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AN IDEAL METRIC AND THE RATE OF CONVERGENCE TO A
SELF-SIMILAR PROCESS

BY MAKOTO MAEJIMA AND SVETLOZAR T. RACHEV
Keio University and Bulgarian Academy of Science

A new metric is introduced which is suitable for estimating the rate of
convergence of processes related to stable random variables. It is shown that
it has an upper bound depending on the difference pseudomoments, but not
on the absolute moments. This new metric is then applied to get some rates
of convergence to a self-similar process constructed from a stable process.

1. Introduction. Denote by 2= Z(, &, P) the vector space of all random
variables defined on a probability space (2, «, P) and by £(%) the space of
laws Py, X € Z. The mapping p: L(%) X L(Z) — [0, 0o] is called a simple
probability metric in & if it has the following pseudodistance properties: For
any Py, Py, P, € (%),

(1) if Py = Py, then p(Py, Py) = 0,
(2) "’(PX’ PY) = ”’(PY’ PX)’
(3) ""(PX’ PY) < "’(PX’ PZ) + H’(PZ, PY)'
By abuse of notation we occasionally write u(X,Y) for u(Pyx, Py). For conve-
nience, we shall call it only “metric” in this paper. We refer to the survey paper
by Zolotarev (1983) for the general idea of the metric.

Most metrics in this paper take the form

M'(PX’PY) = v(PX_ PY)’ fOl'PX, PYeg(g)’

where » is a subadditive [0, c0]-valued functional on the space .# of bounded
signed measures on R. Throughout the first three sections of this paper, we write

p =Py — Py,
F(x) = Fx(x) — Fy(x), where Fy(x) =P(X <x),
(11) F. (x)= f_xw% dFE(t), r=12,...,

o(f) = [fdp = Ef(X) - Ef(Y).

A subadditive [0, co]-valued functional » on .# is called ideal of order s if the
following two conditions are satisfied:

(1) Regularity: »(p *¢) < »(p)|o|(R) for p, 6 € #, where |o| is the total varia-
tion measure of o.
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AN IDEAL METRIC AND THE RATE OF CONVERGENCE 709

(2) Homogeneity of order s > 0: »(p,) = |c|°»(p) for ¢ # 0, p €.#, where
pL*) = p(-/c).

If w(X,Y) = v(Pyx — Py) and v is ideal of order s, then the metric p is called
so. Regularity now amounts to u(X + Z,Y + Z) < u(X, Y) in case Z is indepen-
dent of X and Y, and homogeneity of order s to u(cX, cY) = |c|*w(X, Y)

Let

(12) »(p) = sup{|p(f)|: feF},
with % some class of measurable functions on R. If & is closed for f — f(y + ),
y € R, then » is regular, because
o+ )11 =|[ [1a + 2)o(an)o(a)| < flo(1(r + i)
< sup |p(f(y + -))|lo|(R)
yER

< v(p)lo|(R). (
If & is closed for f — |c|~*f(c - ) for ¢ # 0, then » is homogeneous of order s
[see also Zolotarev (1976a), Section 1.5].
The existence of an ideal metric of a given order s > 0 was shown by
Zolotarev (1976a,1976b). He defined a metric, which will be called the Zolotarev
metric and denoted by {,(p) = {(Px, Py), by choosing # in (1.2) as

= {f:|F™(x) = F™(y)| < Ix - 37, x, y € R},

where m (= —1) is an integer and p € [1, o) is such that

1
1.3 s=m+ —,
(1.3) >

and

fOV(x) = fo"f(y) &, [Ox) = f(x),

dm
f(x) = omf(x),  m=12,....
He also obtained an upper bound for {,(p) as follows. Let
(1.4) k(p) = (P, Py) = [ |x'!|Ey ()| a,

which is the so-called difference pseudomoment of order s and b, =
min( E|X|%, E|Y|*). If s > 0, k(p) < 00, E(X/— Y/) =0, j=1,2,..., m (when
s> 1), and further E(|X|* + |Y)®) < oo when s is nomnteger then

¢(p) < FS(::/I)))[ k(p) + {K,(p)}/PBL- /7.

He moreover showed in Zolotarev (1979) that if s is a positive integer, then ¢,
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can be represented by the following integral form:
(1.5) ) = [ |F, (x)]dx.

In this paper, first we introduce a new ideal metric of order s > 0 with two
advantages:

(A.1) It has an integral form like (1.5) for any s > 0 (not necessarily Ainteger).
(A.2) For any s > 0, there exists an upper bound of the ideal metric, which
depends on the difference pseudomoments k, but not on b,.

Second, we investigate rates of convergence to self-similar processes with this
new metric.

Denote by =, and =, the equality and the convergence of all finite-dimen-
sional distributions, respectively. Let {X(¢), ¢ > 0} be a self-similar process with
parameter H > 0 having stationary increments in the sense that X(c:) =,
cfX(-) for any ¢ > 0 and X(-+ b) — X(b) =; X(-) — X(0) for any b > 0. We
refer to the recent paper by Vervaat (1985) for some basic properties of such
processes. The stationary sequence {Y;}%2, is said to belong to the domain of
attraction of X(¢) if, for some slowly varying function L(-),

[nt]
(1.6) n~HL(n)™" Y Y=, X(2).

j=1
Many limit theorems of type (1.6) for strongly dependent random variables {Y;}
have been obtained [for example, Dobrushin and Major (1979), Kesten and
Spitzer (1979), Taqqu (1979) and Maejima (1983)]. Our purpose here is to study
the rate of convergence in (1.6), especially for X(¢) a fractional stable process as
considered by Maejima (1983) (see our Section 4 for a definition).

In Section 2, we shall introduce the new metric and prove its properties.
Section 3 will discuss some relations between some ideal metrics and fractional
calculus. In Section 4, our metric will be applied to estimate the distance
between two elements in the domain of attraction of the fractional stable
process. In the final section, the distance between the fractional stable process
and processes in its domain of attraction will be examined.

2. An ideal metric and its properties. Denote
0 ) 1/p
lgll, = [/ Ig(x)l"dx] , 1=<p<oo,
— o0
llgll,, = esssup|g(x)],
and for r = 0,1,2,..., and p € [1, ], .
F(r,p)={F:1f "l <1},
where 1/p + 1/q = 1. Let s > 0 and define m and p as in (1.3). Denote

0s(p) = 0s(PX’ PY) = Sup{lP(f)I: fe‘g’(m-" 1, p)}’
with the same notation as in (1.1).
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It is easily seen that the mapping 6, is an ideal metric of order s. In the
following we shall show some properties of 6.

THEOREM 1. Lets > 0. If 8(p) < oo, then

(2.1) E(X'-Y)=0, j=12,...,m,
when s > 1, and
(2'2) as(p) = "Fm+1,p"p'

Proor. If f e F(m + 1, p), we have
o(1) = i’m()f ) + [ an [ e a
J! _

=1

with the convention ¥° j-1=0. Suppose that m > 1 (consequently s > 1) and
(2.1) does not hold for some jp, 1 < j, < m, namely,

E(XJo — Yh) = j x dF(x) # 0.

— 00

Then

6,(p) > sup

ceR

cfoo xf°dF;,(x)|= 0,

— o0

which proves (2.1).
Therefore, if 6,(p) < oo, for any m > 0

o) = [ o) [E D s a

=(- 1)'"”[ () Fpi, p(t)dt+f fmD(t) m+1p(t) dt,

where

— 00 (u - t)m
(2:3) Frr o(8) = [ dF(w).
Thus by (2.1) again
p(1) = (=)™ [ (R, (6)

By the duality of the spaces £” = {f: ||f||, < o0} and L7 = {f: ||f]l, < o0}
with 1/p + 1/q = 1, we conclude (2.2). O

The integral representation (2.2) assures advantage (A.1) mentioned in Section
1 and statement (b) in the next theorem gives us advantage (A.2).
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THEOREM 2. Suppose (2.1) is satisfied.
(@) For any s > 0,
(2.4) 8,(p) < $,(p),

where §, is the Zolotarev metric.
(b) If0<s<1,

8.(p) < {k:(p)}"”

andif s > 1,
I'(l1+1/p)
(2.5) 8,(p) < 1'(1—+$)K3(p)’
where « is the difference pseudomoment defined in (1.4).
(c) Fors > 1,
(2.6) 6,(p) < ((m = 1)1) "n,(p),
where

n(o) = [ [ B da)” e
+j0°°xm-l(fx°°lﬁ;,(u)|”du)l/"dx.

(d) Fors =m + l/pand.s’ =m+ 1/p’, wherem =0,1,... and1 <p’ <p,
(2.7) 6,(p) < (max(EIX|"™, E|YI™)}' ""*{6,(p)}"".
PROOF. (a) For every x, y € R and f with ||f ™*Y||_ < 1, we have
[£ (@) = F () <N Ollgle = 3177 < = 577

Thus #(m + 1, p) € % and hence (2.4) holds.
(b) The first assertion can easily be deduced from (2.2). If s > 1, then (2.1)
and (2.2) imply

oy MO s[[ | Ff dx] [ [ VB ]

=1 + I,
where F, +1,0(x) is defined in (2.3). Let I[-] be the indicator function. Then by

the Minkowski inequality

-5

< [ welR, ()| du=d, ,,
)

0 P 1/p
f F, (u)I[u<x] du‘ dx]

where
Fip= [ 7| E(u)|du
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and if m > 2,
)m—2

J ]_"w%—f——m-!—ﬂ(t) dt| du

0
— 1
m,p / |u| »

-|

1 1\\ 7 o :
2+ —|--|m-1+— (TP F(¢8) | dt.
> ( p)} [ |E(8)]

1
1+ —
p

In a similar way we can estimate I, and get (2.5).
(c) It is easy to see that

(2.9) [L‘Lg(u)durdx]v"sng(u)r'du]“”dx, p=1,

where A = (—oo,t]and B=(—o00,x], x <t <0,0r A = [¢,00) and B = [x, o0),
0 < t < x. Using (2.8) and (2.9), we have

I < j_"w[f_’JFm,p(x)l"dx]Vp dt
-1

< f_ooof_tw[fjJFm_l,p(u)IPdu]l/dedt

o |x™?
< o ——————

X P 1/p
/ F_l,p(u)du' dx] dt

(15 () du]” ax,
. 1,p )

and similarly

m—1

o X [ poo, — D 1/p
I2SL m[x |Fl,p(u)| du] dx.

As F, (u) = F(u) and F, (u) = —F(u), (2.6) follows.
(d) Let B,, = max(E|X|™, E|Y|™). Then

. _ i
as(p) = Bm[f_oooIBn_lem+l,p(x)|de + /(;wlBr;lFm+1,p(x)Ipdx] ’

< B[ [ B ) s+ [(|Bp For () |

= B, /7{0(p)}7". o

REMARK 1. Note that 6,(p) = {,(p) in (2.4) for positive integer s, as then
m=s—1and p =1 in (1.3). Hence 0(p) = ||F; ,|l, = {,(p) for such s, by (2.2)
and (1.5).
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The next theorem gives us a lower bound for the metric §,. Let L(Py, Py) be
the Lévy metric in &, namely,

L(PX’PY)
= inf{e > 0: Fy(x —¢) — e < Fy(x) < Fy(x + €) + ¢, forall x € R}.

THEOREM 3. Foranys> 0

(2.10) {L(Px, Py)}""" < C(5)8,(p),

where C(s) = (2m + 2)!(2m + 3)%/{(m + 1)!(2/q + 1)'/?}. For 0 <s <2 in-
equality (2.10) can be sharpened to:

(2.11) {L(Px, Py)}"" < 6,(p), if0<s<1,
(2.12) {L(Py, Py)} " < 40,(p), if1<s<2.

The exponent s + 1 in (2.10) is the best possible, as Remark 2 below shows.
It is well known that if X has a bounded density p(x), then

(213) u(p) < (1+ sup px(x)|L(Py, Py),

x€R

where u(p) is the ordinary uniform (or Kolmogorov) metric:
u(p) = sup |F(x)|.
x€R
Using (2.10)—(2.13), we obtain a lower bound for 6,(p) in terms of u(p).
Proor oF THEOREM 3. We follow the idea of Yamukov (1977). Let s > 0
and choose ¢ such that 0 < ¢ < L(Py, Py). Then for some z € R
(2.14) Fy(2) - Fy(z+¢)>e¢
or Fy(z) — Fx(z + €) > &. Suppose that (2.14) holds without loss of generality.
For m=0,1,..., put
m+1
g(x)={(1-=2)"}"",
with the notation a* = max{0, a}. Then
{(m+1)! }2
(2m +2)!(2m + 3) "

V= [ g(x)de = 22m+s
-1
Put

_oy-1[1! _w f_] _
f.(x) =2v f_ll[x - <z+5|g()dy- 1.
It is easy to see that f(x)=1 for x <z, f(x)= -1 for x>z +¢ and
|f(x)| <1 for all x € R. Noticing that

)

2
f(x) = 2V‘1;‘[°o I[u <z+ %]gs
—o



AN IDEAL METRIC AND THE RATE OF CONVERGENCE 715
wehaveforz <x <z +¢
2\m+1 2(x~-u
fim+(x) = 2V‘1(—) fw I[u <z+ ]g("‘"‘)(—(-———)) du,
€ — €
which is equal to
2\m+1 1 ey €
-1 _ - 2 — (m+1)
2V (8) f_ll[x 2 <z+2]g4g (y) dy.
Hence by the Minkowski inequality,

2 m+1
17Dl = 2V ‘(;)

q 1/q
)

e e
fl I[x - ?y <z+ 5]g§"‘“’(y)dy

x{f:ﬂ :

2 z+e ey € 1/q
-1 Z (m+1) _ v £
(2015) <2V e) f ’gs (y)l{f [x 2 <z+ 2]dx} dy
2 m+1-1/q
=2V ;) f g () |(y + 1) dy
2 m+1— l/q 9 1 1/q
—1| _ (m+1) 2/q
<2V e) fllgs ()] dy} {f_l(y+1) dy}
= 2¢7°C(s),

where we have used
/‘ g™ 0(y) [ dy = @m+2)t [* (1 - %)™ dx = (2m + 2)1V.
-1 -1

Since f(x)/I| f™* V||, € F(m + 1, p), it follows from the definition of §,(p) and
the properties of f(x) that

() = 11701 [ () d ()|

= 1|7 () + 1) aRa)|
(2.16)

= (AR -f_zw( f.(x) + 1) dFy(x) — f_z:( f.(x) + 1) dFy(x)

> ¢°C(s) '[Fx(2z) — Fy(z + ¢)] by (2.15)
> e *1C(s)”" by (2.14).

Letting e 1 L(Py, Py) in (2.16), we get (2.10).
The improved inequality (2.11) for 0 < s < 1 follows from the integral repre-
sentation (2.2) for 6,(p) and the definition of the Lévy metric.
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To prove (2.12), we define, as in Grigorevski and Shiganov (1976),

fo(z ro+ h) - {((1 - EL—"')+)2 - l}sgnh.

Since |fo(x)] < 1 and || f{®||, = 8¢"2*'/9, by the same reasoning as in (2.16), we
have 6,(p) > 47 '**1, which gives us (2.12). O

REMARK 2. In the following, we show by examples that the exponents of L
in (2.10) are the best possible, for instance, in the case 0 < s < 3.

lLet 0<s<1land let P(X=0=1 PY=0)=1—-¢and P(Y=¢)=ce
Then L(Py, Py) = € and ,(p) = e**™.

ILetl<s<2andlet PA(X=0)=¢ P(X=2¢)=1—¢ P(Y=¢)=2¢and
P(Y = 2¢) = 1 — 2¢. Then L(Py, Py) = ¢ and 0(p) = {2/(p + 1)}/Pe**L.

Let 2 < s < 3 and let

P(X<x)=(x+3)I[-e<X<e]+I[X>¢],
P(Y=¢)=P(Y=-¢)=1%—c¢
and
P(Y=¢/V3)=P(Y=—¢/V3) ==
Then L(Py, Py) = ¢/2V3 and standard calculations give us 6,(p) < const. ¢**".

REMARK 3. In case s is a positive integer, we can improve our inequality to

(2.17) C(s)8,(p) = {m(Py, Py)}**",
where 7 is the Lévy—Prokhorov metric,
7(Pyx, Py) = inf{e > 0: P(X € A) — P(Y € A®) <,
P(Y € A) — P(X € A*) < ¢, for all Borel sets A},
with A*=U,4{x: |x — y| <¢}. Since 7 > L, (2.17) is better than (2.10). The
proof of (2.17) can be carried out the same way in Yamukov (1977). [See also
Grigorevski and Shiganov (1976), but there is a gap in the proof of their Theorem

1.] The constants C(s) in (2.17) are much better than those in Yamukov (1977).
We also note that for noninteger s, it is impossible to find the estimation

0, > o(m),

for some nondecreasing function a(¢) of ¢ > 0 such that ¢(0) = 0 and o(¢) >0
for ¢ > 0. The following example explains this situation.
Define {X,,,Y,, n=1,2,...} by

1
P(Xn=2j)=P(Yn=2j+1)=;, .J=1,...,n.
Then #(Py, Py)=1,but when1 <s<2(s=1+ 1/p, p > 1),
' ' 1/p
0Py Pr) = [ [Fxfo) = B s = mir

as n —> 0.
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3. Relations with fractional calculus. In this section, we comment briefly
on relations between ideal metrics and fractional calculus.
Using the Weyl integral of order « > 0,

KF(x) = —— [~ a1 g
) = gy L (=0T dF ()
[see, for instance, (1.4) of Erdélyi (1975)], we can consider the metric

w () =IKEl = [~ |[ wg%(%;—_ dF(y)| dx,

as a possible generalization of the notion of {; or ,. Actually, for integer s, we
get under (2.1) that
w(p) = [ |F. (2)]dx = £.(0) = 6,(p).

Moreover, for any s > 0, w, is regular and for any ¢ > 0,
(3.1) w,(p;) = |cl*w,(p).
Furthermore, with « (p) as in (1.4) and

v(p) = [ I + B )(dy),

— 00

where F," = max(0, F,), F,” = —min(0, F,), it can be shown that

—YS(B—)——, if0<s<l1,
I'(s+1)

(3:2) w,(p) <
L‘S(_.p.)_. ist 1
I'(s+1)’ ’

for any p with support concentrated on the positive half line. [The proof of (3.2)
will be given at the end of this section.]

However, it might be difficult to find a satisfactory class of distributions
F, = Fy — Fy for which (3.1) is true also for negative ¢ < 0 and, in addition, the
values of w, are finite.

Next, we give another relation between the ideal metrics and fractional
calculus. Note that F, , can be regarded as the convolution of F, with the
function p, defined by

xr—l
pr(x) r(r) ’ ifx > O’

=0, ifx <0, r=1,2,...
[see (1.2) of Erdélyi (1975)]. Hence if 8, < oo, then
0s(p) = "pm+l * F:J"p’

by Theorem 1. This formula suggests another way of constructing ideal metrics,
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namely, by means of “smoothing” of the signed measure p. More precisely, let p
be an ideal metric of order 7 > 0 and define the function

M, (k)= |hI’n(p*9s), RER, s>0,
where ¢ is a probability measure and ¢,(-) = ¢(- /A). Then the metric
m, 5(p) =IIM, ,ll,, 1<p<oo,

is an ideal metric of order 7 + s + 1/p. As an example, the following ideal metric
might be interesting.

Let p = {, (the distance in variation and r = 0) and ¢ be the stable measure
with characteristic function exp{—|z|*}. Then A, = m, . is an ideal metric of
order s > 0 and

(3.3) As(p) < O,(p)IIES Il

for any integer s > 0.

ProoF oF (3.2). If p has its support on the positive half line,
w oo (y—x)""
—— (F' .
wip) s " (B + E (@) ds

- fowf(—si—l)(lf + F7)(dy)

1)
T I(s+1)’
for any s > 0, and further if s > 1,
w,(p) = f fw(y F(y)dy defwf %lﬂ(y)ldydx
=j(‘)°°y )IF(y)l y = F:s(:)l) O

ProoF oOF (3.3). Let s > 0 be an integer. We have by the definition,
o | oo
Mo) = suplht* [ |7 Fy() dyEy(x - )|
h —ool¥ —o00

= Sl’llplhl*’ f_w |Fe*D(y)F, (x — y) dy|dx
< suplhf'[* " |[EGO(|IB, (5 - )| dyas
= 7 IE. (8)] dt - supihi* [~ |F ()| dy

— 00 h — 00

< 0(p) - suplhf' [~ |F* ()| dy.
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On the other hand, since ¢ is a stable law, we have

I w 1 y
|h|3f—w|Fé:+l)(y)|dy= f_wm qus-l—l)(_];)

dy = f_°°w|F,§s+1>(t)|dt. =

4. Distance between the elements in the domain of attraction of the
fractional stable process. The metric p was introduced as a distance between
probability measures. However, for the convenience of notation, we shall write
w(X,Y) for u(Py, Py) in the rest of the paper.

The fractional stable process defined by Maejima (1983) is self-similar with
parameter H € (0,1). We recall briefly its definition and the main result of
Maejima (1983).

Let {X;, j € Z} be a sequence of independent and identically distributed
random variables belonging to the domain of normal attraction of a strictly
stable random variable of index a < 2 with characteristic function

(4.1) exp{ —|2|*(A, + iA,sgn 2)}

for some A, > 0, A, € R, with |A['A,| < tan(an/2), where sgnz = +1, 0 or
—1, according as z> 0, =0or <0. Take B (1/a —1,1/a) with 8 # 0 and
consider the random variables

YkE Echk_j, k=1,2,...,
jez
where ¢; = j"("#~D, [Here as in Vervaat (1985), x'” = |x|"sgn x for x # 0 and
= 0 for x = 0.] For ¢ € [0, 1], we define

[nt]
A (2) = |B|n_H( kE Y, + (nt = [nt]) Y044
-1

" where [a] is the integer part of a, ¥%_, means 0 and H = 1/a — B. Consider
two independent stable processes {Z (), ¢t > 0} and {Z_(t), ¢ > 0}, both having
characteristic functions

(4.2) E{e?2:™} = exp{ —t|z|*(A, + iA,sgn 2)}.
Define the fractional stable process by

A) = [~ (t-sI7 - IsI7F) dz(s), teo,1],
where A(0) = 0 as. and Z(s) = Z ,(s)I[s > 0] — Z_(—s + 0)I[s < 0].

THEOREM A [Maejima (1983)]. Asn — oo,
(4.3) 8,(2) =4 A(2).

In the remainder of this papetr, we shall apply our new metric 6, to get the
rate of convergence of (4.3) in terms of the uniform metric u. The program is as
follows. Besides { X;, j € Z} in the generality introduced before (4.1) we consider
a more special choice {X*, j € Z} with X* itself already distributed as the
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attracting stable random variable with characteristic function (4.1). Denote
A*(t) corresponding to {X*, j € Z} in the same way as A,(¢). Then we have
(4.4) u(A,(8), (1)) < u(A,(t), %(2)) + u(A3(2), A()),

where u is the uniform metric as defined after (2.13). Since A,(t) and A%(¢) can
be expressed as the infinite weighted sums of {X;} and {X*}, respectively, we
can apply the method of probability metrics to estimate u(A (), A%(?)). As to
u(A*(t), A(t)), we shall use the Esseen inequality.

In this section, we examine u(A (¢), A%(¢)). The other step will be dealt with
in the next section. To estimate u(A,(?), A%(2)), it is enough to study
0,(A,(t), A*(2)), because of (2.10) and (2.13). For the latter {X*} need not be so
special. So let { X/, j € Z} be another sequence with the same properties as { X,
J € Z) and define the process A’,(¢) corresponding to {X/} in the same way. The
main result in this section is the following.

THEOREM 4. Consider the following cases:
(@0<a<1l,2a/(a+1)<s<1,0<H<I
b)0<a<ls>1,1-1/s<H<I;
@©l<a<2,s>al-1/s<H<1(H#1/a).

Then we have for each t € [0,1],

(4.5) 0,(8,(2), &,(¢)) < Cn®D(n)6,(X,, X{),

where C is a positive constant depending on H, s and t,

+

Q= —Hs+(s—1)++{2— (1—H+%)s}

and
\ (1, fH+1/a+1-2/s,
D(n)_{logn, fH=1/a+1—2/s.

The above restrictions on (a, H, s) have the effect that C < oo and that @,
the exponent of n in (4.5), is negative. The details will be explained after the
proof of the theorem.

We also note here that 6,(X,, X{) in (4.5) might be infinite. The conditions
that guarantee the finiteness of 6,(X,, X{) are given in Theorem 2.

PrOOF OF THEOREM 4. Define for £ > 0

[£] B
S(t)= Y Y+ (t— [t])Y[t]+1
k=1
and ’
[£]
S'(t)= X Y+ (t— [¢]) Yy
k=1
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Since 6, is an ideal metric of order s,

0,(A,(2), &, (t)) = 6,(1BIn~HS(nt), |BIn~HS"(nt))

(4.6)
= |B|°’n~#¢6,(S(nt), S’(nt)).

Note that

S(nt) = Y &(nt)X,,

kez

where

[nt]-k
(4.7) glnt) = X kcj + (nt = [nt])erpgins-

j=1-

By the homogeneity and regularity of 6,, we obtain the following estimate:

(4.8) ~ 0,(S(nt), 8"(nt)) < 6,(Xo, X) X |&x(nt)[
keZ

[cf. Zolotarev (1976a,1979)]. By the definition of {c;} it follows that
(4.9) Y w(nt)' < T |e(nt)| <4 T vi(nt),

k>0 kez k>0
where

[nt]+1+k
wnt)= ¥ P k=0
J=1+k

The following estimates for (s, B) = L, . vx(nt)° are essential in the proof:
(4.10) J(s,B) =00, ifB< -i— -1,
J(s,B) < ([nt] + 1)“““[1 +{(B+1)s— 1} 7" + ([nt] + 2)> #+Ve
(4.11) x{(B+1)s-1)"{2- (B+1)s} 7],
1 2
f——-1<B8<—-—-1,
s s
(4.12) J(s,B) < ([nt] + 1) "7 (3 + log([nt] + 2)}, ifB= % -1
and .
(413)  Jy(s,B) < ([m] + 1) " 1 +3{(B+1)s-2)}) 7], if B> % - 1.

These estimates can easily be proved by the standard calculus, so we omit
their proofs. Then (4.5) follows from (4.6), (4.8), (4.9), (4.11), (4.12) and (4.13). O
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REMARK 4. We explain the reason for the restrictions on (a, H, s) in Theo-

rem 4.
(@) If0<a<1and s <2a/(a + 1), then

=(a+1a?!

Q (a ) (a+1

Therefore we have to assume s > 2a/(a + 1).

b)) If0<a<1ls>1and H<1-1/s, then
Q=—-Hs+s—-12>0.

Hence we need H > 1 — 1/s.
c)Ifl<a<2and s<1,

Q=(a+ l)a'l( 2a —s) > 0.

—8)20.

a+1
Ifl<a<2and1 <s< a,then

s 1 2
Q=—-—+120, whenH> —+1- —,
14 a )

1 2
Q=—-Hs+s—-1>0, whenH<-—+1—-s—.
a

Hence we have to assume s > a in case 1 < a < 2. In this case, if H <1 — 1/s,
then
Q=-Hs+s—-12>0.

REMARK 5. We exhibit below the negativity of @ in all cases in Theorem 4.
Recall that H = 1/a — B.

(@) Thecaseof 0 <a<1,2a/(a+1)<s<1,0<H<]I1.
(i) If1/a+1-2/s < H <1 (which is possible only when s < 2a), then
Q=2-s(a+1)/a<0.
(i) f0<H<1/a+1—-2/s,then @ = —Hs<0.
() Thecaseof0<a<1l,s>1,1-1/s<H<1.
(i) Ifl1/a+1-2/s < H <1 (which is possible only when s < 2a), then
Q= -s/a+1<0.
() If1-1/s<H<1l/a+1-2/s,then@ = —Hs+s—1<0.
(¢) Thecaseofl <a<2,s>a,1—-1/s<H<1(H#+#1/a).
(i) If1/a+1-2/s < H <1 (which is possible only when s < 2a), then
=-s/a+1<0.
) If1-1/s<H<1l/a+1-2/s,then @= —Hs+s—-1<0.

If we look at the definition of J (s, B8), we easily see that if 8 > 1/s, then
Jo(s,8) < B {(B+1)°+1+ (Bs—1)7"} < 0.

Hence in this case
(4.14) 0,(A,(2), A (t)) < Cn~Ho(X,, X}).
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Therefore another set of combinations of (a, H,s) for getting the rate of
convergence of 0,(A,(t), A'(t)) is given as follows. The proof is obvious.
THEOREM 5. If

(@0<a<l,a<s<a/(1-a),0<H<1l/a-—1/s,
b)0<a<l s>a/1—-a),0<H<1

or
©l<a<2,s>a,0<H<1l/a-1/s,

then (4.14) holds.
5. Distance between the fractional stable process and any element in

its domain of attraction. For simplicity, we assume A, =1 and A, =0 in
(4.1) and (4.2). A bound on u(A*(¢t), A(t)) is given as follows.

THEOREM 6.
u(a%(2), A(#)) < (Km) 4(n),
where
K=K(a,p)= [ |lt—s/™ = 1s|#["ds < o0
and )
-1
v(n) = {g;?n, ’t)n_H“, ;Z:ﬁ : g’

Here C, depends only on a and B, Cy(n, t) < C, if nt > C,, and C; and C, are
constants depending on o and .

From (2.10), (2.13), (4.4) and Theorem 6, we have the following.

THEOREM 7. If 6(X,, X;*) < oo, then we have in all cases considered in
Theorems 4 and 5,

u(8,(2), A(1)) < (1 + G5){C(s)8,(8,(2), A5(£)} 7

+(Km)"(n),
for each t € [0,1], where C; is a positive constant depending on a and B.

(5.1)

To get the rate of convergence of A,(¢) to A(¢) in Theorem 7, it is enough to
apply Theorem 4 or 5 to 6,(A,(t), A*(¢)) in the first term on the right-hand side
of (5.1). We start with the proof of Theorem 7.

ProoF oF THEOREM 7. Recall (4.4) and note that Theorem 6 deals with the
second terms on the right-hand sides of (4.4) and (5.1). It remains to compare the
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first terms. By (2.13),
u(A(t), A4(2)) < (1 + a,)L(A,(2), A%(2)),
where a, = sup,|(d/dx)P(A%(¢) < x)|. Since

h,(z) = E{exp(izA%(t))} = exp{—|z|"|B|"n‘H"‘ Y |§k(nt)|a},

ke
where £,(nt) is the one defined in (4.7), we write
h(z) = exp{ - K,|z|*},
where
K,=K,(a,) = |BI'"n™ " ¥ |£4(nt)["
kel

In Maejima (1983), it was shown that K, = K as n — oco. Therefore

d
= P(A%(8) < 2)

<(@r)" f:olhn(z)ldz <(@r)7" f_oowexp(—2‘1K|z|“) dz,

for large n. Thus a, < C;, some positive constant depending on « and . On the
other hand, we have by (2.10) in Theorem 3 that

L(A,(2), A%(2)) < {C()8,(A,(2), A%(2))}*P7.
Hence

u(An(t), A:(t)) <@+ Cs){C(S)ﬁs(An(t), A’;"(t))}(s*'l)“. O

PROOF OF THEOREM 6. Recall that
h,(2) = E{exp(izA%(t))} = exp(— K Jz|*)
and
h(z) = E{exp(izA(t))} = exp(—K]|2|)
[see Maejima (1983)]. Hence
|h(2) — h(2)| < exp(— K|2|)|2|*|K, — K]|.
By the Esseen inequality [cf. Petrov (1975), page 109],

u(a3(t), A1) < b hoz) — Alz)

z
where T is an arbitrary positive number, b is any positive number greater than
(27)~ L, r(b) is a positive constant depending only on b and

d
—P(A(t) <)

dz + r(b)CT,

C = sup
., x
Hence
u(8%(2), A()) < BIK, - K| [ exp(—KlzI*)jz|*"* dz + r(b)CT".
-T
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Since exp(— K|z|*)|z|*~! is integrable over (— o0, ) for 0 < a < 2, we obtain by
letting T — o0
u(A%(t), A(t)) < (Kw)|K, - K.
Hence, to complete the proof of the theorem, it remains to show
(5.2) K, — K| < ¢(n).
The proof of (5.2) is split into the following four parts:

0
(2) kE | Bn=Hey(nt)|" - f_owllt-SI‘”—ISI‘”lads <¥(n),
[[nt]/2] N a
() | |sn 0] = [Tl =18 = 1617 ds| < y(n),
=1
[nt]-1 a t a
© | X [ Hgnn)" = [ |1t —s7F — 1sI7#| ds| < ¥(n)
k=[[ntl/2]+1 t/2
and
(d) R ]Iﬁn-”sk(nt)l“— [ lie= 17 = 15170 ["ds| < y(n).
=[nt

We only prove (a). The other inequalities can be handled similarly.

ProoOF OF (a). Denote

-9 _ a
Y Bn R (nt)[ = [T ie— 5178 — 1s17#" ds

k=—o0 I

S =

n

Since
[(nt]-%

g(nt) = X jP+ (e = [me])([ne] +1- k)",

j=1-k
for 2 < 0and B + 1 > 0, we have

—k -k
0< anl x B ldx < §4(nt) < fm x P ldx.
1-k ' —k

Hence
=2 1-Fk\"# 1-k\B"
b= I 0] - (e )

k=—o00 n n

_2 «
< X |Bn_-ka(nt)|

k=—00

=2 k\~# E\BY
B A = B e
k=—o00 n n




726 M. MAEJIMA AND S. T. RACHEV

Denote
gla)=nYit—a|"f-|a|*|", acR.
Then
A,z f_3/n||t_ sl_ﬁ_ Isl_ﬁ|ads =L,
and
- 3 2
)\n_g(;) +g(;) +Ln
Hence
s 2 N 3
< - - .
v<e=) + o)

For any a € R,

—apf —apf
g(%) < n"max{lt— % , % } <y(n).
Thus
(5.3) 8, <y(n).

Let t>0 (if t=0, K, = K=0) and choose n such that 1/n < ¢. Since
t € [0,1], we have for some C > 0

« 1-ap 1-ap
fl/"|u‘ﬂ —(t+u) | dus< C{(i) + (t+ 1) - t""ﬂ} <y¥(n).
0 n n
So

(54) [ 11t = 817" = 1s|#[" ds < y(n).
-3/n
. Ifk=0,1,
[nt]+1
|BnHg_y(nt)|" = |Bn~Hj"| L P+ (nt - [ne])([ne] +2) "7
Jj=1

(5.5)

A3 T

B T e E\

n n

and similarly
(5.6) |Bn=Bto(nt)|" < ¥(n).
By (5.3)-(5.6), we obtain (a).
A similar approach to (b)—(d) completes the proof of Theorem 6. O
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