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DIFFUSIVE CLUSTERING IN THE TWO DIMENSIONAL
VOTER MODEL

By J. THEODORE COX! AND DAVID GRIFFEATH?

Syracuse University and University of Wisconsin

We study the behavior of an interacting particle system known as the
voter model in two dimensions. This process provides a simple example of
“critical clustering” among two colors, say green and black, in the plane. The
paper begins with some computer simulations, and a survey of known results
concerning the voter model in the three qualitatively distinct cases: three or
more dimensions (high), one dimension (low), and two dimensions (critical).
Our main theorem, for the planar model, states roughly that at large times ¢
the proportion of green sites on a box of side ¢*/? centered at the origin
fluctuates with a according to a time change of the Fisher—Wright diffusion.
Some applications of the theorem, and several related results, are described.

1. Introduction. Start by coloring each site of the two dimensional integer
lattice Z?2 either green or black at random. Now consider a stochastic process
which evolves according to the following very simple dynamic: At any time ¢ > 0
each site waits an exponential holding time with mean 1, chooses a neighboring
site (distance 1 away) at random, and gives that site its color. We have written a
computer simulation of this evolution on a 512 X 256 box with periodic boundary
conditions and about 5,000 changes of state per second. Figures 1-3 show the
“movie” at various times. '

The pictures clearly show that our process, known as the two dimensional
voter model, clusters as time goes on. The central objective of this paper is to
formulate and prove some precise mathematical statements concerning the clus-
tering. Perhaps the most basic question to answer is: How big are the clusters at
a large time ¢? We will prove a theorem which effectively answers this question,
and gives a good deal of quantitative information about the spatial correlations.

The organization of the paper is as follows. Section 2 contains a survey of
known results concerning the voter model. The dynamics described above define
a stochastic process on the integer lattice Z¢ for any dimension d, and it turns
out that the behavior is qualitatively different in the three cases d =1, d = 2,
and d > 3. We review these distinctions in order to illuminate the “critical”
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FiG. 1. A planar voter model simulation after 4 min. The “population” is the number of black sites.
The flip rate is roughly 30 sec / site. The movie, written in assembly language for the IBM-PC with
hi-res monochrome graphics, is available from the authors.

nature of the two dimensional model. Next, in Section 3 we present some new
results, culminating with Theorem 5. For readability, only the major steps of the
proofs are presented there. Section 4 describes some applications of the main
theorem as well as various extensions and related results which can ‘be proved
using the same techniques; details will appear elsewhere. Finally, the technicali-
ties of our proofs are relegated to Section 5.

2. Background. Several different interacting systems have been proposed as
simple schemes to represent the random evolution of opinions (e.g., “for Dewey,”
“for Truman”) in a spatial community, where each individual is influenced by
neighbors. Mathematically expedient assumptions are that each opinion changes
at a rate proportional to the number of neighbors who disagree, and that the
dynamics are symmetric in the two opinions (i.e., unbiased). A finite lattice
process of this sort recently percolated into the April 1985 issue of Scientific
American (see page 26, complete with elephants and donkeys). Early references
to similar models in the mathematical genetics literature are [20], [21], and [24].
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F1c. 2. Same as Fig. 1 for 30 min.

The first rigorous analysis of the precise system we will treat here was by Clifford
and Sudbury [8]. They studied the infinite lattice version, calling it the invasion
process to reflect the essential feature that regions of one opinion (or color) can
only be penetrated by the other at the boundary. They also proved the most
basic theorem about the voter model: that it is stable in three or more dimensions
but clusters in one and two dimensions. To formulate this result precisely we
need a little notation.

The voter model {n,},. , is the Markov process on {0, l}ld with rates specified
by

m(x) -1- "lt(x) at rate (2d)41#{y: lx—yl =1, "Tt(y) #* "lt(x)}-

Thus 7,(x) codes the color (opinion, etc.) at site x at time ¢ as a 0 or 1. Liggett
[23] is an excellent source for a complete technical description of 7,, and for
general background on infinite particle systems. To keep matters simple we will
always assume that 7, = 7/ has initial distribution p,, 0 < 8 < 1, where p, is
product measure with density 0, i.e., po{n(x)=1) =46 for all x € Z% The
fundamental behavior of the voter model, discovered independently by Clifford
and Sudbury [8] and Holley and Liggett [16], is described by
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F1G.3. Same as Fig. 1 for 4 hr.

THEOREM 1. 7, = 1 ast > o, where
P("?ooE ')=(1_0)“‘0+0#1’ d=12,
= Va, d23.

Here = denotes weak convergence, p, and p, concentrate on all 0’s and all
1I’s, respectively, and the », are neither independent nor totally correlated.
Theorem 1 asserts that 5, approaches a nontrivial equilibrium if d > 3, whereas
n, approgches complete consensus for d = 1,2. Consensus means that for any
x,yezZ?

(21) tlilgP(m(x) #n(y) =0, d=12,

indicating the formation of larger and larger clusters over time. Locally the
configuration at large times is approximated by the flip of a (6,1 — ) coin: Put
down all 1’s with probability @, all 0’s otherwise. Holley and Liggett coined the
term “voter model,” and fully determined the ergodic theory of the system in
thejr beautiful paper [16]. Letting I, denote the set of extreme invariant
measures for n,, they showed that I = {», 0<60 <1} if d> 3, whereas
I, = {uy, p,} if d =1 or 2. They also described the domains of attraction of the
equilibria. In addition, they considered a much more general class of voter
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models, one for each transition function p(x, y). As the reader has probably
guessed, transience or recurrence (of a symmetrization of p) determines whether
a given model is stable or clusters. For simplicity we will treat only the uniform
nearest neighbor case here; details of the more general framework may be found
in [16] or [23] for example.

In three or more dimensions, when the voter model is stable, interest centers
on the nature of the extreme invariant measures »,, which exhibit unusual long
range correlations. Let n_, denote the random field with measure »,, and consider
the centered block sum

S,= X [no(x)=0] (x| = max{x,}).

llxll<n

It turns out that to get a central limit theorem for S, one needs to normalize by
n'“*2/2 instead of the usual n?/% Moreover, if we define S,(x) in terms of the
block sum of side 2n centered at 2nx (x a vector with integer coordinates), then
this field of block sums, normalized by n(¢*2/2 converges to a limiting Gaussian
random field with covariance:

1
22)  Ela()na)] = Cusf [ oy duds,

where B, is the cube of side 2 in R centered at z. See [4] for the proof. This
result provides a particularly simple example of a strongly correlated equilibrium
field for which one can compute the renorm limit of Wilson and Kadanoff. A good
reference on renormalization is Sinai’s book [27]. Holley and Stroock [17] have
found a nice invariance principle corresponding to (2.2). They consider gener-
alized random fields of renormalized sums at finite times, with centering and
normalization by ¢¢*/2 at time st2. For d > 3, when ¢ — oo they get a limiting
process in s which is generalized Ornstein-Uhlenbeck. As one would expect, the
Gaussian field with covariances (2.2) is the equilibrium for their process.

Let us now turn to one dimension. The voter model on Z has been studied in
considerable detail. The clustering which takes place is easy to conceptualize and
to analyse mathematically, due to the linear nature of the lattice. In particular it
is easy to see that the edges between clusters of opposite color execute simple
random walks, with annihilation when two walks meet. (Annihilation occurs
when a cluster has been “swallowed” by the surrounding pair of clusters so that
these edges cease to exist.) A computer simulation illustrates this process nicely.
With time running down the page (from ¢ = 0 to ¢t = 347) and using 720 lattice
points, a space-time picture looks something like Figure 4.

One way to quantify the clustering we see there is to scale space appropriately
with time. For the voter model on the integers this approach was initiated in [5],
and fully realized by Arratia in his thesis [2]. Arratia’s work shows that at large
times ¢ the one dimensional process consists of blocks of length Vt. With
appropriate normalization, the boundaries between these blocks converge as
processes to annihilating Brownian motions (one motion starting at every real
position). Limit theorems for the voter model can be read from this invariance
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F1G. 4. A simulation of the one dimensional voter model (space—time).

principle. Here are some examples of the results which can be proved using the
techniques of [2] and [5].

THEOREM 2. Letd=1. Ast > oo,

Le 1 /4s

) Plae/®) % n(wE) > 200 = 0)|1 = [T | (x4)

(ii) {ne(x\/z)}xez = {noo(x)}xel’

(iii) ¢2 ¥ n(x) =Y.
lx|<Vt

The limits 5., and Y are nontrivial, but are too complicated to allow much in
the, way of explicit computation: The factor Vt is the “natural scale” in the
following sense. If at time ¢ we replace V¢ by f(¢), and if f(t)/Vt — 0 or + o0,
then the limits in Theorem 2 will be trivial. For instance, {7.,(x)} will be totally
correlated or independent.
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There remains the case of dimension 2. Little beyond the basic clustering
property (2.1) has been proved in this setting, with the notable exception of some
results on occupation times [9]. One simple question to ask in the presence of
clustering is whether a given site, say the origin, changes color infinitely often, or
whether one of the clusters eventually surrounds the site forever. Our discussion
above shows that in one dimension this problem is equivalent to whether
annihilating random walks on the integers are site recurrent. This is a widely
studied problem (see, e.g., [11], [14], [3]); the answer is yes, so the origin does
change colors forever when d = 1. The same question is not quite as easy in two
dimensions. Clifford and Sudbury argue for “color change i.0. at 0” when d = 2 in
[8]; their argument does not seem rigorous to us, but is not too hard to fix. In any
case, a study of occupation times yields stronger and rather surprising results.
Let 7T, denote the total amount of time up to time ¢ that the origin is colored
green (= 1). Then it turns out [9] that T,/t converges to 6 a.s. in all dimensions
> 2. This is not surprising for d > 3 when the model is stable; in fact Andjel and
Kipnis [1] have recently obtained a pointwise ergodic theorem which applies to a
large class of initial states in this case. But it is slightly paradoxical that the
proportion of time a site is greed converges with probability 1 even in the
presence of the two dimensional clustering. (In one dimension 7,/¢ converges in
distribution to a nonconstant limiting random variable which can be represented
by means of annihilating Brownian motions.) One can also prove occupation time
central limit theorems for the voter model with d > 2. Curiously, the normaliza-
tion required is of the usual order V¢ for d > 5, but of higher order when d = 2,
3, or 4. For more details and the proofs, see [9].

The discussion of the last paragraph pretty well sums up what is known about
the two dimensional voter model. It is intriguing to ask whether there is a
natural scale for the clustering in this case, whether there is an invariance
principle anything like Arratia’s, what the appropriate analogue of Theorem 2 is,
and generally whether we can formulate and prove any rigorous results which
illuminate the graphics of Section 1. In the next section we will try to answer
these questions.

3. Results. Our first step in analysing the clustering of the two dimensional
voter model is to study the correlation functions p,(A) = P(n,(A) = 1) for finite
sets A. In particular, the two-point correlations give a good indication of the
interdependence between two distant sites. The correlations of the voter model
may be expressed in terms of an auxiliary process of coalescing random walks by
means of a duality equation:

(3.1) P(n(A)=1) = E[6*"]  (Afinite).

Recall that 6 is the initial density of particles for n,. Here #£{# denotes the
number of coalescing random walks still around at time ¢ for the process started
with particles on A. As the name implies, £, consists of particles which undergo
independent continuous time rate 1 simple random walks, except that they
coalesce whenever one attempts to jump to a site occupied by another. The above
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duality equation has been the principal tool for studying the voter model;
Theorem 1, in particular, is an easy consequence. A proof of (3.1) may be found in
[23] or [15], for example.

Now suppose we take A = {xt*/2, yt*/?} in (3.1), 0 < a < B8 < o0. (To sim-
plify notation, here and for the rest of the paper we will identify each point of R2
with the nearest point in Z?, adopting some convention in case of ties.) Since the
difference of two rate 1 random walks is a rate 2 random walk, a little computa-
tion gives

(3.2) P(np(xt*/?) + n(yt/2)) = 20(1 - 6)P (y—nyenr(T > 2tF),

where 7 is the first hitting time of 0 for a rate 1 random walk. Consider first the
extreme cases a = 0 and a = . If a = 0 then the right side of (3.2) tends to 0 as
t = oo by recurrence. This is in fact the proof of (2.1). If a = 8, on the other
hand, the right side tends to 26(1 — 6). (One way to get this is to use Donsker’s
invariance principle and the fact that Brownian motion misses points in the
plane.) Already we see the contrast with dimension 1 and Theorem 2(i). What
happens for intermediate power laws a? Erdés and Taylor [10] showed that the
probability on the right side of (3.2) tends to a/f; the following heuristic
calculation gives their answer. Use a “last time at 0” decomposition, and write
Pux, ¥) = P(£,(x) = y) to see that

8
Pr(1 < 2tP) = po (0, xt*/%) + th P,(0, xt*/%) Py o (1 > 2¢# — u) du.
0

Standard random walk estimates (cf. [28], pages 79 and 167) yield
se Y-’ /u -

du
U log(2t# — u)

By aen(T < 2tP) = _/;t

~/‘ ;’ —ly—x2ta=s lOgt
log(2¢F — ¢°)

-1-a/B ast — oo.

Note that there is no dependence on y — x in the limit. Thus the pair correlation
in the voter model between two sites roughly distance ¢*/? apart at time ¢
converges, as ¢ — oo, to a distinct interpolating value for each a € (0,1), and
these values do not depend on the actual multiple of #*/?> which separates the
sites. For the closely related planar stepping stone model of population genetics,
this observation is due to Sawyer [25]; his paper contains an alternate derivation
of the Erdos—Taylor result.

Now it is reasonable to expect that for any n sites x,, Xgyeoy X, in Z2
a < B <oo,and 1 <k < n, writing A, = {x,t*/%,..., x,t*/?}, one should have
(3.3) lim P(#£l = k) = p, i(a/B),

for some functions p, ,. In other words, the probability that n particles initially
separated by roughly ¢%/2 will coalesce down to % particles at time ¢ should also
converge to a limit independent of the fine spatial structure. In light of (3.1), this
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will mean that all the limiting correlations of a #*/2 thinning of the voter model

at time ¢ will depend only on the number of sites involved, i.e., that the limiting

random field is exchangeable. So our first major task is to compute the p, ,(«).
As we shall see, the answer is

(3:4) Pril@) = ika,,,kma(?),
where _ ’ n
(-1 @i - D0+ k- 21(})
an,k(j)= n+j—1
k!(k—l)!(j—k)!( j )

The proof of (3.3)—(3.4) is rather involved, but with a little hindsight we can offer
the following outline. For n = 2 this is simply the Erdos—Taylor result. The next
case to settle is n = & > 2. That is to say, we wish to compute the limiting
probability that no collisions occur by time ¢# among n particles initially
situated at sites separated by distance ¢*/% Fix a, ¢, and a set A, of n such sites.
Focus on two particles indexed by i and j, say, and write

Hf, ;, = {particles i and j collide by ##}.

It turns out that the complements of these events are asymptotically indepen-
dent as {i, j} ranges over all possible pairs of distinct indices, so that

(3.5) puila/8) = tim P( () AL, ) = (a/B)(5).

(i, J}
Unfortunately we do not know an intuitive argument for (3.5), so our derivation
is rather devious. Here are the main steps; most details will be deferred to
Section 5. Introduce:

Ff ;, = {particles i and j collide first, do so by t#},

q(B) = P(some collision by #).

Then
P(Hg,j)) = P( Ff j)) + P( F{ ;,, some collision by t“)
(3.6) + Y fBP (pair {&, I} collides first, does so in d(¢7);

(B, 0} #{i, )} "
pair {i, j} hitsin (7, ¢#]i).
We will show in Section 5 that asymptotically the integrand on the right factors
as
P({k, 1} pair hits first, in d(¢")) P({i, j} pair hitsin (£7, ££]).
The second term here is = 1 — y/B since the particles are separated by about
t¥/? at time ¢. Integrating by parts we get

1
P(Hf ) =P(F} ) +2 ¥ fBP(F{%,z)) dy.
| B (k17 i,y T
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The left side is = 1 — a/B; sum over all {i, j} to find that
1
(3)0 - a8) =a(8) +5|(3) - 1] ['av) .

The solution is g(B8) =1 — (a/,B)(2), s0 (3.5) should hold in the limit as ¢ — co.

Now we can derive (3.3)-(3.4) for general n and % by induction. The heuristic
is much the same as above: (3.5) gives the distribution of the first hiting time o
for some pair of particles, and at this time the remaining n — 1 particles are
spaced about ¢*/? apart. These must in turn coalesce down to % particles in time
th — 7~ tP. So

P(#t) = &) = f’_’P(o € d(t"))P(#&k = k|#th = n - 1)

= '/;B(g)a(g)y_(;)—lpn—l,k(?’/ﬁ) dy.

A routine calculation verifies that the right side equals D (a/B) as given in
(3.4). Let us pause here to summarize the findings so far, by stating a precise
version of our first major result. Some uniformity is needed to make the
induction rigorous; look at Section 5 for the details of the proof.

THEOREM 3. Let ¢ denote the system of coalescing random walks starting
from A C Z2 Fix 0 < ay < B, < o0 and 0 < ¢ < 0. Then for each n, uniformly
ina,BandA = {x,,...,x,} such that ay < a < B < B, and

ta/2

<|lx; — x| < ct*?log t i#+j),
clogs = %~ %l gt (i#))

we have

lim P(#:4=k) =p, (a/B) (1<k<n),

t— o0

where the p, , are given by (3.4).

As we pointed out earlier, since the correlation functions are distribution
determining, (3.1) and (3.3) together imply that the #*/2 thinning of the voter
model at time ¢ converges to a limiting field for each a € [0,1], i.e.,

(3.7) {nl(xt*2)} ez = {n%%(x) ),z aSEt— 0.

The absence of spatial structure in the limiting correlations means that the limit
field is exchangeable, and hence de Finetti’s theorem asserts that this field is a
mixture dF; ,(s) of Bernoulli product measures with density s. In particular,

(38) o%°(4) = P(1°(4) =1) = ['s"dF, (5), A= (w0, m,).
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The next order of business is to determine the mixture dFj ,. To do so we
differentiate the integral formula

(39) Pui(@) = [ ‘(;)a(g)y'(g)"pn_l,kmdy

o

and make the change of variables a = e™* to get the system of differential
equations

(@) = =(2)pusle) + (2)pacsale™),

pn,k(e_u)|u=0 = 1{n=k)'
These are precisely the backward equations for the transition function of a

pure death process D, on the positive integers which jumps from n to n — 1 at
exponential rate (}) (n > 2). Hence

(3.10) Pn,k(a) = Pn(Dlog(l/a) = k)'

So now we have a connection (3.1) between the voter model n and the
coalescing random walks £, and a connection (3.10) between £ and the death
process D. One more link is needed to discover the mixture dF; our mystery guest
in the scenario for critical clustering turns out to be the Fisher—Wright diffusion
Y,. Recall that Y, is the strong Markov process on [0, 1] with generator

Gf(y) =3y —y)f(yv) O0<y<1

let q,(v, ) = P(Y, € -) denote the corresponding transition function. It is well-
known in the mathematical genetics literature that Y, and D, satisfy the duality
equation

(3.11) E,[ Y| =E,[6”] n=>10<6<1.

Note the similarity to (3.1). Tavaré [29] has a nice survey of genetics problems
related to ours, and discusses identity (3.11). (Actually there is a whole family of
Fisher-Wright diffusions. Geneticists would label ours the one with pure drift,
whereas probabilists would call it the one with no drift. To avoid confusion, we
just call Y, the Fisher—Wright diffusion.)

Putting together the pieces, we can finally compute the desired de Finetti
mixture in just three lines:

P (A) = X 0%p, x(a) by (3.1) and (3.3),
k=1

E,[6Pesua] by (3.10),
1
=‘/(‘)an103(1/0()(07(18) by (311)

Comparing with (3.8), we see that the mixture F, , is simply the distribution of
the Fisher—Wright diffusion starting from 6 at time log(1/a). This, then, is our
second major result.
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THEOREM 4. The t*/? thinning of the two dimensional voter model at time t
converges as t — oo to a limiting exchangeable random field with de Finetti
mixture Fy , = Py(Yig1/a) € *), Where Y is the Fisher-Wright diffusion. In
other words, (3.7)—(3.8) hold for this F.

Theorem 4 is extremely suggestive of a more elaborate result; namely, that the
limiting density of the #*/2 thinning diffuses as a process in a. One can make this
precise, but we prefer to take a somewhat different tack in order to address our
central question of cluster size. Namely, introduce the block averages

1
BY(e) = 2 > nlx).
llcl| < 2272
Since the overwhelming proportion of sites in the block {||x|| < ¢*/%} are order
t*/? apart, it is easy to conclude from Theorem 4 that as ¢ — oo, B{(a) = Y., /4
(« fixed). Then one suspects that

(3.12) BY(-) e Yig1,) (as processes).

This is indeed the case, and constitutes the main result of the paper. Using it one
can deduce quite a bit about the clustering of 7,, as we shall see in the next
section. Let us conclude this section by stating the precise formulation of (3.12)
which we will prove, and by suggesting its qualitative meaning. For the purposes
of the present paper, (3.12) simply asserts convergence of finite dimensional
distributions; this turns out to be enough for the main application we have in
mind. There is little doubt that (3.12) actually holds in the sense of weak
convergence on path space, but the methods needed to prove tightness will be
quite different from the ones featured here, so we choose to defer this question for
future study. To recap, we will prove:

THEOREM 5. As t— oo, the density of 1’s (= green sites) in the two
dimensional voter model on a box of side 2t*/? converges as a process in
a € (0,1] to a time change of the Fisher—Wright diffusion. Specifically, (3.12)
holds with convergence in the sense of finite dimensional distributions.

The proof of Theorem 5 depends on a generalization of Theorem 3, in which
coalescing walks are allowed to start spread out by different power laws. One uses
(3.1) and the generalization (Theorem 6) to estimate mixed moments of different
power law block averages. This is all rather technical, so we will postpone the
argument until Section 5.

A few words about the intuitive meaning of Theorem 5 are helpful at this
point. Fix a very large time ¢, and think of the block process B'(a) as running
back from a = 1 to @ = 0. Near @ = 1 most of the sites in the box are almost ¢'/2
apart, hence essentially uncorrelated, and so the block average will be almost
deterministically the global density 6. As a decreases the block average diffuses,
reflecting a very strong correlation between the averages on boxes with two
nearby power laws. Since 0 and 1 are accessible traps for Y,, at some random time
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this diffusion is absorbed at the boundary of [0, 1], reflecting the fact that the box
has been swallowed by a cluster of green or black sites. This can occur at any
intermediate power law a, so there is an enormous variation in the sizes of the
clusters. Note that a = 0 corresponds to time oo for Y, by which point the box
has certainly been swallowed.

4. Applications. In this section we briefly describe various applications and
extensions of our theorems. More detailed investigations with proofs will appear
elsewhere.

To apply our main result, Theorem 5, let us suppose that it holds in the
stronger sense of an invariance principle, i.e.,, convergence of processes takes
place. As already mentioned, we hope to establish tightness in a subsequent
paper. By applying various functionals to the block sums B a), one should be
able to read off asymptotic statistics which quantify the clustering of the two
dimensional voter model. A couple of interesting examples easily come to mind.
As a warm-up, take

M' = sup{B(a):0 < a < 1}.

Then Theorem 5 suggests that M* converges in distribution as ¢ - oo to the
maximum value of the diffusion Y, ,, ., over all time. But Y has the same hitting
probabilities as Brownian motion with absorption at 0 and 1, so one easily
deduces that for x € (6, 1),

0
P(M'<x)—>1—-— ast— oo.
x

In this manner we determine the asymptotic distribution of the largest density of
green color on any block centered at the origin. (It is easy to see that blocks of
side bigger than V¢ will have asymptotic density 6.)

Now for our main application. Introduce the functional

L' =sup{a > 0: BY(a) =0or1}.

Evidently, L’ measures the power law of the largest box centered at the origin
which is all one color at time ¢. The invariance principle heuristic suggests that as
t — oo, L' should converge in distribution to the time when Y, ,, ,., first hits the
boundary at 0 or 1. The distribution of this hitting time is readily computed
using (3.10) and (3.11). (Alternatively, consult [13] or [29].) We are lead to suspect
that for y € (0, 1],
def & I3
(4.1) P(L'<v) = Fy(v) = L (6% + (1= 6)")p. u(¥)
k=1

as t — oo, with
_ 2 ()M -G+ ]
poc,k(Y) = nll_{lchn,k(Y) = Z k'(k _ 1)'(_]— k)' ( )

j=k

Rewording things slightly, let N*denote the width of the largest box centered at
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the origin which is a solid color at time ¢. Our result is that
log N*
log ¢

(4.2) = L*/2 ast— oo,
where L* has distribution function F,. In words, (4.2) asserts that the cluster
containing the origin at time ¢ has a size which is randomly distributed over the
powers of ¢ between 0 and }, and that the distribution of this random power
obeys a hypergeometric law prescribed by (4.1). Of course size is a rather elusive
notion here; anyone familiar with the most basic results on percolation in the
plane (cf. [19]) will recall that already at time 0, for # near 0 or 1 the connected
component which shares the color of the origin is infinite with positive probabil-
ity. Rather than confront the intricacies of connectivity, we measure the size of a
cluster by how large a box will fit inside of it. With this proviso, (4.2) is a rather
precise mathematical formulation of the dynamic suggested by the pictures in
Section 1.

Actually, one does not need an invariance principle, or even the full strength of
Theorem 5, to prove (4.2). Observe that

log Nt
P( g Y)

— t —

Tog ¢ <5 P(B{y)=0orl),
i.e., only a marginal limit distribution is involved. On the other hand, 0 and 1 are
not continuity points of the Fisher-Wright diffusion at any positive time, so our
main application is not an immediate consequence of Theorem 5. One must check
that mass near the boundary at finite times is not lost in the limit. This amounts
to showing that if a block average at time ¢ on a box of size ¢t equals § = 0, then
a box of size t¥~¢ must have no green sites with overwhelming probability. The
needed patch turns out to take nearly as much effort as Theorem 5 itself, but we
" have obtained a rigorous proof of (4.2) in joint work with Maury Bramson.

A brief digression is in order here to explain the nature of the patch. One basic
question about the voter model which we did not mention in Section 2 concerns
the behavior of the process 1° starting with a single green pixel surrounded by a
sea of black. (In terms of donkeys and elephants, think of the Minnesota
electorate in the ’84 presidential election.) It is easy to see that the number of
green cells evolves as a time change of simple random walk with a positive
minimal jump rate on the positive integers and absorption at 0. So the survival
probability

p, = P(n(x) #0)
clearly tends to 0, and one tries to find the asymptotics. In [6] it was shown that
p,~ (wt)" 2, d=1, .
(4.3) ~ log t/mt, d=2,
~ (vt)"", d>3,

where v, is the probability that simple random walk on Z¢ never returns to its
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initial position. The derivation of (4.3) consists of a tightness patch to a theorem
of Sawyer [26] concerning the “stepping stone model” which will be mentioned
below. A similar but more intricate analysis is necessary to pass from Theorem 5
to (4.2); the argument will appear in a forthcoming paper [7].

Our principal focus in this study is the voter model, so we are inclined to view
the coalescing random walks £, as an auxiliary process. But variants on our
techniques yield some results for coalescing walks which are interesting in their
own right. For instance, suppose we start with particles at the sites of vt Z2, and
observe the system at times #?, y > 1. Recalling Theorem 4, it is natural to
expect convergence to a limiting process in y. Convergence does indeed take place
(in the sense of finite dimensional distributions, and presumably on path space).
By keeping track of which particles collide with which others, we are able to
show that the limit is a simple time change of Kingman’s coalescent [22]. Again,
the details will appear elsewhere. For now, let us simply mention a colorful result
concerning ¢, which makes use of our joint work with Maury Bramson [7].
Namely, suppose one starts with particles on a solid block of side 2¢%/2, and asks
for the probability P, that they all have coalesced down to a single particle by
time ¢. Then as t - oo,

(4.4) P-p,  (a)=1-3a+5a®—T7a®+ 92" — 11a™® + - - -
4.4 ’

= [0 -0 )1 -a’)(1-a*) -]

The last amazing equality is due to Jacobi [18].

Another generalization of our results deals with more than two colors
(= states). For each N =2,3,... there is an N-color voter model in which the
color at any site is replaced at rate 1 by whatever color occupies a random
neighboring site. There is even a model with N = co, where every site of the
lattice starts off with its own distinct color. These many-colored processes are
simplified versions of systems known as “stepping stone models” in the mathe-
matical genetics literature (see e.g., [13], [20], [21], [24], [25], [26], [29]). Indeed,
much of the general theory for the voter model which we described in Section 2
was anticipated by the mathematical geneticists. For instance, versions of the
duality equation (3.1) are implicit already in [24] and [21], and one can argue
that [24] foreshadows Theorem 1. Of this literature, Sawyer’s paper [25] comes
closest to our work. In Theorem 3 display (4) of that paper he shows that the two
point correlations of the planar stepping stone model are spread out over the
powers. He talks of a “wave of advance,” and notes that one must plot on a
logarithmic scale to “obtain a limiting distribution.” Our (4.2) is one rigorous
mathematical expression of Sawyer’s observation. We plan to discuss the implica-
tions of our work for the stepping stone model in another article. For now, suffice
it to say that in two dimensions there are quantities like our p, ,(a) which
quantify N-color clustering; and that for large ¢, the proportions of sites occupied
by the various colors on blocks of side 2¢* diffuse after the fashion of Theorem 5.
The limiting diffusion, which lives on {x € RV: Lx; = 1}, is a time change of one
obtained by Ethier and Kurtz in [12]. In the case N = oo the diffusion instanta-
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neously jumps down to a finite dimensional subspace; (4.4) gives the limiting
probability that a box of side 2¢/2 is all one color at time ¢. More details will be
forthcoming.

Finally, a few words about the “domain of attraction” of our results. Although
we have chosen to consider only Bernoulli product measures as initial states, our
limit theorems undoubtedly hold for a large class of stationary ergodic initial
distributions. Moreover, it is not hard to check that precisely the same asymp-
totics apply to any of the Holley-Liggett voter models [16] determined by a
translation invariant transition density p(x) on Z? which is irreducible and has
bounded range (or enough moments). There is nothing special about the box
norm; any equivalent norm gives identical results. For these reasons we suspect
that the critical clustering which takes place in the two dimensional voter model
may be representative of more general patterns of planar clustering in homoge-
neous random media.

5. Proofs. This section contains rigorous versions of the heuristic arguments
presented in Section 3. We have four main tasks:

A. Formulate an appropriate version of the Erdos-Taylor result;
B. Establish (3.5);

C. Prove Theorem 3;

D. Prove Theorem 5.

To begin, we introduce a little more notation. For the rest of the paper we fix «,
B,, and c¢ such that

0<ay<By<oo and 1<c< 0.
Let C denote a finite absolute constant whose value may change from line to line;
and let &(¢; a, b,...) be a function of ¢, depending only on a, b, ..., which tends

to 0 as t = oo. Uniformity will be needed to carry out the numerous estimates
below, so we will let sites x of magnitude ¢*/2 have norms in the larger interval

t(x/2

T(c,a) = [cl

, ct*%log t}.
ogt

A. Erdos-Taylor. Recall that 7 is the first time a simple random walk hits
the origin. Our first preliminary result is as follows.

PRroPOSITION 1.

i i 2 log||x]|
(i) lim sup P(r<s)—-|[1—-———|[|=0
e ﬂ(;S“SBSB‘), tr<s<th lOgS
|lx||€Ty(c, 1)
and
‘” 2log||x
17 ay<a<B<pBy, t*<s<tb Blogt

x|l €To(e, 1)
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In [10], Erdos and Taylor prove a somewhat stronger version of (i) for discrete
time simple random walk. The relevant equations are (2.16)—(2.18) of that paper.
The translation to our continuous time setting is straightforward but tedious, so
we omit it. (i) can be verified using the same techniques.

B. Argument for (3.5). We will now prove:

PrOPOSITION 2. Uniformly in a, 8 and A = (x,,..., x,) such that ay < a <
B < Byand ||x; — x| € T(c, a) for alli + j,

a\(3)
Jim P(#¢)=n) =1 (3]""

As we have already warned the reader, Proposition 2 takes some work. Our
proof requires two lemmas. The first one is technical, and deals with joint
distributions of random walks. The second formalizes our derivation of the
integral equation for g(8) in Section 3. We will first state the lemmas, next show
how they prove Proposition 2, and finish by proving the lemmas.

In what follows, let X (x) (s = 0, x € Z?) be independent continuous time
rate 1 simple random walks starting from each site x € Z2, 7, ; the first hitting
time of the walks from x; and x;. As before, o will be the ﬁrst collision time
among walks from A.

LEMMA 1. Uniformly for a € (a,, ) and ||x; — x,|| € T(c, a) (i #J),

(i) ,lin:c j;‘foP(Xs(xl) = X (x,), 1 X(x,) — X (x3)ll Fs(4c’1)) ds =0

and

() Jim ["P(X,(x) = X,(x,), 1X(%:) = X(x)]| € T,(4¢,1)) ds = 0.

LEMMA 2. Suppose that for each t > 0, q/(a, ) is measurable and for
oy <a< B <Py,

alad) = (3))1 - 5] - 5l(5) - 1] fatenar s e,

where
lim sup |e(¢,a,B8)=0

t= 0 ay<a<B=po

Then as t — oo,
q(a,B) > 1— B uniformlyin ag < a < B < B,.
Let us see how the lemmas yield Proposition 2. Our starting point is (3.6). The

summands on the right side are of two types: {k, I} N {i, j} # I and {k,1} N
(i, j} = @. By Proposition 1 and the Markov property a typical term of the first
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type can be written as
e(t; a, B, A) + /

XPlo=r,Eds, ¢ =y, =2)P(&h_,=¢5_,),

where |e(Z; a, B, A)| < &(t; @, ¢). As t = o, the part of this last integral contrib-
uted by the first sum tends to O uniformly in « and A by Lemma 1(i). By
Proposition 1 the second portion is

log s
ftﬁ(l- o8 )P(a='ri,k6ds)+e(t;a,,B,A,c),

z + >

v, z: ly—zll€T(4e, 1) y,2:|ly—z||€Ty(4c, 1)

a Blogt
where &(¢; a, B, A, ¢) < &(t; a,, By, ¢). Integration by parts and a change of vari-
ables yields

8 1
fﬂP(a =7 ,€ds,s<m ;< tﬁ) 'BfBP(F{}‘k)) dy + &(t; a, B, A, c).

a L -1 -
Using Lemma 2(ii) for terms of the second type, it follows that
P(Hﬁ,j})=P(F{’f,j})+§ f (F%,y) dy + e(t; 2,8, A, c).
(%, 1}*{l J}

By Proposition 1 again the left side is 1 — (a/8) + & a, B, A). Sum over all
pairs and apply Lemma 2 to get the desired result. O

PROOF OoF LEMMA 1. Our strategy is to decompose the probabilities ap-
propriately and appeal to standard random walk estimates ([24]). To prove part
(i) we split the integral into four pieces, denoted I, I,, I3, and I, by considering
separately sample paths where

172
(L) {“Xs(xl)” < 2clogs}’
(I,) {1X,(x,)Il > 2¢s'*log s},
1/2
(1) {Ile(xl)” € I,(2¢,1), | X(x,) — X (x3)ll < 4cslogs }’
(1,) (1X,(x )l € T,(2¢, 1), | X,(x,) — X,(x5)I| > 4cs'/*log s},

respectively. The four integrals are estimated as follows:

1/2 1
I < Cf {||y|| 2clogs} s? ds

IzsCf' > ps(xl,y);ds

a
2 )1 y1> es'/log s

o —as
<
- -/;aoslog2s
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(On this piece we use the fact that ||x;, — X (x,)|| = || X,(x,)||/2 and Chebyshev’s
inequality.)

x 81/2 1
I,<C| P(X T'.(2¢,1))# —
< Of P () 2 o) Iy < g

o —as
<
- /t«oslogzs ’

1 o 1
I, < C/:P(||Xs(x3)|| > 2c¢s'/?log s);ds <C

o0 s log?Zs

(Here we use || X (x,)|| > 2cs'/%log s, and Chebyshev again.) It is easy to check
that each of the above bounds is &(¢; a,, ¢), which proves part (i). The proof of (ii)
is similar, but easier because there is less dependence. Rewrite the integral as

f, TP( X%, — %) = ) P(1 Xo,(x5 — %)l € L,(4c, 1)) ds.

Estimating as above, we majorize the integral by
1 1

w1 S
c| - -+ ds = e(¢;
./,‘ao s [logzs s log2s] (& @, €),

as desired. O

Proor or LEMMA 2. Write:
q(a,f)=1- (%)(2),
8!(“’ B) = qt(a’ B) - q(aa B)a

8(a, B) = sup BISt(&,E)I.

a<a<f<

Since g satisfies our integral equation with equality,

e 0= [(3) = 1] 5 [/8a ) dr + et e, )

1_
< §8t(a0, ray) + e(t;ag, By)  (ap < a < B <rag),

where r > 1 is chosen so that [(}) — 1](1 — r~!) = 1. Hence
St(“o’ ra,) < 2e(t; ay, By),

ie., g(a,B) = g(a,B) as t = oo on (ay, ray). Now iterate the argument £k
times, where r*a, > fB,, to finish the proof. O

C. Proof of Theorem 3. As sﬁggested in Section 3, the proof of Theorem 3
proceeds by induction. The induction hypothesis is

lim P(#g;‘,‘, =k)=p, (a/B) forl<k<n,

t—oc
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uniformly in «,8 and A = {x,,...,x,} such that ey <a<pB <B, and
llx; — x|l € [(c, a) for all i # j. If n = 2 this follows immediately from Proposi-

tion 2. The induction step is to prove
n+1
. B — n+1)
(5.1) Jim P(#£5=k)=(n;1)a( ? )fv (") P k(v/B) dy
— 00 o

uniformly in &, 8 and B = {x,...,x,,;} such that a;, <a < B < 8,
llx; — x|l € Ty(c, @) for all i # j. The probability that any pair of walks collides
by ¢* tends uniformly to 0 as ¢ — oo, so

P(#£8 = k) =f‘”p(a € ds, #£8 = k) + «(t; B, B)
a

(5:2) =f‘” Y  Ploeds, t8=A)P(#:4_ =k) +e(t; B, B),
t

where |e(t; B, B)| < &(¢; @y, By, ¢). To decompose the last integral we need esti-
mates which generalize Proposition 1 and Lemma 1.

PROPOSITION 3. Forall o, B, A, and s such that ay < a < B < B,, t*<s <
tf, and A = {x,,..., x,) with ||x; — x| € T(¢,1) for all i +j,
log s
P(#&5 = k) =pn,k(———B logt) +e(t; A, B, 5),
where |e(t; A, B, s)| < &(¢; ag, By, ©).

Proor.
|P(¢5 = k) = P(¢5_, = )|
< 2P(¢4 has a collision in [£# — s, t#])

<2 Y P(tP—s <, <tf)<e(t; ap, By C)
{&, J}

by Proposition 1. So the claim follows by induction. O

LEMMA 3. Let G, = {||y — 2|| € T(4c,1) for all distincty, z € ¢4). Then
./tBP(O € ds, G,) < &(t; ag, By, ©).
ta

Proor. The integral is majorized by
0

Y X [ P(o=r, edslE - £ € T4, 1))

() (k= (6, ) 78
w -
= Z Z /a P(Xs(xk) = Xs(xl)’ ”Xs(xt) - Xs(xj)” & rs(4c’ 1)) ds

(i, J) (R, I}* {0, j} 7t
< &(t; ay,¢) by Lemmal.O
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Now using Proposition 2 and Lemma 3, we can rewrite the integral in (5.2) as

["P(s € ds,G,) p, k( )+e(t A,a,B)
© '\ Blog
log s

_fta P(s ds)p”’k(ﬁlogt

Finally, we apply Proposition 2 and integrate by parts twice to get (5.1), thereby
completing the induction step.

) +e(t; A, e, B).

D. Proof of Theorem 5. The first step is to formulate and prove a generaliza-
tion of Theorem 3 to coalescing walks starting from sites on different power
scales. To state the result we need a little more notation. For % > 1, positive
integers n,, n,,...,n, and m, and 0 <a, <@, < :-+ <a, <pf <oo, put
Do, (@13 B) = Py, n(@1/B) and set

pn,,..., ng; m(al’ coey Qps B)

(5.3) = Z pnl,zl( 1/a2)pn2+t1,12(a2/a3)

Uiyeees 79
xpnk_l+ik;2,ik;l(ak—l/ak)pnk+i,,;l,m(ak/ﬁ)'
It is easy to see from (5.3) that
pn,,...,nk;m(al""’ Qg5 B)

(5 4) = anl,...,n,,,l;l(al"“’ Qp_15 ak)pnk+l,m(ak/ﬁ)
° l

= anl,l(al/aZ)pn2+l, Ny,..., Ny; m(a29"" Qs ,8).
l

THEOREM 6. Fix 0<aosﬁo<oo and O<c< 0. Then as t —» oo, uni-
formly in o = (ay,...,a;), B, and x', ,X* such that <o < ot Sy <
B < By, llx — il € T(c, @) (p # q) for each i, and |}z, — xil| € Tc, a,) for
all i < j, one has

(#gt,,— )—»pn1 ..... ns m( @15y g5 B) (A={x;:15isk,15p5ni}).

Proor. For & = 1 this is Theorem 3. We proceed by induction. Let E be the
event that T(xp xk) < t* for some i < k or for some p # g and i = k. Clearly
P(E) < EP(T(xp, xf) < t*) < n,I1%ne(t; ay, B,) by Proposition 1. So, except
for a negligible term the probability we wish to compute equals

ZP(#&N L#th=m,E) (B={xi,1<isk-11<ps<n,}).

On E the walks from x* do not interact with the others. By the Markov property
the: last probability can be rewritten as

Z P(E~’ gtB;k = {yl"“’ yl}’ gtx": = {yl+1""’ ynk+l})P(#§$ﬁ—t"k = m)’
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where C = {y,,..., ¥,,+,} and the sum is over distinct sites y,. By Proposition 1
all the n, +1 walks are at distinct sites of order /2 at time t* with
probability 1 — &(¢ @, B,).- Hence Proposition 3 shows that except for an error
term which is at most |e(¢; a, 8,X},...,x*)| < &(& ay, Bo),

(#gt/‘ - m) = ZP(#&,B;,, = l)pnk+l,m(ak/18)’
]
In light of (5.4), Theorem 6 is proved by induction. O

To carry out the argument for Theorem 5 we also need a connection between
the mixed moments of the Fisher-Wright diffusion and the quantities (5.3).

LEMMA 4. Suppose 0 < t, <t,< - - <t, and a; = e”". Then for positive
integers n,, ny,...,n, and 0 < 6 <1,

Ep[ Yy oo Y] = 0D,y (@ @5 1),
l

ProoF. The % = 1 case is (3.10). For 2 > 2 the Markov property gives
Eo[YtlnlYt:2. Yt:k] = E"[EYt,,_l[Ynk]Ynl A l]

(7
- }:pnk,,(ak/ak_l)Ea[n:" SERED Fird firaed I
J
Proceed by induction with the aid of (5.4) to establish the claim. O

By the method of moments, and in view of Lemma 4, to finish the proof of
Theorem 5 it suffices to show that for positive integers n,,..., n;, and 0 < a;, <
a, < - <e;<lasl—> oo,

(5.5) E[Bt(ﬂh)nl o ‘Bt(ak)nk] - ;alpn,, ..... nl;l(ak”"’al; 1).
Expand the left side as
5 ¢5on pln(x) = 1) = £, + 5,
x‘=(x{,~’.(.l,’ gi,’)fl’;;,‘,nst"'”
where ¥, contains all (x!,...,x*) with each ||x} — x('I|| eT(c,a;) (p+q) and

llx, — x/|| € I'(c, a;) for i > _] 22 contains the remaining terms. It is easy to
check that the number of terms in ¥, is at most C(n)t**" /(c*log®t), and hence
Y, = &(¢; ¢). Moreover, using (3.1) and Theorem 6,

¥, = ¥t ten Y gip(#A = 1)
I .
= Elt_):“'”'zal[pnk’wnl;,(ak,..., a;l) + e(t; x‘,...,xk)]
I ;

= Y0Py (@ 1) + (5 @ ),
l

where |e(¢; a, n, ¢)| < &(¢; a). This gives (5.5) as desired.
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