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ON STRONG INVARIANCE PRINCIPLES UNDER
DEPENDENCE ASSUMPTIONS

By ERNST EBERLEIN

Universitiit Freiburg

Strong invariance principles with order of approximation O(t'/%2~*) are
obtained for sequences of dependent random variables. The basic dependence
assumptions include various generalizations of martingales such as asymptotic
martingales (amarts), semiamarts, and mixingales as well as processes char-
acterized by a condition on the Doléans measure. Provided the partial sum
process is uniformly integrable, also martingales in the limit and games fairer
with time are included. Sufficient conditions for linear growth of the covari-
ance function of the partial sums are given.

1. Introduction and results. A number of strong invariance principles was
obtained in recent years under various dependence assumptions on the underly-
ing sequence. In particular, martingales, several classes of mixing sequences as
well as very weak Bernoulli processes were investigated [see e.g., Berkes and
Philipp (1979), Bradley (1983), Eberlein (1983), Kuelbs and Philipp (1980), Philipp
and Morrow (1982), and Philipp and Stout (1975)]. As is explained in more detail
in the introduction of the last mentioned reference, a strong invariance principle
with error term O(¢'/%2~*) implies essentially all classical fluctuation results. We
shall obtain this order of approximation in the following under two different sets
of assumptions on the sequence.

Let (x,), -, be a sequence of random variables. Denote S,(m) = X1 7x, and
in particular S, = S,(0). The basic assumption on the dependence structure of the
sequence (x), ., considered in Theorem 1 is that there exists § > 0 such that
uniformly in m

(1.1) |E[S.(m)#,]], < n'/27°,

where %, is the o-algebra generated by x,,..., x,, and || - ||; denotes L'-norm.
The symbols “ < ” and “O(+)” are used with the same meaning here.

Trivially, martingale difference sequences satisfy condition (1.1). Various con-
cepts to generalize martingales have been studied in the literature, in particular
quasimartingales, asymptotic martingales or amarts, and semiamarts (Edgar and
Sucheston, 1976). One has the inclusions {martingales} C {quasimartingales} C
{amarts} C {semiamarts}. Let (x,),., be a real-valued semiamart difference
sequence, i.e., (S,), - is a semiamart. This means if T' denotes the set of bounded
stopping times that (E[S.]), < 7 is bounded. By the Riesz decomposition theorem
(Krengel and Sucheston, 1978), S, can be written as S, = Y, + Z, where (Y,), -,
is a martingale and (Z,),., is a L'-bounded semiamart. Using the martingale
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property and the fact that the conditional expectation is a L'-contraction, we
obtain for some constant C > 0

”E[Sn(m)l'%n] ”1 =< ”Zn+m - Zm”l <C.

Thus semiamarts satisfy (1.1) even with a constant on the right side. If (x,), >, is
a real-valued amart difference sequence again by the Riesz decomposition theo-
rem (Edgar and Sucheston, 1976), S, can be uniquely written as S, =Y, + Z,
where (Y,), ., is a martingale and (Z,),, is an amart converging to 0 almost
surely as well as in L'. This implies

(1.2) Jim [ B[S, (m)Z,] ], = 0

uniformly in n.
Two further martingale generalizations are closely related. (S,),,, is called a
game fairer with time if for all € > 0

lim P[|E[Sy(m)%,]|> €] = 0

uniformly in n. (S,),., is a martingale in the limit if in this definition conver-
gence in probability is replaced by almost sure convergence. Edgar and Sucheston
(1977) and Blake (1978) proved that every real-valued amart is a martingale in
the limit. Thus one has the inclusions {amarts} C {martingales in the limit}
{games fairer with time}. Mucci (1973) [see also Subramanian (1973)] showed
that a game fairer with time (S,),., converges in L' if (S,),., is uniformly
integrable. (1.2) follows immediately in this case. If moreover (|S,|?),., is
uniformly integrable for some p > 1 then (S,), ., converges in L? which implies
(1.2) with L'-norm replaced by L ”-norm.
In Theorem 2 instead of (1.1) we shall assume

(1.3) |IE[S(m)#,] ], < €

for all m, n > 1 and some constant C > 0. Adapted mixingales (McLeish, 1975)
with coefficients ¢, such that ¥, . ¢, < oo satisfy (1.3). Another interesting class
having this property is characterized by a simple assumption on the correspond-
ing Doléans measure. Assume that the x, are integrable and let Jm, n] X F be a
predictable rectangle, i.e., m, n are positive integers, m < n and F € %,. Then
the associated measure or Doléans measure of (S,), ., [see e.g., Métivier (1982)]
is defined by

A]Qm,n] X F) = E[1x(S, - S,)]-
Now if a process (x,),.; has the property that there exists a constant C > 0
such that for all predictable rectangles

(1.4) [A(Jm,n] X F)| < CP(F),

then the process is contained in the class defined by (1.3). This follows im-
mediately from the fact that (1.4) is equivalent to the assumption

|E[S,(m)|%,]|<C as.

for all m, n > 1. The following class of sequences (x,),.; was considered by
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Peligrad (1981). Assume that for each fixed m the sequence (E[S,(m)|%,. D, -1
converges to a function U,, in L? and assume that the sequence (U}2),,., is
uniformly integrable. It is easy to see that these assumptions imply (1.3). A
subclass discussed by Peligrad are martingales in the L? limit. These sequences
are defined in the same way as martingales in the limit just by replacing almost
sure convergence by convergence in L2 Finally let us consider again an amart
difference sequence (x,), .. The Riesz decomposition given above has the prop-
erty that Z, converges to 0 almost surely. Therefore if there is a function Z in L2
such that |Z,| < Z, by dominated convergence (1.2) holds with L'-norm replaced
by L2-norm. In particular (1.3) is true.

The reason for introducing the more restrictive assumption (1.3) in Theorem 2
is that it has implications on the variance behavior of the partial sum process.
Linear growth of the variances of S, is an essential ingredient in the central limit
theory of dependent real-valued random variables. For the different types of
mixing conditions as well as for very weak Bernoulli processes, it is obtained from
suitable rates of the dependence coefficients with the help of correlation inequali-
ties [see e.g., Billingsley (1968), Bradley (1981), Eberlein (1979, 1983), and
Ibragimov and Linnik (1971)]. In those cases where the dependence structure is
given by conditional expectations, linear growth is usually taken as an assump-
tion (McLeish, 1975, Peligrad, 1981, Philipp and Stout, 1975, and Serfling, 1968).
It will be shown in Section 2 that for weakly stationary sequences, (1.3) implies
already that n~'Var(S,) converges to a finite positive limit provided Var(S,) —
o0 as n — oo. Moreover, the speed of convergence is of the order n~ /2. We shall
actually consider a more general situation. Throughout Section 2 let B be a real
separable Banach space with norm || - ||. Furthermore let B* be the dual space
with norm || - ||, and let E* C B* denote the subset of vectors of norm 1. For
B-valued random variables x, denote by 7, the covariance function of n~'/2S,,
ie.,

T.(f,&)=n""E[/(S,)&(S,)] (f,ge€B*).

We shall investigate (T,( f, &)),. ., denoting its limit by T( f, g) if it exists. Let us
recall that in this context a sequence (x,),., is weakly stationary if
E[ f(x,)8(x,)] = E[ {(x4,)8(xy,,)] forall k,n > 1 and f, g € B*.

Let us write S (m) = (S(m),,..., S,(m),) in case the x, are R%valued. For
the proof of the strong invariance principle itself which will be given for
R “valued random vectors we shall need an additional assumption. Suppose that
there exists § > 0 such that uniformly in m

(1.5) I E[S.(m)iS,(m);17,] = E[S(m)iS,(m),] |, < n*~*
for 1 < i, j < d. In the following two theorems the covariances (T,(m)); ; (1 <
i, ] < d) defined by (T, (m)), ;= n~'E[S,(m);S,(m);] will be considered. In

particular, we shall write (T},); ; = (T,(0)); ,. Denote by (u, v) the inner product
of the vectors u and v. ’

THEOREM 1. Let (x,),., be a sequence of mean zero R“valued random
vectors satisfying (1.1) for some 0 < 80 < 1/2. We assume that there exists a
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covariance matrix T such that uniformly in m
(1.6) (T (m));, ;- T,,<n™*
for some p > 0 and for all 1 < i, j < d. Moreover suppose (1.5) and that there
exists a constant M < oo and 8§ > 0 such that E[||x,||>*%] < M, then without
loss of generality there exists a Brownian motion (X(t)),,, with covariance
matrix T such that
(1.7) Y x, — X(t) < 127" a.s.

v<t

for some k > 0.

The phrase “without loss of generality” here is to be understood in the sense
that without changing its distribution we can redefine the sequence on a new
probability space on which there exists a Brownian motion such that (1.7) holds.

THEOREM 2. Let (x,),., be a weakly stationary sequence of mean zero

R %valued random vectors satisfying (1.3). Suppose that for each e € R? of
length 1, Var({e, S,)) > r(n) for some function r(n), r(n) - o asn — «. Then
the covariances (T,); ; converge. Denote the limit by T = (T, ;); ; (1 <1, j < d).
Suppose in addition (1.5) and that there exists a constant M < oo and § > 0
such that E[||x,]|>*%] < M, then without loss of generality there exists a
Brownian motion (X(t)),. , with covariance matrix T such that

Y ox, - X(t) < tV2* a.s.

v<t

for some k > 0.

For dimension one the assumptions made in Theorem 1 are essentially those
under which Serfling (1968) obtained a central limit theorem. The difference is
that we assume a certain rate of convergence in (1.6). Theorem 1 will be proved in
Section 3. The proof follows a method developed by Berkes and Philipp (1979)
that applies directly to random vectors. It has been pointed out by the referee
that in the real-valued case it is considerably shorter to prove the theorem by
using a martingale approximation and then Strassen’s martingale version of the
Skorohod embedding theorem. This is the approach systematically exploited in
Philipp and Stout (1975). Since the analysis of the covariance behavior in Section
2 provides us with (1.6) under the assumptions of Theorem 2, the latter is a
consequence of Theorem 1.

2. Asymptotic covariance.

PROPOSITION 2.1. Let (x,),., be a weakly stationary sequence of mean zero
B-valued random variables satisfying (1.3). Suppose E[||x,]|2]1 < p forallk > 1
and that there is a function r(n), r(n) = o0 as n = oo, such that Var(e(S,)) =
r(n) for alle € E*. Then T(f, g) exists for all f, g € B* and

(2.1) T.(f. &) = T(f, &) <|flllgllam™"?,
where the constant implicitly given by < depends on C, p, and r(n) only.
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REMARK. The uniform lower bound r(n) for the variances of the real-valued
partial sum processes (e(S,)),, »; is needed to make the constant in (2.1) indepen-
dent of f and g. The convergence result remains true if we assume only that
Var(e(S,)) = oo as n = oo for all e € E*. But then the constant in general will

depend on f’ = f/||f|l« and g’ = g/]18[lx-

LeEMMA 2.2. If e € E* then T,(e, e) satisfies for any k > 1
lTkn(e’ e)/Tn(e; e) - ll < 2C/r(n)1/2‘
In particular T,(e, e) is a slowly varying function of the integral variable n.
PROOF. Denote y; = X7_,x;_1),+; for j = 1,..., k then by weak stationarity
k-1
Var(e(8,;)) = kVar(e(S,)) + 2 X Ele(n)e(s + -+ +x.1)]-
=1

Because of (1.3) and Holder’s inequality
'E[e(yl)e(y2 + - +y1+1)] | <C Var(e(Sn))lﬂ,
which implies
| Var(e(8,))/Var(e(8,)) = k| < 2(k ~ 1)C/Var(e(S,)) ",
Dividing by % the result follows. O

LEMMA 2.3. Given any & > 0 there exist positive integers N and L both
depending on C, p, and r(n) only such that for all l > L and e € E* one has
(1= &)Ty(e, ) < Ty(e,e) < (1 + &)°T(e, e).

Proor. Since r(n) = oo by the preceding lemma one can choose N large
enough such that for any m > 1

1—e<T,y(e,e)/Ty(e,e) <1 +e.
Now choose an integer M such that
1-e<(1-¢)"?~(N%/r(N)M)
<1+ + (N2p/r(N)M)1/2 <1l+e.
Set L = NM then for any [ > L we can find an m > M such that mN <[ <

(m + 1)N. By Minkowski’s inequality we have Var(e(S))) < N % for all j=
1,..., N. Therefore

(1= e)Ty(e, €)* < ((1 — €)% ~ No2/(Var(e(Sy))(m + 1)) /)T (e, )
<((m+1)N)""?
X(Var(e(S(mH)N))w - Var(e(s<m+1)1v—:))l/2)

< Tye,e)"”
The other half of the inequality follows in the same way. O

1/2
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PrOOF OF PrROPOSITION 2.1. It is an immediate consequence of Lemma 2.3
that T(e, e) exists for all e € E*. Since T,(f, g) is a symmetric bilinear form
this implies that T(f, g) exists for all f, g € B*. Now let us notice that for
ec E*¥andforall 2,n>1

(1 - 2C/Var(e(Sn))1/2)Tn(e, e)<T,(e,e)<T,/e, e)(l + 2C/Var(e(S,!))1/2).
This can directly be seen from the proof of Lemma 2.2. The estimate
T.(e,e) — T(e,e) < n~'/?

follows from the last inequality by letting %2 tend to co and by using Lemma 2.3
again. To finish the proof of (2.1) we have only to use the representation

T.f.8)=2"YT(f+g& f+8&) —Tuf, f)—T.g g))

and linearity. O

3. Proof of Theorem 1. Let (x,), ., satisfy the assumptions made in Theo-
rem 1. It is clear that we can assume 0 < 8§ < 1.
LEMMA 3.1. There exists € > 0 such that uniformly in m
E [“Sn(m)“2+e] < nl+e/2.
€ can be chosen as ¢ = 2608 /5.

ProoF. The proof is a minor modification of the proof of Theorem 3.1 of
Serfling (1968). Assumption (1.5) implies that uniformly in m

(3.1) IE[1S,(m)1*12,] = E[IS,(m)1?] |, < dn'~?,
whereas (1.6) entails that uniformly in m
(3.2) E[1S,(m)|1?] < dn.

These are the two inequalities needed in Serfling’s proof. 8 = §8/5 is a suitable
value in Lemma 2.1 of his paper, satisfying 8 < 68 /(2 + 20 + §). ¢ was chosen as
2. 0

Now define for any integer 2 > 1

(3.3) N = N(k) = [ROV ], 1=0(k) = [RO+V/10-V]

and n =n(k)= NI where 0 <y <1/120 and 1/2 <A <1 are values to be
determined later and [r] is the greatest integer less than or equal to the real
number r. It is clear that for any 2 > 1 .

(3.4) 27IRIF/Y < g < BRIV,
We set t, = ¥, _,_,n(i) and -
(3.5) Xk = n~1/2Sn(tk).

Denote furthermore &7, , =%, then X, is &/,-measurable. Finally we put
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D, = n® where a = 08p/(4 + 2d)(5p + 68). For the proof of our theorem, we will
eventually apply Theorem 1 of Berkes and Philipp (1979) to the sequence
{X,, &,; k > 1}. The crucial part is therefore to get a good estimate A, such
that

(3.6) E“E [exp(i(u, Xk>)|ﬂk—1] — exp(—(u, Tu)/2) |] <A,

for all u with |ju|| < D,. For this purpose let % be fixed. The left-hand side of
(3.6) can be written as

E[|E [exp(i(u, X,))(1 — exp((u, T,(6)u)/2 = (u, Tu)/2))|# 1]
+E [exp((u, T,(t)u)/2 = (u, Tu)/2 + iu, X)) — exp(—(u, Tuy/2)\,_1] ]
<[1 = exp(u, (T,(t,) — T)u)/2)|
+exp(— (u, Tu)/2)E [| E [exp((u, T,(t)u)/2 + iCu, X)) = 117,_,] ]
=H, + H,.
An estimate for H, is easy to obtain from the inequality
(3.7) le* — 1| < 2|x|, x<1/2.

Since (1.6) implies |(u,(T(t,) — T)u)| < ||u||?dn=", we get for all u with
lull < D,

(38) H, <[(u,(T,(8) = T)uy| < n~0=20 = p=10,

Here we have written y(0) for the exponent for short. The same notation y(z) will
be introduced for the exponents in the following estimates. In order to estimate
H, we define for j =1,...,1

X, = n=1%8,(t, + (j — 1)N), Ay ;= F N
and
Jj-1
g’",j = exp i<u’ Z Xk,v> +jN<u) Tn(tk)u>/2n
v=1

: {exP(i<u’ Xk,j>) - exP(_<u’ Tn(tk)u>/2l)}

where £9_, is understood to be 0. Since £’ _, X,, , = X, we deduce

(3.9) ilg,,,j = exp(i(u, X,,) + (u, T,(t,)u)/2) — 1.
j=

By definition &/, _, C &/, ; for all j, therefore, |

(3.10) exp((u, Tu>/25H2 < Ié‘,lE“E[{n, JE A |].

The first factor in the definition of §, ; is &/, ;_,-measurable. This together with
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the fact that jN/n < 1 yields
|E[§n,j|ﬂk,j-1] | < exp((u, T,(t;)u)/2)
X |E[exp(i(u, X, ;) — exp(—(u, Tn(tk)u>/2l)|&¢k’j_1] |
Introducing this in (3.10) we see that
H, < exp((u, (T,(8) — T)u)/2)

3.1 d
(8.11) : ;E“E[GXP(K% Xk,j>)—exP(_<u’Tn(tk)u>/2l)l‘5yk,j—1]” .

Again with the help of (3.7) we see that the first factor is less than 1 + n77® < 2.
For the second factor we use the expansions

e*=1+ix—x2/2 +x2Q(x)/2 and e *=1-x+ N(x),
where |N(x)| < x%/2 for all x > 0 and |Q(x)| < min(|x|/3,2) for all x [see e.g.,
Ganssler and Stute (1977), page 364] and get the following upper bound for the
Jth term in this sum

IWIE [|E [Ce, X, |2, 1] ]
+2_1|IU|I2E[|E[<3’ Xk,j>2|‘2{k,j—1] — (e, Tn(tk)e>/l]]

+27 Y ul’E “E[(e, X, y'Q((u, Xk,j>)l‘%k,j—l] ”
+|N((u, T(t)u)/20) [ = Ly + Lo + Lg + Iy
We have introduced e = u/||u| here. Remember that we consider u with ||u|| < n*.

Assumption (1.1) implies

1
Z I, L < ”u“ln—l/2Nl/2—0 < peta-M-1/2+\1/2-0)
(3'12) .I=1 ’

= p~(A/2-1/2-a+M0) _ p-¥(1),
Here we made use of the relations

< N<n* and n'*<l<nl™,

which follow from (3.3) and (3.4). (1.6) implies that |{e, T,(¢,)e)| < d. Using the
estimate for N(x) we derive

l !
Ly< X llull![<e, T(t)e) | /81
(3.13) E’l it El” 1| <es T(t)ed |/

< "u||4l—1 < n—(l—)\—4a) — n—y(4).

Now we turn to I; ,. .
2"“”_211',2 < n'lE[lE[<e, SN(tk +(J - I)N)>2|*%,,+(j-1)N]
~E[(e, Sy(ty + (- DN)Y] ]

+17Y (e, Ty(t, + (J — )N )e) — (e, T,(;)e)].
By (1.5) the first term is bounded by C,n~'dN 1-9 for some constant C; > 0.
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Using (1.6) twice we see that the second term is bounded by

Cyl"'d(N™ "+ n=?) < I"'N~* where C, > 0 is another constant.

Consequently,

l
Y I, <27 u|) (N ln~t + N°°)
(3.14) /=
< n—(o)\—Za) + n—()\p—2a)
=n"Y@ 4 p=Y®

For the remaining term I; ; we shall need the inequality given for @(x). Now
_ 2
20ull ™1, 5 < E|(e, X, ;5 ['|Q((, X, ))]].

We split this expectation in the two parts A = {|| X, || > 1} and A° = {1 X5, S
< 1} and apply the inequality |Q(x)| < 2 over A and |Q(x)| < |x|/3 over A°. By
Lemma 3.1 we get in the first case

fA <20 'E[IS,(t + (J — DN)|J21,]
< n—(l+e/2)N1+s/2 = l—(1+e/2)

and in the second case
[ <37 IEQIX, 7]

< ”u“n—(1+e/2)N1+e/2 - ”u"l—(1+s/2)'

Putting the two results together yields

l
(3 15) Z Ij,3 < ”u”3l—e/2 < n3al—08/5
. j=1

< p~(@=M88/5-30) — p—¥(3),

From (3.8) and (3.12)—(3.15) we conclude that there exists a constant M, such
that

(3.16) Ay=Myn,

where vy’ = min, _,_v(i). By Theorem 1 of Berkes and Philipp (1979) we can
redefine the sequence (X,),., on a richer probability space together with a
sequence (Y,), ., of independent N(0, T')-distributed random vectors such that

P[”Xk_ Yl = U‘k] <@,
where
' a < dn”"log n® + n~Y/2*%d 4 P[|N(0, T)| > n°/4].

Since (1.6) remains true if we make p smaller we can assume p < 2623 /(5 + 268).
Now if we choose A = 68 /(5p + 68) and y = a/2, we see by elementary computa-
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tions from (3.8) and (3.12)-(3.15) that
(3.17) Yy <y(i)/2 — ad foreachi=0,...,5.
This means y < y'/2 — ad therefore
a, < nY< k)
which implies by the Borel-Cantelli lemma
(3.18) | X, — Y,|| < k@Y as,

Since (Y},),, -, are independent Gaussian random vectors, we can assume without
loss of generality that there exists a R%valued Brownian motion ( X(¢)) ¢ 0 With
mean zero and covariance matrix 7T satisfying

(o1 = ) A X(tper) = X)) = Y, (k2 1).
Therefore, by (3.4) and (3.18)

L1

Z X, — (X(tk+1) - X(tk))

v==1,+1

=n(k)?| X, - Y, || < RAMA2v-D 5

-1
If we sum over k£ and use k%*Y < ¢t,,, we get

k
< ¥ jAHnas2y-n ¢ paena/zy-n+1

J=1

L

Z X, — X(tk+1)
v=1

< {2 as.
Given t > 0 we choose k such that ¢, < ¢ < ¢,,, then

t

X x,

v==1+1

L5~ X(0)]<| £ x, - X(0) + +1X(2) - X(8)]|

v<t

Our proof is finished if we show that there exists k > 0 such that with proba-
bility 1
¢

X x,

v=4+1

max < e

by <t<lp,

and
sup || X(¢) — X(¢,) | < ¢/*7~.

Ge<t<t,
The first of these two statements is shown analogous to the proof of Proposition
2.2 in Kuelbs and Philipp (1980). Here we need Lemma 3.1. The second statement
is standard. O

REMARK. The verification of (3.17) shows that the relevant terms in the
estimation are (3.15) and the second term in (3.14), i.e., the exponents y(3) and
¥(5). This is because we considered without loss of generality small values of p.
For large p, y(5) is no longer relevant. In order to get the best (i.e., largest) value
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of y in this case, one has to choose A and a appropriately such that y(1) and y(3)
become large. The best choice for A in this situation is (208 + 5)/(268 + 5 + 100).

Acknowledgment. I wish to thank the referee for his clarifying comments
which helped to improve the paper.
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