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DECOMPOSITION OF BINARY RANDOM FIELDS AND ZEROS
OF PARTITION FUNCTIONS!

BY CHARLES M. NEWMAN
University of Arizona

Let 8,(X) denote the maximum d in [0, ] such that a binary Gibbs
random field X can be decomposed as the modulo 2 sum of two independent
binary fields, one of which is independent Bernoulli (white binary noise) of
weight d. In a recent paper, Hajek and Berger showed, under modest
assumptions, that §, > 0. We point out here that the decomposition of X is
related to the classic statistical mechanics problem of determining zero-free
regions of partition functions. A theorem of Ruelle is then applied to obtain
improved estimates for 8.

1. Decomposition and zeros of partition functions. The primary pur-
pose of this note is to point out that there is a close relation between the
decomposition problem for binary random fields studied in a recent paper of
Hajek and Berger (1987) and the statistical mechanical problem of determining
zero-free regions for partition functions. To demonstrate the usefulness of this
relation, we apply to the decomposition problem one theorem from the extensive
statistical mechanics literature on zeros of partition functions which has evolved
from the pioneering work of Lee and Yang (1952). This theorem, due to Ruelle
(1973), leads to (i) an alternate proof of the Hajek—Berger theorem giving
sufficient conditions for decomposability, and (ii) improved estimates for the
associated “critical distortion” [see Hajek and Berger (1987)].

Let X =(X;, i€ S), Y and U denote 0 or 1 valued random processes with
countable index set S. For D = (D,, i € S) with 0 < D, < 1, let U(D) denote a
process with independent components and with P(U(D) = 1) D; for each i.
The decomposition problem which was analyzed and applied to the calculation
of the information theoretic per-site rate-distortion function by Hajek and
Berger (1987) may be stated as follows: Given X and D, is there some Y
independent of U(D) so that X is equidistributed with Y ® U(D)? Here, &
denotes componentwise modulo 2 addition. When such a decomposition is
possible, D is said to be extractable from X.

For the purpose of this paper, the term partition function is merely a
synonym for probability generating function. For given X and finite F C S, we
define the partition function Z% as the polynomial in the complex variables
2= (2, j€F),

(1.1) ZE(z) = E(JIE_L z;ff).
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For y in {0,1}F, we define X ® y as X ® y, where y in {0,1)° agrees with y on
all components in F and y; = 0 for i not in F.

The following proposition, which is an elementary consequence of Lemma 1 of
Hajek and Berger (1987), is the main result of this section.

PROPOSITION 1. In order that D be extractable from X, it suffices if for every
finite F C S and every y in {0,1)F,

(1.2) Z%o,(z) #0 when |z| <D;/(1-D;) foreachjinF.

Proor. Let X and D denote the restrictions of X and D to F. If for each
finite F, D is extractable from X, then by standard arguments (involving
convergence in distribution of subsequences) D is extractable from X. Lemma 1
of Hajek and Berger (1987) shows that D is extractable from X if and only if for
all y € {0,1}7,

(1.3) ¥ ( [1[-D/(1- Dj)]"""”)P(x =x) > 0.
xe(0,1)F \JEF

But the Lhs. of (1.3) equals Z%, (z) with z; = —D;/(1 — D)). Let Z(t) denote

the same partition function but with z; = —¢D,/(1 — D)), so that the Lh.s. of

(1.3) equals Z(1). Z(?) is real for real ¢, Z(0) > 0 and by (1.2), Z(¢) # 0 for

0 < ¢ < 1; hence Z(1) > 0, which is just (1.3). O

2. Ruelle’s theorem. There is a substantial body of work, in the rigorous
statistical mechanics literature, on the problem of determining zero-free regions
for partition functions. This work originated with the classic Lee-Yang circle
theorem [Lee and Yang (1952)]. Among its generalizations [e.g., Newman (1974)
and Lieb and Sokal (1981)] is a theorem of Ruelle (1973) which is particularly
useful in the present context.

For simplicity, we will restrict attention to Gibbs distributions with only
single site and pair potentials. Ruelle’s theorem can be applied to more general
distributions, as in the work of Monroe (1983). Since Gibbs distributions with S
infinite can be obtained as a limit of finite S distributions, we will further restrict
ourselves to finite S (our notation below implicitly sets F = S). The distributions
we consider then have the general form,

(21) PX=x)= const.exp(22ﬁ(j)xj +2 Y V(i, j)(x o xj)),
J i, J)

where the H( j)’s and V(i, j)’s are real. This leads to

(22) Zx,,(z) = const.Zexp(2 Y VG, ) (w @ w,.)) IT(e2H0z,)",

w (iy J} J

where

(23) H(j) = (1 - 25)H()) = £H()),

(24) VG, j) = (L= 25)(1 - 25)V(i, j) = £V, ).
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Ruelle’s analysis allows one to determine zero-free regions for multivariate
partition functions such as (2.2) in terms of zero-free regions for bivariate
partition functions,

(2.5) Ky(z),2,) = 1 + e™(e?z, + e2Hz,) + etHz 2,

with z;, = z,. Elementary calculations show that K,(z, z) does not vanish in the
complex disk

(2.6) |2] < e 2HI(e2VI — [Vl — 1]'?) = exp|[ —2|H| — cosh™(e2V1)].
THEOREM 2 [Ruelle (1973)]. The partition function (2.2) does not vanish in
the complex polydisk
(2.7) {z: |2;| < exp[—2H* — (M — 1)cosh™'(e2V")] forallj},
where
(2.8) H* = mj‘flxﬂH(f)l}» V* = I{I}%}}(“V(i, )
and
(2.9) M — 1 = max {number of i’s with V(i, j) = V( j, i) nonzero}.
J

ProoF. This is an immediate consequence of Theorems 1.1 and 1.3 of Ruelle
(1973) and (2.6). O

3. Extraction from Gibbs distributions. As an immediate corollary of
Proposition 1 and Theorem 2, we obtain a new estimate for

80 = SC(X)

(3.1) , ) . .
= sup{d € [0, }]: D with each D, = d is extractable from X }.

THEOREM 3. For a Gibbs distribution as in (2.1),

1 — tanh[H* + (1/2)(M — 1)cosh~(e2"")]
2 )

where H*, V* and M are defined in (2.8)—(2.9).

(3.2) 8(X) >

Although this theorem is stated for the case of finite S, it extends to infinite S
by standard arguments (involving convergence in distribution of subsequences)
provided the infinite S distribution is the limit of finite Gibbs distributions for
which (3.2) is valid. As an example, consider the n-dimensional Ising model with
zero external magnetic field. Here, S = 2, H(j) = 0 and Vi, J)= —v <0 (for
a ferromagnet) or +y > 0 (for an antiferromagnet) when the Euclidean distance
between i and j is exactly 1 (otherwise V = 0). In this case (3.2) becomes

1 — tanh[7n cosh~(e2)]
5 .

(3.3) ~ §(Ising,) >
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For the one-dimensional case (n = 1), which corresponds to a binary symmetric
Markov chain, the r.h.s. of (3.3) can be simplified to

(3.4) 1-(1-e")?),
which coincides with the exact result obtained by Gray (1970).

How do our estimates for §, compare with those of Hajek and Berger? We will
discuss this issue only briefly, since the main purpose of this paper is to present a
new approach to the decomposition problem rather than to obtain specific
estimates. For simplicity, we restrict attention to the case where all H(j)’s are
zero and all V(i, j)’s have the same modulus (as in Ising,,). Then the estimates of
Theorem 1 and Section 4 of Hajek and Berger (1987) (other than those men-
tioned at the end of this section) may be expressed as

1 — [tanh((M — 1)V *)]"*
(35) 5> [tanh(( ! V)] ’
where K is in general MM~ but may be smaller in special cases such as Ising,
where K = 27 (rather than 54) It is always the case that K > 21 and usually
the inequality is strict.

Both estimates (3.5) and (3.2) (with H* = 0) tend to ; as V* — 0 and to 0 as
V* — o0. However the rates of approach are different. As V* — 0, our estimate
is asymptotic to (3) — const.(V*)"/2, while the other estimate approaches 1
much more slowly (for K > 2), i.e., like (1) — const.(V *)/X, (The two constants
differ) As V* — o both estimates are asymptotically proportlonal to
exp(—2(M — 1)V *), but the proportionality constant is smaller in (3.5) when
K > 2M 1

To compare the two estimates over the entire range of possible values of V*,
we may define

. Inftanh (3 ~ 1)0)]|
0<,,£°° |in[tanh((1/2)(M — 1)cosh~*(e2°))]|"

Then our estimate is an improvement for all V* if K,, < K. It is easy to see (by
letting v — oo in the definition of K,,) that K,, > 2¥~1, We conjecture that
K, = 2M~!, This is supported by numerical computations for M — 1 = 4 which
give K, = 16 for Ising, compared to K = 27. It can also be shown that the
conjecture is asymptotically valid for large M in the sense that K,, /2! - 1
as M — 0.

We conclude by noting that in Section 4 of Hajek and Berger (1987) there are
certain estimates better than (3.5) which lead, for example, to the exact Ising,
value of §,. We have not investigated whether their corresponding implicit Ising,
estimate would improve (3.3).

(3.6) Ky =
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