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A RENEWAL THEOREM IN THE INFINITE MEAN CASE

By KEvIN K. ANDERSON AND KRISHNA B. ATHREYA

IBM T. J. Watson Research Center and Iowa State University

Let F(-) be a c.d.f. on (0, ) such that 1 — F(x) is regularly varying with
exponent —a, 2 < a < 1. Let Q(-): Z* — #* be nonincreasing and regularly
varying with exponent —pB, 0 < B <1. Then, as t— oo, (U*Q)(%) =
Ji0,1Q(t — w)U(du) s asymptotic to c(e, ) fQ(u) du)(fi(1 — F(w)) du)™,
where U(-) is the renewal function associated with F(-) and c(a, B8) is a
suitable constant. This is an improved version of a theorem due to Teugels,
whose proof appears to be incomplete. Applications of the result to the
second order behavior of U(%) in some special cases are also given.

1. Introduction. Let F(-)beac.d.f. on[0,00) with F(0) = 0. Let X,, X,,...,
be i.i.d. random variables with c.df. F(-) and let

00 00

Ut)= L F(t)= X P(S,<¢),

n=0 n=0
where S, =0 and S,= X, + X, + --- +X,, for n > 1, be the renewal function.
The so-called key renewal theorems are results about the asymptotic behavior of
(U*@)t) = [0, 1Q(t — w)U(du) as t - co under suitable hypotheses on Q(-)
and F(-). For example, Feller (1971) has a version which states: If F(-) is
nonarithmetic with a finite mean p and Q(-) is directly Riemann integrable on
(0, 00), then

lim (U=Q)(t) =p" [ “Q(u) du.

This improved the original result of Smith (1954).

There have been attempts in the literature to extend Smith’s and Feller’s
versions to the case when p = co. Erickson (1970) gives the following: If Q(-) is
directly Riemann integrable and satisfies Q(¢) = O(¢™'), then (U=*Q)(t) ~
const.( [£Q(u) du)( /{1 — F(u)) du) ' as t = oo. Teugels (1968) proposed a ver-
sion for functions @Q(-) that do not satisfy Erickson’s hypotheses. This version is
particularly useful in studying the second order behavior of the renewal function
U(t). Unfortunately, Teugels’ proof does not seem to be complete, as far as we
understand it. In particular, his Lemmas 8 and 9 do not appear valid as they
stand and we have not found any easy way to correct them. Erickson (1970)
questions the necessity of the additional hypothesis on U(-) imposed by Teugels
and the lack of use of the connection to renewal theory. Meanwhile, Mohan
(1977, 1981) used Teugels’ theorem to give second order estimates for U(t) for
some particular F(-) in the infinite mean case.
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Inspired by Erickson’s comments and some of Mohan’s techniques, we are
able to give a correct proof of an improved version of Teugels’ result when F(-) is
nonarithmetic and satisfies

(1) 1-F(x)=x"L(x), i<acx<l,
where L(-) is slowly varying, dropping Teugels’ additional hypothesis on the
renewal function.

2. A renewal theorem when p = co. Our version of Teugels’ result is the
following.

THEOREM 1. Let F(-) be nonarithmetic and satisfy (1). Let Q(:): #* - #*
be a nonincreasing function such that Q(0) < oo and
Qx) =x"Ly(x), 0<B<1,

where Ly(-) is slowly varying. Then,

_1 ’
@ (U*Q)(®) ~ Cla, )| [Quy du)( [t - F(u)) du)  ast— o,
where (C(a, B)) ' =2 — B)B(a — B + 1,2 — a).
Proor. The proof is modelled after the proof of a similar theorem by Mohan
(1976) for the finite mean case. Given ¢ > 0, choose & € (3, 1) such that
(3) aB(a,1 - B) —afs(l —u) Putldu<e
0
and (1 — 8)! 7% < &. We write
[5¢] [t] ¢
(U*Q)(¢) = (/ v M )Q(t—x)U(dx) = I(£) + J(2) + K(2).
0 se1  Jre]

We give some useful results and examine the integrals I, J and K, in a series of
lemmas.

LEMMA 1. Let m(t) = [{(1 — F(u)) du. Under the assumptions of the theo-
rem:

() U(t) ~ (C,/a)t/m(t) as t > oo,
(ii) m(t) is regularly varying with exponent 1 — a,
(iii) lim,_, ,m(¢)({U(t + k) — U(t)) = C,h and
(iv) [{Q(y) dy ~ tQ(t)/(1 — B) as t — oo, where C, = [T(a)[(2 — a)] ™.
Proor. (i), (ii) and (iii) can be found in Erickson (1970) (Theorems 5 and 2).
A proof of (iv) can be found in Feller (1971), page 281. O

LEMMA 2.
lim I(5)(Q(AU() ' = fo °(1 - u) "Pu*du.
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PROOF.

1(8)(Q()U(1)) ™

Qe ~ ) @)U () /U(0)

fo "X a()(Q(2(1 — 1)) /Q(1))U(tdu) /U(2)

'/(;sft(u)”t(du)’ where A, = {u: u < [8t]/2}.

The measures p,(du) converge weakly to u(du) = au®"'du and the functions
f(u) are dominated by @(#(1 — u))/@Q(t), which converges uniformly to (1 — u)~#
on u € (0, 8). Since

Jim [*(Q(e(1 ~ 1)/Q(O)ki(d) = af'(1 = w)Pus d

and f(u) converges pointwise to (1 — u)"# on u € (0, 8), a dominated conver-
gence theorem (for example Royden (1968), Proposition 18, page 232) gives the
result. O :

LEMMA 3.
limsupJ(t)m(t)/ftQ(y) dy<c(l1-8)""
t— 00 0

where c is a constant independent of 8.

PRrOOF. Monotonicity of @(-) and m(-) gives
(-1
J(t)m(t) <m(t) Y Q(t—k—1)(U(k+1)— U(k))

k=[5¢]
(-1
< (m(t)/m([ﬁt]))k Y Q(t—k—-1)m(k)(U(k+1) - Uk)).

=[82]

Applying Lemma 1(iii), it follows that, for large ¢,

[¢]-1
< (m()/m(&D)C.+ D) T Qt=k=1)
< (m(ey/m([s )€+ | [ @) v + @~ [4])

< (m(e)/m([3eD)(C+ D[ [ 7@5) dy + Q).
Using Lemma 1, parts (ii) and (iv), to pass to the limit, we get
timsupJ(&)m(1) | ['Q() dy < 8= (C, + D1 = )",
0

t— o0

from which the result follows. O
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LEMMA 4.

limsupK(t)m(t)/jZQ(y) dy = 0.

Proor.
K(Om(2) [ [') dy = QO)U(E) - UTDIm() ] ['Q()
< QO)U() - U(t = 1)m(1) | ['Q)
The conclusion follows from Lemma 1(iii) and (iv). O

We now complete the proof of the theorem.

[(U+@)(£)(Q(1)U(2)) " — aB(a,1 - B)|
<|1O@OUO) ™ - a1 - w)Pur du| +] (@)U |

+|K()(Q()U(2)) | +
Applying the lemmas and (3) gives
lil;xlsupI(U*Q)(t)(Q(t)U(t))_l - aB(a,1 - B)| < (c+1)e.

aB(a,1 - B) — alf(l —u) Putdu

Therefore, by letting ¢ - 0™,
(U*Q)(¢t) ~ aB(a,1 — B)U(t)Q(t) ast— oo,
which is equivalent to (2) by Lemma 1(i) and (iv). O

REMARK. The restriction of a in Theorem 1 is due to the unavailability of
Lemma 1(iii) for 0 < a < 1. Erickson (1970) gives only a limit inferior result for
the restricted interval. Of course, should Lemma 1(iii) hold for a particular
renewal function with 0 < a < 1, then (2) would follow. In general, however,
Theorem 1 is the best that can be given.

3. Second order estimation of the renewal function. Viewing Lemma
1(i) as a first order estimate of the renewal function, Mohan (1977, 1981) tried to
prove some second order estimation results for a special class of c.d.f.’s using
Teugels’ version of the key renewal theorem. We restate valid versions of
Mohan’s results which follow from Theorem 1.

In what follows, F(x) is the c.d.f. of a random variable X of the form

(4) X = ZaYl/a ’

where Z, is a nonnegative random variable with Lebesgue-Stieltjes transform
(LST) exp{ —s“}, s > 0, ; < a < 1, and independent of Y, a nonnegative random
variable with finite mean p and LST fy(s), s > 0.
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With this formulation, the LST of F(-), f(s), satisfies
1—f(s)=1—fy(s%) ~ps® ass— 0"
By Karamata’s Tauberian theorem (see Feller (1971), page 447), this is equiv-
alent to
1-F(x)~x/T(1—-a) asx - oo,
from which
U(t) ~ t*(pT(1 + @) ™" ast— oo

follows (Feller (1971), page 471).
The second order behavior can be examined using Theorem 1 by finding a
Q(t) such that

(5) U(t) = t(pT(1 + a)) " = (U*Q)(2).
Let G(x) be the c.d.f. of X, = Z(Y’)"* where Y’ has cd.f. p~§P(Y > u) du
and is independent of Z, as defined above. Since Y’ has as its LST(1 —
fo(8))(ps)~Y, the LST of G(x) is (1 — f(s®))(pus®)~ ' With S; =X, + S, and
H(t) = U(t) — 1, the delayed renewal function H’(¢) = £%_,P(S, < t) satisfies
the renewal equation
H'(t) = G(t) + (H*G)(t), t=0.
The LST of H'(t), h'(s), satisfies
R'(s) = (1= fo(s%))(rs*) (1 + h(s))
= (F"sa)_l’
which means H'(t) = t%(pT'(1 + a))~!, ¢ > 0. Therefore,
U(t) — t(pI(1 + a)) "' = H(t) — H'(t) + 1
= H(t) - (H*G)(t) + 1 — G(¢)
= (U*1 - 6))(2)
and @Q(t) = 1 — G(?) is the solution to (5).
The succeeding theorems follow easily using repeated applications of

Karamata’s Tauberian theorem (to show the regular variation of 1 — G(¢)) and
our Theorem 1. (See Mohan (1977, 1981) for details.)

THEOREM 2. If Y has mean p and finite variance o2, then

2+"'2

2u?

U(t) - t2(uIT(1 + a) " ~ =

ast — oo.

THEOREM 3. If Y is in the domain of attraction of a stable law of order 2,
then

U(t) — t(pT(1 + a)) L ~ pt OtaP(Y’ >u)du ast— oo.
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THEOREM 4. If Y is in the domain of attraction of a stable law of order B
withl < B < 2, then

U(8) = t5(uT(1 + @) ™ = £ PL(¢4)D(as B)/° as > oo,
where P(Y > t) = t BLy(2), Ly(-) is slowly varying, and
D(a, B) = aB(a,1 - (B - 1))T(2 - B)(T(1 + «)T(1 - «(B - 1))(B-1)) .

These results show quite a range of possible second order behaviors for the
renewal function within a relatively small class of c.d.f.’s F(x) in (1) with
1 < a < 1. This is in contrast to the one particular behavior the second order
estimate takes when F(-) satisfies (1) with 1 < a < 2 (see Mohan (1976), Theo-
rem 2.2, which improves Theorem 4 of Teugels (1968)).

These results would follow for 0 < a < ; if one could be certain that the
strong renewal theorem of Lemma 1(iii) holds. For example, if, in (4), the random
variable Y has an exponential distribution with mean g, then

U(t) = t(uT(1 +a)) ' =1 fort>0
and
tlim m(t)(U(¢+ h) — U(¢t)) = hC, for0<a <1.
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