, y)dI(w)

= (T1,(R,), 3) = 1L (125 )-

and hence as py(y) = 1, we get
(7.19) o) = exp [[(11,(h,), 3).r= L1115 )] .
We will now prove that (7.19) is true.
THEOREM 7.2. Assume that
(7.20) Ey fo (X, dt < oo.
Then

(7.19)  p(y) = exp[ fo (TL(h,), ) ds — & fo "I, (11, )13) ds]

PrROOF. We need to justify the interchange of the differentiation wrt ¢ and
the integral wrt « in (7.18). For this, first observe that clearly, g/ (w, y) is
absolutely continuous for all w, y and hence

qt(wr y) = ‘Io(w, y) + _/: Eds'qs(w, y)] dS
720 =1+ LX), 1)) = HALXCD ]

.qS(w’ y ) dS.
Integrating both sides of (7.21) wrt dII(w) and using Fubini’s theorem for
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interchanging the integrals on the right-hand side, we get

p9) = [ade, y)dTI(w)

(7.22) -1+ fO‘fQ[(hs(Xs(w), %)) = HRg@) % |

‘q(w, y)dII(w)ds.
Now, (7.22) implies that p,(y) is absolutely continuous and that (7.19) holds for
ae. tinf[0,T]. O
Multiparameter white noise. In the previous discussion, if we take
(7.23) A= L*(D, %p,\,R),

where D is a Borel subset of a Euclidean space, %, is the Borel ¢-field on D, and
A is the Lebesgue measure, then the white noise on H = L2([0,T], ¢’), namely,

e=(e(x):0<t<T,xe€D)

can be regarded as white noise indexed by (¢,x) € [0,T] X D as for 0 < s, < s,
< T, A € #, we have

[fe@aw]a= e

(7.24) s 74 s
= (e, l(sl,sz)(') : ]'A())

Hence the distribution of the expression on the left-hand side in (7.24) is

normal with mean zero and variance A(A) - (s, — s;). This fact can also be seen

by computing its characteristic functional. With the above choice of ¢, the
model (7.5) can be written as

(7.25) y(x)=h(X,,x)+ex), (t,x) € [0,T] x D,

where, for ¢ in [0,T] and 0 € S, h,(0,-) € X . It is easy to verify, using (7.17)
that for n € H,

(7.26) (L, (R0),m)r= [ (B, 0)m, (%) (),

From Theorem 7.2 it now follows that the likelihood ratio for the model (7.25) for
observations over [0, ¢] X D is given by the formula

i) = x| [ [ L2 0() M) s
(7.27)
—%’/()‘j})(ns(hs(.,x))2dx(x)ds .

Likelihood ratios involving random fields. In somewhat greater generality we
now consider a version of the model (7.5) in which the signal process (as well as
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noise) are multiparameter processes taking values in a possibly infinite-dimen-
sional separable Hilbert space. For simplicity we consider only the case of two

parameters.
Let T = [0,T] X [0, T]. We will denote a generic element (¢,, ¢,) of T by t. Let
X be a separable Hilbert space and let

T (T
(7.28) H={n1=ot: ["[Yin, 3 dtdt, < o)
0 Yo
with inner product
7.29 , ) =
(7.29) (mm)= [
Then H is a Hilbert space with this inner product.

Let the signal process {X,: t € T} be an S-valued random field, defined on a
countably additive probability space (£, 7, IT) where S is a Polish space. Let

T rT
'/0 ("t,,tg’ ntl,tg)xdtl dt,.

(7.30) hTXS->X
be a measurable function such that
2
(7.31) [ #g o Xe (@) dtrdt, < 0 Teas.
Define

(@) = h(X(w)); teT.

Then ¢ = (£,) is an H-valued random variable on (£, #7, IT). Let e = (e,) be the
Gaussian white noise on (H, ¢, m), where m is the canonical Gaussian measure
on (H,%). Let (E,&,a) = (Q, &, I1)O(H, %, m). Now, the abstract statistical
model (4.6) takes the form

(7.32) ¥, =h(X,) +e, teT.
Fort e T, t = (¢,¢,), let

H=(neH: fOTfO "mgli2 ds, ds, = [f Yl s, dss )

and let @, be the orthogonal projection onto H,. Then it is easy to see that for
t=(¢,1¢)

(7 33) (Qm)s = Ng» ifs, <t,s,<tys= (31, 32),

=0, otherwise.

Thus, @,y represents the observations {y,: s; < ¢, s, < £,}. Let 0, = a[@Q,y] "'
and let m, be the canonical Gaussian measure on H,. Then by Theorem 4.6, it
follows that

dn,
dm,

(7.34) (n) = fﬂqt(w,n)dﬂ(w), n € H,,
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where g,(w,n) is given by
b [t
Qt(“”n) = exP[/;fj(; l[((hsl,&(Xsth(w)), nsl,sz);y]

AN TR

fort = (¢,t,) € T,w € Q,n € H,. Let

(7.35)

(7.36) p(n) = (Qm) neH.

dmt

Then, as in the previous section, we will call p,(y) the likelihood ratio for the
model (7.32) for observations over [0, ¢,] X [0, ¢,], t = (¢, ¢,).
For a function g: S — R such that E|g(X,)| < oo, let

(7.37) M(g)= Ea(g(Xt)IQty)’
Then, by the Bayes formula, Theorem 4.9,
JECACNIACEILIE

Pt( y)

We now obtain an expression for p,(y) analogous to (7.19). For simplicity in
notation, we give the expression for the case 2= R.

(7.38) II(g) =

THEOREM 7.3. Assume that = R and

(7.39) EHLTLT,htl,tz(th»tz)
Then

4
dtdt, < 0.

4 [t
Ptl,tg(y) = exP(LIL2{A(31, S5 y) + B(Su Sg, y)

(7.40)
+C(sl,82,y)}d81ds2),
where
(T41)  A(s,85,9) = T, (B i) dee, = 310, [ Pan])
B(s, s, = [ [ s’[—Hsl,sz(hsl,uzhul,sz)ys,,,,zyul,sz
(7.42) ool Porr P 62) Yoo
’ I, o B2 P 0) Y

+ 10, (B2 LR ) ]du du,,
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and

Cls150, ) = [ [ [Maro Boin) Yorrn = 30 o 22,
(7.43) 00

: [Hsl,S2(hu1,sz)yul,sz - %Hsl,sz(hlztl,82)] du,du.,.

ProOF. Let us denote, for a fixed y € H,
(7-44) F(tptz) = IOg(Pt,,tz(y))~

Proceeding as in the proof of Theorem 7.2, it can be proved that:

(i) for fixed ¢,, F(¢,,¢,) is absolutely continuous in £,;

(ii) for a.e. t, (fixed), [dF(¢,,t,)]/dt, is absolutely continuous in ¢,;
(iii) [9F(0,,)]/ 9, = O;

(iv) [9%F(t,, t,)]1/(0¢, dt,) = A(t, t,) + B(¢,t,) + C(¢,,t,), where A, B, and C
are given by (7.41), (7.42), and (7.43) for y € H fixed.

Then,
AF(t,,t,) _ aF(0,t,) N ft' d%F(s,, t,)
(7.45) at, at, o s, ¢, !
_/t132F(81,t2)
o ds,dt, !
and
t. 3F(t1,82)
F(t,,t,)=F(¢,0)+ [ "————=
(818) = F(t,0) + [*—57== ds,
dF(t,,s,)
_ ty 15 °2
(7.46) = fo e 5

9%F(s,, s,)
to [t 17 °2
= ——— ds, ds,.
/0 /0 ds, ds, e

Now, (7.40) follows from (7.46) and (iv) above. O

: Further simplification of the formula (7.40) requires an extension of the Bayes
formula of Theorem 4.9 to a class of functions depending on both w and y. These
and other related problems concerning random fields will be investigated in our
later work.
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8. Robustness of the white noise theory and its consistency with the
martingale-theoretic approach. In this section we prove a series of results
whose main purpose is to show that the white noise theory of filtering is
consistent with the more familiar theory based on martingale calculus and 1t6
stochastic differential equations. We begin by showing in Theorems 8.1 and 8.2
that the conditional expectation E( f(X,)|%,Y) is the a-lifting of the conditional
expectation IT,( f, y) of the white noise setup and, in fact, that it can be obtained
as the limit in probability of a suitable sequence of white noise conditional
expectations. (In the spirit of Theorem 8.2 a similar approximation result for a
wider class of Wiener functionals is given in Theorem 8.4.) We next consider the
unnormalized conditional density p,(x, y), which has been obtained as the unique
solution of the finitely additive version of the Zakai equation. Roughly speaking
what we show is that, given any path Y in C([0,7],R%) and Y" a sequence in ¥
approximating Y in the uniform topology, the sequence of corresponding p,(x,Y")
converges to a unique limit p{(x,Y) [independent of the sequence (Y”")] which is
a version of the unnormalized conditional density of the conventional Zakai
equation. Moreover, the extension thus obtained is robust in the sense in which
that term has been used by recent writers [Clark (1978), Davis (1979), and
Pardoux (1982)]. Theorem 8.9 and the remark following it are devoted to making
the above statements precise. Corollary 8.10 yields a special result involving
polygonal path approximations that might be of independent interest. Inciden-
tally, the white noise filtering theory possesses an “internal” robustness property
which is described in Lemma 5.4.

In the course of obtaining Theorem 8.9 we also derive in Theorem 8.8 a
pathwise solution to the conventional Zakai equation essentially extending a
result of Pardoux (1982) for the case of unbounded 4.

We will first study the relationship between the finitely additive white noise
model considered in Section 5 [given by (5.3)] and the usual countably additive
model discussed in Section 2 in the signal-noise independent case [given by (1.2)]
for a given R%valued Markov process (X,) on a countably additive probability
space (£, &7, IT).

Let us recall that the model

(8.1) ¥y, =hy(X,) +e,
is given on the quasicylindrical probability space
(8.2) (E,&,a) = (2, ,I1)O(H,%,m).

Without loss of generality, we can assume that the model (1.2) in the signal-noise
independent case is given by

(8.3) Y,= [h(X,)ds + 2,
0

on (8, #,11) = (Q, &, 1I) ® (2, ,, I1,) where

(8.4) o = Co([0,T], R™)

is the space of continuous functions w,: [0,T] — R™ s.t. wy(0) =0 with the
topology of uniform convergence, and as in Section 2, I is the Wiener measure
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on (2, ;) and {Z,} are the coordinate maps on £, given by
(8.5) Z,(w,) = wy(t)

so that {Z,} is a Brownian motion under II,.

We will continue to use the notation established in Sections 2 and 5 with the
following exception. .

We will denote the unnormalized conditional expectation of f(X,) given &,”
by 6,(f,Y) [instead of o,( f,Y), which was used in Section 2] and the conditional
expectation itself will be denoted by fI,( f,Y). In this setup, 6,(f,Y) is given by

6.1, ¥(@) = [J(Xdess| £ [H(X(0) ()
(8.6)

=1 [ 1R X(0))[ ds | dTL(w),

where the stochastic integral in (8.6) is on the product space (2 X @, #® 7,11 ®
I1), so that {X,(w)},{Y(&)} are independent under IT ® II. This follows from
Remark 2.1.

Let L. H — Z(Q,, #,,11,) be defined by

m
T . .
(8.7) Ln) =Y /0 nidZ!, neH,
i=1

where [\ dZ} denotes the Wiener integral. It is easy to see that (L, I1,) is a
representation of m. In view of Theorem 4.1, we can and do choose a version of
L, such that (wy, ) = Ly(n)w,) is %7, X %(H)-measurable.

For & = (w,wy) € Q, let

(8.8) L(n)(&) = Lo(n)(wp)
and
(8.9) p(®) = w.

Then (p, L, fI) is a representation of «a (as observesl at the beginning of Section
4). Let R, be the a-lifting corresponding to (p, L, IT).

THEOREM 8.1. Forallf:R™ - R with E|f(X,)| < 00,0<t< T,

(8.10) R(IL(f, ) =1(f,Y),
(8.10) R(E(f(X)1Q.7)) = En(f(X,)I#).

ProOF. Because of linearity of II,(f, y), f[,,( f,Y) in f, it suffices to prove
(8.10") for positive f. Let L, be the representation of n = a[ y]™' induced by
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(p, L,T1) and R, be the corresponding n-lifting (see Lemma 3.8). Then
Ly(n)(w) = Ry((n, ¥))(&)

= R,((n,£))(®) + R((n,€))(&)

= (n,4(&)) + L(n)(&)

= (n,é(w)) + Lo(n)(wp),

[t o [t o .
= ¥ [wihi(X (@) ds + ¥ [nidZi(w), &= ().
i=1"0 i=1"0

(8.11)

Now, the Wiener integral can also be thought of as the Itd integral (of a
nonrandom function) and hence from (8.11)

6.12) L&) = | £ [ (@),
Recall that
(813) o (f.m) = [F(X(@))exp((Q(), ) ~ 11Qué(w) ) dTI(w)

so that

(8.14) o(f,m) =fHexp((n’,n — HIlI?) dv (),
where for B € #(H),
(8.15) v(B) = [f(X(0))15(Q4(w)) dII(w).

Thus, o, f, -) € #(H) and hence, by Theorems 4.4 and 4.6,

R (o 1,") = [ exp(Ly(w) = 3lim1I*) dv(w)
(8.16) T ,
~ oo £ [av- 1 s as(o).

Since the support of » is H,, we can rewrite (8.16) as
ot ¢
(817)  R,(o(f,-) =] exp( Y [uidvi-3f msu?ds)dvl(n),
H, i=1"0 Y
where for B € #(H,),
n(B) = [[1(X0)1a(Q(w)) dT1(w).

It can be seen that the right-hand sides of (8.17) and (8.6) are identical and hence
‘we get
(8'18) Rn(ot( f’ )) = 6t( f’ Y)'
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Now, by Theorem 4.8 (with @ = I and H’ = H), we have

(8.19) of,-)€u(y)=UE,& oR,y)
so that

(820) Ra(at( f,y))= Rn(ot(fa ).
From (8.18) and (8.20) we get

(8.21) R (o f, ) =6,f.Y).
Now, (8.21) for f = 1, implies

(8.22) R, (01, y)) = 8,1,Y)

and thus

R (o, f,
R(I(f,y)) = E((((+j))))

(8.23) _8(f,Y)

~6,(1,Y)
1(f,Y). O

The previous theorem shows that the “functional” fI,( f,Y) can be obtained
from the “functional” II,(f, y) via an ea-lifting. The next theorem will give a
better picture of this relationship.

Let 5# be the reproducing kernel Hilbert space of the Wiener space
(R4, &y, I1). It is well known that

dn
(8.24) H= {n: [0,T] > R™ n(0) =0and ¢ = = € H}

Let i be the identity mapping from 5# into €, which is continuous. The adjoint
map i * maps the dual Q¥ of @, into #* = . It is well known that i *(Q}) = ¢
where

(8.25) o, = {n € H: 7 is of bounded variation}

and the duality map ((-, -)) from 5, X , = R is given by
[ T i

(526) () = X [itrel(T) - i) di],
i=1l

where we take the right continuous with left limits version of 1#,, continuous at 7.
Such a version exists as n € 5#,. The integral [ wi(t)dq’ is to be taken as a
Riemann-Stieltjes integral. Observe that any P e #(5#) with (rangeP) C
can be extended to €, as follows. Let {¢ 1<j< k} C s, be a basis for
range P. Then
k

(8:27) Poy = E ((4,90))9-

j=1
It should be observed that f’wo is defined pointwise and no limiting procedure is
involved in its definition.
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Let 7: s#— H be defined by
(8.28) (n) = 4.
Then, clearly, 7 is a Hilbert space isomorphism (indeed, the norm on J# is

defined so that 7 is an isomorphism).
With these notations, we can state the next theorem.

THEOREM 8.2. Let {13j} C P(H) be a sequence such that

(8.29) (rangeIBj) c forallj > 1
and
(8.30) IA’J~—S> I, asj— .

Then for all f: R¢ > R s.t. E|f(X,)| < oo,
-(8.31) 1L,( f,7(PY(&))) - 11,(f,Y(&)) in II probability.

PROOF. As in the previous theorem, it is enough to prove the assertion for
positive f. Let P, € # = #(H) be defined by

(8.32) P =r1Pr !
We will first prove that for all j > 1,
(8.33) R, (o f,Pm)) =o(f, 7(BY())), TIl-as.

For thls fix j =1, and let ¢, ¢,,...,¢, bea basis of range P; and let ¢ =17Y¢,).
Then ¢,,...,$, is a basis of rangeP Now

ol . Bn) = [ F(X())exp((Bm, Q) — @) ) d1(w)
(8.34) i
-/ f(Xxw'))exp( % (60 )(90 Qu(e) - 5||Qtz<w'>||2) dTI(w)

and hence
R, (o f,Pn)) = [f(X(«))
(8.35) p( ¥ L,(6)(60 Qt(w1)

— 1Q£() "] d11(w).

Since <‘f>i S (rangef’l-) C J#,, using (8.12), (8.26), and the integration by parts
formula, it can be checked that

(8.36) Ly($) = ((¢,,Y)), Tlas.
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Hence
k 2
; L1(¢i)(¢iv taf(w')) = ; (((’]\bl-,Y(ib)))(T_qui,T_leg(w’))
k
(8.37) ;((%Y(w)))(tﬁm 'Q4(w))

Il

(RY(&’)?Tileg(w,)) [T-a.s.
( [RY(‘:’)] th(wl ) [T-a.s.
R

Il

Now (8.35) and (8.37) imply (8.33). Proceeding as in Theorem 8.1 we get
R (ot( fv n))
B E) = (ot )
(8.38) 5 f,7(BY(&)))
5(1,7(PY¥(a)))
= fIt( f,’T(PjY(J)))), II-a.s.

Now the required assertion follows from (8.38), Theorem 8.1, and the fact that
II,(f,m) € %(y)= %(E, &,0; R, y) (in view of Theorem 4.8). O

COROLLARY 83. For each k>1, let {0 =tf<tf< .- <tk =T} bea
partition of [0,T] such that
(8.39) lim sup |tf -t} =0.

k=00 1 <jcm,

For each & € Q, let Y)(&) be defined by

(640)  Yi(3)(s) = ¥(@)(eh )+ TENE) V@) (o

tf - tjl{l
for tf | <s < tf1 <j<my. Then for all f: R > R such that E|f(X,)] < o,
(8.41) I,(f,Y(®)) » [1,(f,Y(&)) in I probability,

where Yk(w) = (d/ds)Yk(w) Observe that here, Y, is the usual polygonal ap-
proximation to Y and Y is an approximation of the nonexistent “derivative Y
of Y.

This result can be deduced from Theorem 8.2 by identifying Y, with PkY for
an appropriate sequence { Pk} satisfying the conditions of Theorem 8.2.

Proceeding as in the proof of the previous result, we can also derive the
following result on approximation of Wiener functionals.

* THEOREM 84. Letp e # O( #) and let |, & be the Wiener functionals defined
by

a0 fa) = fon| £ [Ttz - 4 [T as | duta
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and
Y .
a)  ate = [onli £ [Tnazio)|duta),  Tga
o j=1 0

where (1! dZ! is a Wiener integral.
For § € 5, let f, g be functionals on 5 defined by

(8.44) f(0) —fexp( > f 7207 ds — éfOTImIZdS)du(n)-

and

(8.45) g(0) = fexp( Z f n’(?’dS) dp(n).
Then for all sequences {Pj} C P(¥) such that Pj 5 Iand (range 13j) C i,
(8.46) (BZ)>f in LY, #,,11,)
and
(8.47) g(Pz) -2 in £Y(Q ,11,)
asj — co.

The next corollary follows from Theorem 8.4 by choosing IA’I as given in
Corollary 8.3.

COROLLARY 85. Letf,g, f,2 be as in Theorem 8.4. Let {0 = tk < tk <
< t,’f,k =T}, k> 1 be a sequence of partitions of [0,T] satisfying (8.39). Let
Z(wy), wy € R, be defined by

“’O(tjl’e) _ wo(tjk_l) (S - tk—l)’

k _ 4k
2 7

(8.48) Zi(wo)(s) = wo(f,) +

fort} , <s <t}1<j<m, Then

f(Zk) - f in gl(QOrﬂorHO)
and

g(zk)“’g in gl(ﬂmﬂmno)'

In Theorem 8.2 we showed that the functional fIt( f,Y) can be obtained from
the functional I1,( f, y). However, the convergence in (8.31) is convergence in I1
probability and hence given an observation path Y, Theorem 8.2 does not show us
how to obtain ﬁt( f,Y) for this path Y from {II,(f, y): y € H}. We will now
show that under additional conditions on the signal process (X,) and A, the
unnormalized conditional density p,(x, ¥) of X, can be obtained as the continu-
ous extension of {p,(x,7Y): Y € #}, where 7 is the isomorphism between #
and H given by (8.28). As a consequence, Ht( f,Y) for a given Y can be obtained
as the limit of II,(f, Yk), where Y, € & is any sequence converging to Y in
uniform norm.
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Throughout the rest of this section, we assume that the process (X,) and the
function A satisfy the conditions of Theorem 5.6 [i.e., (5.37), (5.38), (5.40), (5.56),
(5.57), (5.58), and (5.39) hold].

Let Q* = {w, € Q,: t = w,(t) is Holder continuous}. Recall that Z, is the
coordinate process on 2, defined by (8.5). We will use Z(w,) to denote the path
Z,(w,) [so that Z(w,) = w,] for notational convenience. For each Z € Q*, con-
sider the PDE

av, d *°V,(x,Z)
—xZ 1 At x) ——————
(x )= Qi,Jz'ilaU( /%) ox* dx’
(8.49)
d ¥,(x,Z)
+ Y b(t,x, Z)——x—-—— + &(t,x,Z)¥(x,2),
i=1
where
. d a'j d P m o
— L 1
(8.50) bi(.’~’Z)——bi+ Zw+gzaijw(2h,2,)
j=1 Jj=1 \k=1
and
d b, d 9%,
é(""Z):_llhlz_ Z l+l Z l_‘J
2 /=1 0%, Qi,j=1 dx'dx’
d 82 m 9 m
+1 ) a;; - ( Yy thk ( thk)
(8.51) 2i,j=1 /| 9x"dx’ k=1 8xi k=1 o

d
| £
(?xj k=1
d d da. . P m
£ |[=p+ ¥ L —f(thZk) 5 —Zk
i=1[( j=1 3x1)‘9xl k=1 o k=1

Equation (8.49) is known as the robust form of Zakai’s equation and is
formally the equation satisfied by

¥(x,2) =f»t<x,z>exp(— 5 hi‘(x)Zf),
: k=1

where p,(x, Z) is a solution of SPDE (2.33).
Our first result is on the existence, uniqueness, and continuous dependence (on
Z) of the solution to the PDE (8.49).

THEOREM 8.6. Suppose the conditions of Theorem 5.6 hold. Then

(i) For all Z € Q*, the PDE. (8.49) with the initial condition ¥(x, Z) = ¢(x)
has a unique solution ¥,(x,Z) in the class 9.[See Theorem 5.5 for definition

of 9.]

(i) The mapping Z — ¥ - (-, Z) from Q* into C([0, T'] X R?) (equipped with the
topology of uniform convergence on compacta) is conlinuous.
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We are now in a position to prove parts (i) and (ii) of Theorem 5.6, which we
had not proved earlier.

PROOF OF THEOREM 5.6. For n € H, let

(8.52) pix,m) = \Ie(x,z>exp( 5 hz<x>z;'),
i=1
where
(8.53) zi= ["n.ds.
0

Here, ¥,(x, Z) is the unique solution to (8.49) in the class ¥. Using the product
rule, it is easy to check that p,(x,n) defined by (8.52) satisfies (5.41) for a.e. ¢.
Clearly also (5.59) holds. If p’ satisfies (5.59) and satisfies (5.41) for a.e. ¢ and if
¥’ is defined by

(8.54) ¥(x,2) = p;(x,n>exp( - ﬁhz(wz:),

where Z, ) are related by (8.53), then it follows that ¥’ is a solution of (8.49) and
belongs to the class ¢ and hence, in view of Theorem 8.6, ¥/ = ¥ and also
p’ = p. This proves part (i) of Theorem 5.6. Part (ii) follows from the definition of
P given in (8.52) and Theorem 8.6(ii). O

THEOREM 8.7. Fix f to be a bounded continuous function from R¢ into R
and let 0 < t < T. Recall that

6t(f:Z) = ff(Xt(w))

-exp( § fo‘hi(xs(w))dzz - éfo‘lhs(xs(w))lzds) d11(w),

where the stochastic integral [{hi(X(w))dZ! is the Ito integral on the product
space (2, «,11) ® (R, X, 1), II, being the Wiener measure on . Then
there exists a version o/( f,Z) defined for all Z € Q, of 6 f,Z), i.e.

(855) O';(f,Z) = 6t(f’vZ)7 II0 a'e'(Z)!
such that the mapping Z — o/(f,Z) is continuous from Q, into R (wrt the
topology of uniform convergence on {,).

For the proof we refer the reader to Kallianpur-Karandikar (1983b, Proposi-
tion 8.4). The desired version is given by

o(1,2) = [f(XtoNexs| ¥ (W(X(0))2 - [Zian,(x(0)

i=1

- [ o) s i),
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We are now ready to prove the two main results of this section. The first one is
on the existence of a “pathwise version” of the unnormalized conditional density
for the model (8.3).

THEOREM 8.8. For Z € Q* let Y/(x,Z) be the unique solution to (8.49) with
the initial condition ¥ (x,Z) = ¢(x) (see Theorem 8.6) and let p,(x,Z) be
defined by

m

(8.56) p(x,Z) = \P,(x,Z)exp( Y hf(x)Ztk), Z € Q*.
k=1
Note that since Z(w,) € @* I -a.e., Y(&) given by (8.3) belongs to Q* Il-a.s.
Then {p(x,Y(®)): & € Q} is a version of the unnormalized conditional
density of X, given %, [where Y is given by (8.3)], i.e., for f € C,(RY),

[i®)pl=Y)dx
(8.57) Eq( f(X)FY) = , [ae.
Jpd=Y)dx

Proor. Using the integration by parts formula, it follows that for n € H,
0<t=sT

(8.58)
[riX(@)n,ds = h(X()Z, =~ [Z,dh(X(0)), Tlae o,

where

(8.59) Z, = /’nsds, 0<t<T.
0

Let f: RY> R be a bounded continuous function. From (8.58) and the
definitions of o/( f,Z), o,(f,n), it follows that if n € H, Z € Q, are related by
(8.59), then
(8.60) 0,’(f,Z) = Gt( f,m).

Also, from (8.52) and (8.56), it follows that if 7, Z are related by (8.59), then we
have '

(8.61) p(x,Z)=p,(x,m), O0<t<T,x<R%
Now, (8.60), (8.61), and Theorem 5.5 imply that for all Z € 5#,
(8.62) o/(f,2) = [f(x)bx,Z) dx.

“The mapping Z — p,(x,Z) is continuous in the topology of uniform conver-
gence on compacta [by Theorem 8.6 and (8.56)] and also the mapping Z — o/( f, Z)
is continuous by Theorem 8.7. Thus, as 5# is dense in £,, the identity (8.62)
continues to hold for all Z € Q*.
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Now, as the measure II[Y]~! is equivalent to II, (on £,) the relation (8.55)
implies that

6t( fr Y) = Ot'( f, Y) f[-a.e.

= [H(x)b(x,Y)dx, Tlae.

since Y € Q* a.e. I1. This and the Bayes formula, Theorem 4.9, prove (8.57) for
all f € C,(R?). O

(8.63)

Pardoux (1979) has obtained the above result under conditions that are
somewhat different from ours and include boundedness assumptions on &,
dh/dt, dh/dx;, and d%h/(9x; dx ;)- More recently, Pardoux (1982) has shown it
under less restrictive assumptions that permit % to have linear growth. It may be
noted, however, that our proof essentially uses the Bayes formula and does not
rely on stochastic differential equations.

The problem of robust filtering in the unbounded case has also been considered
in Baras, Blankenship, and Mitter (1981) and Baras, Blankenship, and Hopkins
(1983). They show under certain conditions that Equation (8.49) admits a unique
solution ¥ but do not identify p, defined by (8.56) to be the unnormalized
conditional density—a point of considerable importance from the standpoint of
filtering theory.

The next result, whose proof is really contained in the proof of the previous
theorem, shows that (under certain conditions) the unnormalized conditional
density of X, for the model (8.3) is a continuous extension of the unnormalized
conditional density of X, for the model (8.1).

THEOREM 8.9. Suppose that the conditions of Theorem 5.6 are satisfied. Let
p(x,m) be the unnormalized conditional density of X, given by Theorem 5.6.
Then

(i) There exists a continuous function

(8.64) p(-,2): 9% > C([0,T] x RY)
such that for all n € H,
(8.65) b(x,Z)=p,(x,m), O0<t<T,xecR?
where Z € ¥ is given by
(8.66) z= | n, ds.
0

(ii) p(x,Y) is a version of the unnormalized conditiorial density of X, given FY.

'ProOF. Indeed, we have already shown that the choice of p given by (8.56)
satisfies all the requirements. O

REMARK 8.1. If the conditions of Theorems 8.8 and 8.9 are strengthened by
the assumption of boundedness in place of linear growth in (5.38) and (5.58) then
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these theorems remain true with @* replaced by {2, in their statement. For
Z € Q,, &(t,x,Z) may not be locally Holder continuous in (¢, x) so that we
cannot appeal to the results of Besala (1979) on parabolic PDEs with unbounded
coefficients. However, for fixed ¢, 0 < t < T,Z € Q,, &(¢,x,Z) is locally Holder
continuous in x and then instead, we can use Theorem 12 of Chapter 1 in
Friedman (1964) to obtain a solution ¥,(x, Z) of (8.49) for all Z € Q,,.

For the rest of the proof, the same arguments given earlier for the case Z € Q*
yield the required results. Then we have p,(x,Y) for every Y € Q,.

REMARK 8.2. Theorems 8.8 and 8.9 (and their versions with Q* replaced by
Q, under the stronger conditions as outlined in Remark 8.1) show that the
robustness results of the stochastic calculus approach to nonlinear filtering can be
obtained from the finitely additive white noise theory.

COROLLARY 8.10. Suppose that the conditions of Theorem 5.6 are satisfied.
Let {Y,} be the polygonal approximation to Y given by (8.40) where the sequence
of partitions {t¥} satisfies (8.39). Then Y, — Y uniformly and hence by Theorem
8.9,

(8.67) p.(-,Y,) > p.(-,Y), Tae.

In particular, for all continuous f: R% - R with compact support,
(8.68) o(f,Y,) - 6,(fY), Ta.e.

It follows from this and (8.23) that for such an f,

(8.69) 0,f,v,) - 0,fY), Iae.

9. Directions of further work. The theory worked out in this article is by
no means complete. We are aware of many questions that could be asked to
which we do not now have an answer. We conclude by listing some of the
problems that can be treated (and on which work is already in progress) using our
approach although a further development of the theory of Sections 3 and 4 might
be necessary to ensure complete success:

(1) Finitely additive white noise theory of prediction and smoothing.
(2) Robustness in the general (infinite-dimensional) measure-valued case.

(3) Innovations problem for the nonlinear filtering problem. [Some progress on
this problem has been made in the recent unpublished work of Seo and
Mazumdar (1984).]

(4) Applications of the theory to statistical parameter estimation and detection
problems and to random fields.

(g) Further analysis of the optimal filter as a functional of the observation y.

(6) Robustness of the filtering solution in a class of finitely additive models in
which the noise deviates from Gaussian white noise.
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(7) Discrete approximations to the filtering problem. (For discretization of It6-
type SDEs continuing work is reported by Pardoux and his colleagues
[Pardoux and Talay (1984)].)

(8) Extension of the white noise theory to the more general model in which signal
and noise need not be independent.

A very important and interesting problem is the study of the optimal filter as
a function of the observations. Lemma 5.4 (which has a very simple proof) gives
some information on this question. M. Chaleyat-Maurel, in a paper to appear in
the J. Funct. Anal., has shown that (for the signal and noise dependent case,
under the assumption that the coefficients are C*) the optimal filter in the
stochastic calculus theory is a C*® function of the observation, in the sense of
Malliavin. In other words, it possesses directional derivatives of any order in
directions belonging to the Sobolev space H'. It is natural to expect analogous
results to hold in the setup of the white noise theory.

We would like, in conclusion, to observe that the theory outlined in this paper
has not been developed in any polemical spirit, to be set in opposition to the
conventional theory that has so many brilliant achievements to its credit. From
one point of view, the white noise theory may be regarded as another “language”
in which to formulate and solve the nonlinear filtering problem (at least, in the
signal and noise independent case). The results of Section 8 show that it is
consistent with the “language” of the conventional theory. However, it is not
clear at this stage whether the white noise approach might not lead to robustness
results that have no counterpart in the conventional theory.

We thank one of the reviewers for his insightful comments and also for
providing the reference to the Chaleyat-Maurel paper.

Appendix

Markov process and its extended generator. Let (2, o/, 11) be a countably
additive probability space and let {.%,},_,.., be an increasing family of sub-o
fields of .7 such that ./, contains all II-null sets in /. For a measurable space
Sy, &), let #(S,, %)) be the class of real-valued bounded measurable functions
on (S, #)). Let (S, %) be a measurable space. Recall that an S-valued {,}-
adapted process {X,} is a family of mappings from Q into S such that for all ¢,

(A1) X,'Bes,, foralBe%.

DEFINITION. Let {X,} be an S-valued {%/,}-adapted process. Say that {X,}
is Markov wrt the family {7} if for all i>1,0<s<t < < .-+ ¢ < oo,
f € 4(S,, &%), where (S', &) is the i-fold product of (S, &),
(A.2) Ey(f(X,,X,,....X,)I#,) =8(X,), Ilas.

for some g € _#(S, ¥).
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The equation (A.2) is known as the Markov property and is usually given in
many equivalent forms. One of the most commonly used versions is

(A3) Eq(f(X,,.... X )1#,) = Ex(f(X,,.... X,)l0(X,)), Tlas,

which is easily seen to be equivalent to (A.2). [Here, o(X,) denotes the smallest o
field on © wrt which X, is measurable.]

We will assume that the process {X,} is &/, progressively-measurable, i.e., for
all ¢, the mapping (s, w) = X (w) from [0, ¢] X © is measurable wrt Z([0, t]) ® &,

We also assume that the Markov process { X,} admits a transition probability
function P(-, -, -, ), i.e., there exists a function

P: {(s,x,t,B):0<s<t<ow,x€S8,BES} >R
such that
() forall0 <s < t,x €S, P(s,x,t, ) is a probability measure on (S, ¥);

(i) for all ¢ < o0, B €%, the mapping (s,x) — P(s,x,t, B) is 2(0,t]) ® #
measurable;

(iii) forall0 < s <t < t,,x €S,B€ Y,
(A4) P(s,x,t,,B) = fP(s,x,tl,dz)P(tl,z,tz,B);
s

(iv) forall0 <s <t B€eY,
(A.5) Eq(15(X,)|%,) = P(s, X,,t,B), Il-as.

It should be observed that (A.2) implies the existence of a function P
satisfying (A.5), but in general it may not be possible to choose a version of P
satisfying the conditions (i), (ii), and (iii) above.

The Markov process {X,} is called time homogeneous if

P(s,x,t,B) = P(0,x,t — s,B)
for all 0 <s <t < o0,x €S,B c.%. In what follows, we do not assume that
{X,} is time homogeneous.

We want to remark that a Markov process on a finite interval [0,T] can be
defined exactly as before: We require that (A.2) holds for0 <s < ¢, <¢, < ---
< t, < T. In this case we say that {X,} admits a transition probability function
P(-, -, -, ) if there exists a function P: {s,x,{,B): 0 <s <t < T,x €S, B €%}
— R satisfying (i)-(iv) above, with ¢,¢,,t, < T.

Given an S-valued Markov process {X,}o.,.r Wrt {«/}, which admits a
transition probability function P, let us define

L, =Ap, t>T,
X, =X, t>T
and
P(s,x,t,B) = P(s,x,T, B), forallt > T,x,Bifs < T,

= 1p(x), foralls > T,t > T,x, B.
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Then it is easy to check that {X,},_,.., is an S-valued Markov process wrt
the family {.#7,} and that P(-, -, -, -) is its transition probability function.

Thus, all the definitions and results which we will give later for a Markov
process on [0, o) also apply to a Markov process on [0, T'].

We now associate a “two parameter” semigroup with the Markov process { X,}

as follows.
For f € #(S, &),0 <s <t let

(A6) (Ver )(x) = [F(§)P(s, %, ¢, ).

In view of our assumptions on P, it follows that Vf € _#(S, &) and that for
fEHLS #)0<s<t <t

(A7) Vef=Va(Ver).

The semigroup V; is related to the Markov process {X,} via the following
property, which can be checked easily using (A.5): For all f € #(S, ¥),0 <s < ¢,

(A.8) Eq(f(X)I) = (V7 )(X,). as. IL

We now want to define the notion of a generator of the Markov process { X,}.
We have not assumed {X,} to be time homogeneous and hence we first associate
a one parameter semigroup {7;} with the process {X,} as follows: Let S = [0, 0)
X S and let &= #([0, 0)) ® &. For f E/(S 5”),0 <t < oo, let

(A.9) (T,f)(s,x) = /Sf(s +t,¢)P(s,x,s + t,d¢).

It is easy to see that

(A.10) (T.f)(s,%) = [V, £(s + 2,)] (x).

From the property (iii) of P or from (A.7),(A.10) it follows that T, is a one
parameter semigroup, i.e.,

(A.11) TATf) =T, f
The semigroup 7, is related to the Markov process { X,} via the property
(A12) Eq(f(s+t, X, . )1,) = (T,f)(s,X,), Tlas,

which follows from (A.8), (A.10) or directly from (A.5). The relation (A.12) implies
(the well known fact) that the process X = (¢, X,) is a time homogeneous
S-valued Markov process wrt the family {.szf }, and that T, is the semigroup
associated with X in the usual terminology [see Dynkin (1964)]

For f,, f j(S &), say that f; = f weakly if f;, - f pointwise and {f;} is
uniformly bounded.

Let

: = {fef(8,P): T,f - f weakly as t | 0}.
We assume that ¢, is dense in H(S, 9), e,
(A.13) forall fe #(S,%),3f, €4,,st. f, = f weakly.



1102 G. KALLIANPUR AND R. L. KARANDIKAR

This is a technical condition on {X,} and means that (7} ) is continuous at 0

for a rich class of functions f.
Let 2 be the class of functions f € ¢, such that there exists g € ¢, satisfy-

ing for all ¢,
(A1) (Lf)(s,x)=f(s,0)+ [ (T.g)(s,x)du, (s,x) €.

Since in (A.14), g is required to belong to %, it follows that (T,g)(s, x) is a
continuous function of u. Thus (A.14) implies that

T.f—f
(A.15) . T8 weakly as ¢ |0
and thus (A.14) determines g uniquely.
For f € 9, let
(A.16) Zf =g,

where g is related to f by (A.14). £ will be called the extended generator of the
Markov process X, and 2 is the domain of %.
The following lemma gives an important property of the generator .Z.

LEmMMA Al. Letf € 2. Then

(A.17) { f(R,) - fo ‘(f )(X'u)du,&f,} is @ martingale.

ProoF. To prove (A.17), it suffices to show that for all s, ¢,
(a18)  En( (%) - [T(@)(R)duiw,) = ((R), Tlas.
From the definition of .#, we have
(A.19) (LX) = 1(&) + [1T(£DI(R,) du,
which in view of (A.12) implies

Eﬂ( f(Xt+s|‘Ms) = f(Xs) + _/:El'l(gf )(Xs—%u)l‘jys) du
(A.20) _ t
= f(Xs) + El’l('/(‘)("?f )(Xs+u)du|‘gs)‘

The interchange of conditional expectation and integral in the last step is
justified because of the assumption that the paths of X, are progressively
measurable. '

(A.18) now follows immediately. O

" REMARK. Using the condition (A.13), it can be proved that the class 2 is
large enough. Indeed, if (A.13) holds, then 2 is a “measure determining” class.
This fact is useful in the uniqueness assertions in Section 6.
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d-dimensional diffusion processes. An R%valued Markov process {X,} (wrt
the family o/, = ¢(X: s < ¢) V {II null sets} on a countably additive probability
space (2, o/,1II) having a generator .#¥ with domain 2 is called a diffusion
process if

(1) M{w: t > X,(w) is continuous} = 1 and

(i) C}3([0, ) X R%) € @ with
d 1 4 z
(£1)(5) = Hex) 4 5 ¥ atr)

2 i, j=1

(th)

dx; d9x;
(A.21)

5 b(t0) oL (1,2)
+ (t,x)—(¢,
b x) ox, (B %
for all f € C;-*([0,00) X R?), where a, j» b; are measurable functions and the

matrix ((a, (¢, x)) is symmetric nonnegative definite for all (¢, x).

The matrix-valued function a is called the diffusion coefficient and b is called
the drift coefficient of the process { X,}.

The question of the existence of a process { X,} with given diffusion and drift
coefficients a, b and when a, b characterize the law of {X,} has been treated
exhaustively by Stroock—Varadhan (1979).

The following moment estimate was obtained in Kallianpur (1980) under
stronger conditions.

THEOREM A.2. Let {X,} be an R%valued diffusion on (2, <, I1) with diffu-
ston coefficient a and drift coefficient b satisfying, for each T > 0,

(A.22) la, (t,x)| < Cp
and
(A.23) |b,(¢,%)| < Cr(1 + x|%)

forall0 € t < T,x € R% i, j > 1 and a suitable constant Cr < 0. Also suppose
for some C, > 0,

(A.24) Eexp(C| X,|?) < oo.
Then, for each T > 0, there exist constants C, > 0,C; < o0 [depending on the
constants Cr, C, appearing in conditions (A.22),(A.23),(A.24)] such that

(A.25) Enexp(C2 sup |Xt|2) < C,.
0<t<T

OUTLINE OF PROOF. When the process {X,} is given as a solution to an Itd
stochastic differential equation, the existence of C,,C; satisfying (A.25) is proved
in Kallianpur (1980, Theorem 5.7.2). First, an application of Lemma A.1 gives
that

Vi(t) = X; - /O‘b,-(s,xs)ds



\
1104 G. KALLIANPUR AND R. L. KARANDIKAR

is a martingale and its quadratic variation is given by
t
j;aii(s,xs) ds.

Using Burkholder’s inequality on moments of V, we can complete the proof
proceeding as in the above reference. A close examination of the various constants
appearing shows that C,,C; depend only on C;,C,. O

We will now derive the Feynman-Kac formula which gives a useful represen-
tation of a solution to a PDE. This formula is used in the literature under various
sets of conditions [see, e.g., Friedman (1976)]. It was proved in
Kallianpur-Karandikar (1984a) under the first set of conditions given in the next
result. An outline of the proof under the second set of conditions was given in
Kallianpur—Karandikar (1983b).

THEOREM A.3. Suppose {X,} is a diffusion process with drift coefficient b
and diffusion coefficient a and suppose that (A.24) holds. Let c: [0, 0) X R? —> R
be a continuous function. Suppose that v € CY*([0,T] X R?) is a (classical)
solution to the PDE

v d 9% 4 o
— +3 bio— + 0.
a " ® ,.,Jz.ila” aran, 2, T

Suppose that either (A.27) holds or that the conditions (A.22), (A.23), (A.28),
(A.29) hold where

(A.26)

(A.27) c is bounded above, v is bounded,

(A.28) |o(t,x)| < exp(K,(1 + |x|)), (t,x)<[0,T]xR?
for a suitable constant K, < oo,

(A.29) c(t,x) < K,(1 +|x)), (t,x)e[0,T]xR?

for some constant K, < .
Then, forall 0 <s < T,

(A.30) o(s, X,) = EH(U(T, XT)exp(ch(t, Xt)dt)|o(Xs)).

s

Proor. Fix 0 < s < T. Using “integration by parts formula” for local
martingales and the fact that v satisfies (A.26), it can be shown that

N(t) = o(t, X,)exp(/tc(u, X,) du), " s<t<T

is a local martingale. For the details of this step, see Kallianpur-Karandikar
(1984a). To complete the proof, we will show that N(¢) is a martingale which
clearly implies (A.30).
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If (A.27) holds, then N is a bounded local martingale and hence is a martingale.
If (A.22), (A.23), (A.28), (A.29) hold then

EH( sup |N(t)|) < Enexp((K1 + K2)( sup |X(¢t)+ 1})) < o0

s<t<T s<t<T

by Theorem A.2. Hence N(¢) is a martingale. This completes the proof. O
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