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THE GLIVENKO-CANTELLI PROBLEM

By MicHEL TALAGRAND
University of Paris VI and The Ohio State University

We give a new type of characterization of the Glivenko—Cantelli classes.
In the case of a class % of sets, the characterization is closely related to the
configuration that the sets of ¥ can have. It allows one to decide simply
whether a given class is a Glivenko-Cantelli class. The characterization is
based on a new measure theoretic analysis of sets of measurable functions.
This analysis also gives an approximation theorem for Glivenko—-Cantelli
classes, sharpenings of the Vapnik—éervonenkis criteria and the value of the
asymptotic discrepancy for classes that are not Glivenko-Cantelli. An appli-
cation is given to the law of large numbers in a Banach space for functions
that need not be random variables.

1. Notation and main results. Let (2, 2, P) be a complete probability
space. On 2" we denote by P" the product probability. On 2° = @V, we denote
by P> the product probability. The corresponding outer (resp. inner) probabili-
ties are denoted by P*, P** P** (resp. P,, Py, PY%).

We denote by £! = £ P) the set of measurable functions f such that
E(If]) = [1f|dP < . We shall not identify functions in #' with their classes
in L'. We say that a subset Z of .#! is order bounded if there is u € £, u > 0,
such that for each f in Z we have |f| < u everywhere.

Given s = (s;) € 2%, n € N, we consider the empirical measure

1
Qn(s) = Z Ssi’
n i<n
so, if f € #!, we have

Qu(s)(1) = ¥ £(s).

i<n

Given a set Z C £!, and s € @, we define the discrepancy D,(s) of Z by
D,(s) = sup|Q,(s)(f) — E(f)|.
fez

We shall say that Z is a Glivenko—Cantelli class if D,(s) — 0 a.s. (Note that
for possibly nonmeasurable functions, a.s. convergence does not imply conver-
gence in probability.) A class of sets is called a Glivenko—Cantelli class if the
class of the indicator functions of its sets is a Glivenko—Cantelli class. This name
comes from the fact that the Glivenko—-Cantelli theorem can be reformulated by
saying that the set of intervals (— o0, ¢] of R is a Glivenko—Cantelli class for each
probability P on R.
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The study of the Glivenko—Cantelli property of classes of subsets of the
Euclidean space, in relation with their geometrical properties, has attracted
long-standing attention. These classes include convex sets, half spaces, etc. See
[3] for a discussion. These results have been obtained by special methods.

For uniformly bounded classes, and with some measurability conditions,
Vapnik and Cervonenkis [11] obtained a characterization of Glivenko—Cantelli
classes in the abstract setting. Their result has been recently extended to order
bounded classes by Giné and Zinn [4]. Given s € 2%, consider the set

U= {(f(s1),-.., f(s,)); f € Z} c R™
Provide R™ with the sup norm (resp. the norm ||x|| = (1/n)L, _ ,|x;)), and denote
by N2(Z, ¢, s) [resp. NX(Z, ¢, s)] the smallest number of closed balls of radius ¢
that covers U. [Note that NX(Z, ¢, s) < N*(z, ¢, 5).] Then under some measur-

ability conditions, Z is a Glivenko-Cantelli class if and only if Z is order
bounded and for each ¢ > 0

1
]im;flog N>(Z, e, s)dP*(s) =0

[resp. limsup,NXZ, ¢, s) < 0 as.].

In practice, this result is not satisfactory, since the quantities involved in this
criterion can be computed only with difficulty, when such computation is at all
possible. Some other sufficient conditions, of much easier use, are surveyed in [3],
but they are by no means necessary. So there remains the need for a simple,
necessary and sufficient criterion. The criterion we propose is necessary and
sufficient in the most general case, but it in the end is based on what is the
common property of the geometries of the various Glivenko—Cantelli classes of
subsets of R™. It is precisely this feature that makes its application easy. The
basic notion is as follows.

DEFINITION 1. A set Z of functions on Q is called stable if for each a < B,
and each set A € 3 with P(A) > 0, there exists n > 0 such that

P2*({(sy,..., 8,y ty.onr t,) €A A f € Z;
Vis<n, f(s) <a, f(t,) > B}) < P(A)™

(A set of functions on a probability space might be called stable if every finite
subset has a stable joint distribution. The definition just given, however, is
unrelated to stable laws.)

The main result of this work is

THEOREM 2. For a subset Z of £, the following are equivalent:
(a) Z is a Glivenko—-Cantelli class and {E(f); f € Z} is bounded;
(b) Z is stable and order bounded.

As a first illustration, let us prove the extended Blum-DeHardt law of large
numbers ([1], 6-1-5) that is, Z is a Glivenko—Cantelli class if for each ¢ > 0, there



THE GLIVENKO-CANTELLI PROBLEM 839

exists a finite family f,..., f,, &,..., &, of &£, such that for i<p, f;<g,
J(g; — [;) dP < ¢ and that for each f € Z, there exists i <p with f,<f <g,
First, taking ¢ = 1, we see that Z is order bounded and clearly Z c #*. Suppose
that Z is not stable. Then there is a set A € =, with P(A) > 0 and a < 8 such
that for each n > 0, we have

P2”*({(s1,..., Spy biseeent,) €A AfEZ;

Vi<n, f(s;) <a f(t) > B}) = P(4)"".
Let & < (B — a)P(A). Consider a finite family f,,..., f,, &,..., &, of &' such
that f,< g, and [(g; — f)dP < e for i < p. For i < p, if the set A N {g; < B}
has positive measure let B;=A N {g; < B}. If A N {g; < B} is negligible, then
by choice of &, A N {f; > a} has positive measure, and we set B; = A N {f; > a},
so either B; C {g; < B} or B; C {f, > a}. Let

C= {(sl,...,sp,tl,...,tp) € A?";Yi<p, si,tieBi}.

Then P2P(C) > 0 and C C A?”; so there exists (s;,...,5,, t1,..., t,) € C and
f € Z with f(s;) <a, f(t;) > B for each i < p. If B; C {g; < B}, then f(t,) >
g.t). If B,C {f,> a}, then f(s;) < f(s;). In particular for no i do we have
f; < f < g;; this contradiction concludes the proof.

As it stands, Definition 1 is not as appealing as the reader might have
expected. It however simplifies if we make some measurability assumptions.

DEFINITION 3. We say that Z satisfies condition (M) if for each a < 8 and
each n € N, the set

{(sl,...,sn, t,...,t,) C R 3AfeZ,Vi<n, f(s;) <a, f(t) > ,B}
is measurable.

PROPOSITION 4. If Z satisfies condition (M), Z fails to be stable if and only if
there exist a < B and A € 2, with P(A) > 0, such that for each n, and P"
almost each s € A", for each subset I of {1,...,n}, thereis f € Z with f(s;) < «
forie Iandf(s;)> B fori &l

Roughly speaking, this means that for the generic choice s,,..., s, in A, the
functions of Z oscillate wildly over s,,...,s,. The name stable attempts to
convey the idea that such a wild oscillation does not occur.

It seems worthwhile to reformulate Theorem 2 in the most important case.

THEOREM 5. Let Z be a class of measurable sets that satisfies (M). Then Z
fails to be a Glivenko-Cantelli class if and only if there exists A € =, P(A) > 0,
P atomless on A [that is, if BC A, B€ 2, P(B)> 0, thereis CCc B, C € 3,
0 < P(C) < P(B)] such that for each n, for P™ almost every choice of s,,..., s,
in A, each subset of {s,,...,s,} is the trace on {s,,..., s,} of a set of Z.

Note that the condition “P atomless on A” is equivalent to saying that for
almost each choice of s,,..., s, in A, the points s,,..., s, are distinct.
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Condition (M) cannot be dropped from this statement. Let us compare this
result with the result of Vapnik—Cervonenkis [11]. They prove that if Z is not a
Glivenko—Cantelli class, then there exists a > 0, such that for n large, and most
of the choices of (s,...,s,) € Q", there is a subset I of {x,,...,x,} with
card I > an, such that each subset of I is the trace on I of an element of Z. The
gain in Theorem 5 is that we know that actually one can take I =A N
{%,...,x,} for some fixed A with P(A) > 0. Roughly speaking, Theorem 5
means that the trace on A of the sets of Z can produce arbitrarily complicated
patterns. So, in checking that a class is a Glivenko—Cantelli class, it is enough to
check that this pathology occurs on no set of positive measure. It might seem a
drawback to have to inspect every set of positive measure. However, the
pathology that we look for is so strong that it is easy to recognize.

Many classes of subsets of R” which are known to be Glivenko—Cantelli
classes for some probability have some geometrical properties which prevent
their sets to be of complicated shape (although, on the other hand, any disjoint
family of measurable sets is a Glivenko—Cantelli class). It is this geometrical
property which is used to apply the criteria of Theorem 5. As a specific example,
let us outline a proof that if p is a probability on R”, such that u(dC) = 0 for
each convex set C, then the class Z of closed convex sets is a Glivenko—Cantelli
class [2] and [6]. Let A € = with p(A) > 0. We can as well suppose A compact
and self-supported (that is, for U open, UN A # &, p(A N U) > 0). Let C be
the convex hull of A. Since p(dC) = 0, we can choose x, € A \ dC. We can then
pick x;,...,x,,; €Aand ay,...,a,,; > 0, of sum 1, with x, = T, _ ., ;;x;. We
can choose x; so that the simplex with vertices x; has nonempty interior. Next,
we can choose for 0 <i <n + 1 a neighborhood V; of x;, such that if for
0 <i<n+1,s,; belongs to V,, then s, belongs to the interior of the simplex of
vertices s,,..., s, . Since A is self-supported, we have P"*%(B) > 0, where

B ={(80,81,++,8,41) EA™EVi,0<i<n+1,s €V}

However, for (s, s,,...,5,,;) € B, each convex set that contains s,,...,s,,;
also contains s, so {sy,...,,,,} is not the trace on {s,,..., s,,,} of a convex
set. This concludes the proof.

Consider (for simplicity) a Glivenko—Cantelli class Z of sets, that satisfies
condition (M). For A € =, P(A) > 0, let n(A) be the largest integer n such that

P*({(sy,...,8,) € A"; each subset of {s,,..., s,} is
the trace of asetin Z}) = P(A)".

In the example in R” that we have described, we had n(A) < n + 1 for each A.
It is not always the case that the numbers n(A) are bounded, but it may be of
interest to note that for each & > 0, we have sup{n(A); P(A) > 8} < co. This
question is addressed at the beginning of Section 2, as an introduction to our
methods.

We will analyze in great detail the behavior of D,(s) when Z is not a
Glivenko-Cantelli class, and show that Z is a Glivenko—Cantelli class if and only
if an array of equivalent (some of them formally weaker) conditions hold. Among
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these conditions, the following approximation theorem might be the most im-
portant.

THEOREM 6. Let Z ¢ %' be order bounded. Then Z is a Glivenko—Cantelli
class if and only if for each ¢ > 0 there is a finite subalgebra < of Z such that

imeup [*sup| - 3 11060 = E(10)(5) | P=(o) <

fez i<n

The point of this theorem is that the absolute values are inside the summa-
tion, so there is no cancellation.

The following is a sharpening of the Vapnik—Cervonenkis result. Theorem 6
will be proved as part of Theorem 22. Then it will take a few more pages to
prove Theorem 7.

THEOREM 7. (a) Let Z c £ If Z is stable, and if there is a u > 0 such that
|f| < u for each f € Z and log(u + 1) € £, then for each ¢ > 0,

* 1
lim f “log N*(Z, ¢, s) dP*(s) = 0.
n n

(b) Let Z c £ be stable and order bounded. Then for each ¢ > 0 there is a
constant c(e) > 0 such that

limsupNXZ, e, s) < c(e) a.s.
n

(c) Conversely, if Z c £ satisfies condition (M), and if for each ¢ > 0 and
each a > 0 we have

1
limsupP?.?{zlog NXZ,e,-) < a} >0,
then Z is stable.

The measurability condition in (c) cannot be dropped.

We will also use Theorem 6 to prove a new stability property of
Glivenko—Cantelli classes, and a comparison principle for stochastic processes
that satisfy the law of large numbers.

In Section 4, we apply our result to the study of the law of large numbers for
Banach space valued functions. If E is a Banach space, say that the map ¢ from
Q to E is properly measurable if the set

Z¢ ={x*op; x* € E*, ||x*| < 1}
is stable. Properly measurable functions have already proved to be an effective

tool in the study of Pettis integration. They are studied in great detail in this
respect in [9]. Here we show

THEOREM 8. The sequence (1/n)X;_.$(s;) converges in norm for almost
each (s;) in Q% if and only if ¢ is properly measurable and [ *||¢||dP < . In
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that case, ¢ is Pettis integrable, and (1/n)L;_ $(s;) converges a.s in norm to
the Pettis integral of ¢.

Now a few comments about the history of the methods and the results. The
notion of stable sets was developed by D. H. Fremlin and the author in the
course of their study of pointwise compact sets of measurable functions, as being
the most natural criterion for pointwise compactness. The author then under-
took in [9] (where more historical comments can be found) a systematic study of
this notion and its application to various questions of measure theory, mostly
Pettis integration. One natural question about stable sets is as follows: Is the
convex hull of a uniformly bounded stable set still stable? This is far from clear
from the definition. To prove it, the author established Theorem (11-1-1) of [9].
In the language of the present paper, this result means that a uniformly bounded
set of functions Z is stable if and only if D, goes to zero in probability. Due to
his ignorance of probability theory, the author became aware that he had
essentially solved the Glivenko-Cantelli problem only after he discussed the
material of [5] with Professor Hoffmann-Jergensen. In the present paper, we
undertake a systematic development of the ideas of Theorem (11-1-1) of [9],
which was considered there as a purely technical point, with the aim of obtaining
the sharpest possible result, and the ambition of settling the Glivenko—Cantelli
problem as well as related questions. For example, we have taken care to
approach the problem so that we cannot only describe Glivenko—Cantelli classes,
but also exactly describe the behavior of the asymptotic discrepancy D, for any
bounded class of functions. These and other refinements increase the technicali-
ties. It thus might be helpful to guide the reader. Section 2 develops some
aspects of the theory of stable sets. The main results, on which the paper relies,
are Theorems 16 and 17. They are by far the hardest of the paper, and their
proof is not probabilistic. After understanding the statements of these theorems,
the reader may like to delay reading the proofs in Section 2 and go directly to
Section 3, to see how these theorems relate to the Glivenko—Cantelli problem.
The arguments there are much more familiar. [Reading of the proof of the
delicate Theorem 20, which is needed only to add the equivalent condition (VIII)
in Theorem 22, should also be delayed.] Then the reader should visit Section 4.
The simplicity of the statements there is a welcome reward for all the earlier
technical work. Only then, when motivation has been found, should the reader go
through the proofs of Section 2. The arguments there are self-contained, and we
have tried to give enough details that the proofs can be checked step by step.
However, the underlying ideas are intricate, and the technical devices are not
quite standard (although purely measure-theoretic). The reader would be better
armed to penetrate the ideas of the proofs with some previous exposure to
related (but simpler) ideas, as can be found in Chapters 8 and 9 of [9]. The main
idea of the approach actually goes back to [8], Theorem 5.

2. Structure results for sets of functions. Given a complete probability
space (', &, @) and X C &', a measurable cover A of X is a measurable set A
with A D X and Q(A) = @*(X). Given a real-valued function g on &', we
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denote by g* the essential infimum of the measurable functions f: & —» R such
that f > g. We have [*gdP = [g* dP when both these quantities are defined.
For two sets A, B C &, we write A O B if @ B\ A) =
Let A € 3 with P(A) > 0. Let u, v be two functions on £. Throughout the
paper we will use the following notation

Bk,l(A’ u, O) = Bk‘l(z, A, u, O)
={(s1,-s 80ty ) €EAMLIfEZ Vi<,

f(s;) <u(s;),vj<l, f(t) > v(tj)}.
We will often consider B, ,(A, a, B), where a < B are constant.

We first prove Proposition 4. Assume that Z is not stable and satisfies
condition (M). There is A € 2 with P(A) > 0 and a < B8 such that for all n,
P?*"*(B, ,) = P(A)*", where B, ;= B,, (A, a, B). ‘

Condition (M) implies that B,, . is measurable, so P?*(B, ,) =
P?"*(B, ,) = P(A)*". Let k,! € N and n = max(k, [). Let 7 be the map from
A2" to A**! that sends (Sy,...,S,, fe.eyt,) t0 (Syeer) Sy bys.e.s ;). Then
B, , C 7 (B, ), and this forces P’”’(Bk’ ,) = P(A)**L It is now obvious that

n,
for each n

P*({(s1,...,8,) €AV IC {1,...,n},3f€Z;Vie I, {(s;) <a,
viel, f(s;) > B}) = P(A)",
and this concludes the proof.

This might be the proper time to observe that a finite set of functions is stable
if and only if they are measurable.

We now start an auxiliary discussion that is not needed for the main chain of
arguments (which starts with Lemma 12) but that will shed some light on the
use of the criterion of Theorem 5.

Let us fix a stable set of functions Z and a < 8. For each n, let B, , =
B, (%, a, B), and let C, be a measurable cover of B, ,. For a set A € =, with
P(A) > 0, we have P?"*(B, (A, a, B)) = P(A)*" if and only if A?" c_, C,. We
denote by %, the family of measurable subsets of @ with this property, and we
note that &, , C Z..

LEMMA 9. Let (A,) be a sequence in %, and v be a weak cluster point of
(14,) in L*(P). Then {v > 0} € &,.

Proor. In L2%(P?"), the function v®2" given by 0®%%(s,,...,s,,) =
IT; £ 5,0(s;) is a weak cluster point of 1,;.. It follows that {v > 0}** c C,, so
{v>0}eZ,.0O

ProposITION 10. lim,sup,c » P(A) =0

ProoF. Otherwise there is a sequence (A,) with P(A,) >4 > 0and A, € %,
for each n. Let v be a weak cluster point of 1 a,1n L2(P) Then P({v > 0}) >
0>0 and {v>0} €% for each n, which contradicts the fact that Z is
stable. O
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ProPOSITION 11. Fix n> 0. Let § = sup, . #P(A). Then for each ¢ >0
there is a finite family 9, of measurable sets, such that P(B)<é +¢ for
Be g, andthatforeachAe - there is B € 9, with P(A\ B) <.

PROOF. Otherwise, we can construct by induction a sequence (A,) of %,
such that whenever D is a set of the algebra generated by A,,..., A,_; with
P(D) < & + ¢, we have P(A,\ D) > ¢. Denote by = the algebra generated by
the sets (A ,,) Let v be a weak cluster point in L?(P) of 1, . Since by Lemma 9,
{v > 0} € #,, we have P({v > 0}) < 4. It follows that there is a % and a set D
in the algebra generated by 4,,..., A, with P(D) < 8§ + e and P({v > 0} \ D) <
¢/2. This implies P(A,\ D) < e/2 for some ! > k, a contradiction. O

We now start the main chain of lemmas. Let J = [—1/2,1/2]. We denote by
A Lebesgue’s measure on J. Let Q' = Q X J. For v € J%, let
S(v) = {(s,t) € @5 t < v(s)}; Au(v) = S(v)" c Q™.
Let v=PQ®A.

LEMMA 12. Let a € R and let (v,) be a sequence of measurable functions
valued in [—3/8,1/2] with E(v,) > a. Then there is a measurable function v
valued in [ —3/8,1/2)] with E(v) > a and

Vk, A(v) C.limsupA,(v,).

Proor. By taking a subsequence, we can assume that (v,) converges weakly
in L%(P) to some function v and that Lg(,,) Converges weakly in L%(») to some
function f. The function v is valued in [—3/8,1/2]. We first show that f > 0
a.e. on S(v). Otherwise, there is a measurable set C c S(v) with »(C) > 0 and
f =0 on C. So, there is ¢ > 0 and a measurable D C @ with P(D) > 0 such that
for s € D we have

A{te d; (s,t) €C)) >«
For each n, set l

= {s € D; v,(s) > v(s) — ¢/2}.
Since —1/2 < v, < 1/2, we have

1
Je.dP< [ ©v,dP+-P(D,)
D D\D, 2
€ 1
< fD\DnodP— 5P(D\D,) + 5 P(D,)
< [oaP-; Zp(D\D,) + P(D,)

< fudp— —P(D) + (1 + )P(D)
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So
(1 + g)p(p,,) > %p(p) + [ (.- 0)ap

and this shows that liminf, P(D,) > 0. Note that for s € D,,
A{ted;(s,t) €C; —1/2 < t<v,s)})
>AM{ted,(s,t)eC, t<v(s)})) —e/2
=A{ted,(s,t)eC}) —e/22e—¢/2 >¢/2.
We have that

»(S(v,) N C) = fDA({t €J; (s, t) € C, ~1/2 <t < v,(s)}) dP(s)

>eP(D,)/2.

On the other hand, »(S(v,) N C) = [.fdv = 0. This contradiction proves the
claim.

Let us fix k. The weak limit in L?(»*) of 1gx, , is the function f ®* given by
fo%(xy, ..., x,) = f(xy) X -+ Xf(xy), so it follows that {f > 0} c
limsup,S*(v,) and in particular S(v)* C, limsup,S*(v,), that is A,(v) C
limsup, A ,(v,). The proof is complete. O

ess

We now fix a set Z of functions. We do not assume Z to be stable, or even the
functions in Z to be measurable. Let V= V(Z) := V(Z, P) be the set of all
measurable functions v such that

vV, P*({(sy,...,8,) €Q43feZ,Vi<n, f(s;) >v(s;)}) = 1.

Let d(Z) = sup{E(v); v € V(Z)}. [If no such v exists, we set d(Z) = — .] We
now suppose Z C [—1/4,1/2]% Let A, =U,,A,(v); and let B, be a measur-
able cover of A,.

LEMMA 13. Let a > d(Z). Then there are n € N and ¢ > 0 such that for
each measurable v valued in [ —3/8,1/2] we have

v"(A(0)\B,) <¢ = E(v) <a.

ProoF. Otherwise, for each n, there is a measurable function v, valued in
[-3/8,1/2] with [v,dP > a and »"(A,(v,)\ B,) < 27" Let m < n. We first
show that
(1) »™(An(0,)\B,) <27
Let 7 be the natural projection of Q' on Q'™ Obviously, #(4,) C 4,,, so
m(A,) € B,, and A, c #~%B,). Since = '(B,,) is measurable and B, is a
measurable cover of A,, we have B, . 7 '(B,), or B, C. B, X @'"~™ We
have

(An(v,)\B,) X 8(v,)" ™ = A,(v,) X S(v,)" "\ (B, x S(v,)"" ™)
=A,(v,) X S(v,)" "\ (B, x 9" ™)
= A,(v,)\ (B, X @"™™) Cy A,(0,)\ B,.
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It follows that
»™(An(0,) \ B,,) <27*(8(v,))" "

Since v, is valued in [—3/8,1,/2], we have »(s(v,)) > 273, so (1) follows.

From Lemma 12, there exists a measurable function v valued in [—3/8,1/2]
with E(v) > a and A, (v) C . limsup,A,(v,) for each m. It follows from (1)
that A, (v) C B, for each m. Let v’ = (v — (¢ — d(Z))/2) V (-1/2), so
E(v’) > d(Z). Since v > —3/8, we have v(s) > v’(s) everywhere. We show that
for each m we have P"*(K,,) = 1, where

K,={(s,...,8,) €EQHIfEZ,Vi<m, f(s;) >v'(s;)]}.

This will contradict the definition of d(Z) and finish the proof. Let C c ™ with
P™C) > 0. We have to show that K,, N C + @. Let

D= {((s1:t1)s-s(Sps t)) € X™; (81,..,5,) €C,
Vi<m,o(s;) <t <o(s)},
soDc A,(v) and

v™(D) > /;f[l(v(si) —0'(8;)) dP™(s1,..., 8p)-

Since v'(s) < v(s) for each s, we have »™(D) > 0, and since A,,(v) C, B,, we
have D c_ B,,.

Since B, is a measurable cover of A,,, we have A,, N D+ &. So there is
feZwithA (f)yND+ @.Let((sy,t),---,(Spms t)) EDNA,(f). Fori<m,

we have v'(s;) < ¢; and ¢; < f(s;), so v’(s;) < f(s;). This shows that
(815--»8,) €CNK,,.
The proof is complete. O

We say that a probability is atomic if it has finite support.

LEMMA 14. Let 6 > 0. Then there is a finite subalgebra </ of =, n€ N, a
set D € 2", and n > 0 such that whenever p is an atomic probability on (2, X)
that satisfies
(2) |w(D) - P*D)|<n; VAanatomof,|u(A) - P(A)|<n,

then for eachf € Z, there is an smeasurable function f * with [f'dp < d(Z) + &
and p({f > f’'} N A) < du(A) for each atom A of .

Proor. We can assume 8/3 < 1/8. From Lemma 13 there is n € N and
0 < § <1 such that for each measurable v valued in [ —3/8,1/2] we have
»"(A,(v)\B,) <{=E(v) <d(Z) + 8/3.

Let v = (8/2)"{/2. A measurable set in a finite product of measure spaces can
always be approximated by a set measurable with respect to a product of finite
algebras. So, there is a finite subalgebra o/ of = such that each atom of </ has
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positive measure, and a partition & of J into right closed intervals of length
< 8/3, such that if # denotes the algebra generated by & thereis C € (& X %)"
such that »*(C 2 B,) < y2/8. Let

D= {(sy,...,s,) €%

N({ts. s ta) €I (51580005 (80, 8) € B\ C) > v/2},
so P*(D) < y/4 by Fubini. We can assume that B, € (2 X Borel)”, and then we
have D € =" We note that for each probability p, if p*(D) < v/2 we have
(r X N)*(B,\C) < p™(D) + (v/2)n"(2"\ D) <.
Let

8 N
n = inf %, ginf{P(A), A an atom of &/} |.

Since we assumed that each atom of &7 has positive measure, we have 7 > 0.
Let f € Z. Let p be an atomic probability that satisfies (2). Define f’ in the
following way: The value of f’ on an atom A of & is given by :

inf{t € [-3/8,1/2]; p(A N {f > t}) < 8u(A)}.

(We note that since p is atomic, the set A N {f > t} is p-measurable.) It follows
that p({f > f’} N A) < 8p(A). Define an #measurable function v in the fol- ’
lowing way: If L denotes the set of ends of intervals of #,

o(t) = max{x; x <f'(¢); x € L}.
We have f’ — v < §/3, so we have E(f’ — v) < 8/3. Since f > —1/4, and since
8/3 <1/8, v is valued in [ -3/8,1/2]. We show now that
vn(An(D) \Bn) < gl'

This will imply E(v) < d(Z) + 8/3s0 E(f’) < d(Z) + 25/3. The definition of 7
and (2) imply that for each atom A of &, |n(A)— P(A)| <dP(A)/3, so
|E(f) — [f'dp| < 8/3, so this will finish the proof. Since y < {/2, and since
»*(C\ B,) < v, it is enough to show that »"(A,(v)\ C) < {/2. We note that
A, (v) is (& X &)™ measurable. Let Cy,...,C, be atoms of &, and I,,..., I, be
atoms of & such that
U:= ]_[ (C;xI,) c A, (v)\C.
i<n

For i < n, let D;=C;N {f = v). Since v < f’, the definition of f’ shows that
w(D;) = 8u(C;). Moreover, for each i < n,

|n(C) — P(C;)| < < (8/3)P(C;) < P(C;)/2,

SO
r(C,) = P(C) —|u(C;) — P(C))| = P(C;) - P(C;)/2 = P(C,)/2,
so u(D;) = (8/2)P(C,). Since C;x I, c S(v), we have v >supl; on C;. Since
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f = v on D;, we have D; X I, c S(f). It follows that
[T(D;xIL)cALf), so [1(D ><I)CAn(f)ﬁU

isn i<n

We now have

(8/2)"»™(U) = (3/2)"1_1;1"1’(@)}\([:)
< I—[ p(DINL) = (p % }\)n( I1(D, x Ig))

i1<n i<n
< (B xN)*(4,(f) N D).
Summation over all the atoms U of (&/X %#)" that are contained in A, (v)\ C
gives
(8/2)""(A(0)\C) < (1 X A)"(A,(F)\C)
< (kX N)"(B,\C) <v = (8/2)"8/2,
80 (A, (v)\ C) < {/2. The proof is complete. O ‘

COROLLARY 15. Let a > d(Z). Then there exists n €N, 5 >0, a finite
subalgebra o/ of =, and D € Z", such that for each atomic probability p. on
(2, ) that satisfies (2), we have [fdp < a for each f € Z.

We now need a result that relates the properties of a set Z of measurable
functions and of the set Z° = {f — E(f); f € Z}. It is possible to approach this
result through a “symmetrized” version of Lemma 14, but we choose a more
direct way.

THEOREM 16. (a) Let Z,, Z, be uniformly bounded sets of measurable func-
tions. Then d(Z, U Z,) < max(d(Z,), d(Z,)).

(b) Let Z be a uniformly bounded set of measurable functions, and let
Z°={f— E(f); f€Z}. Then if Z is stable, d(Z°) = 0.

(c) Let Z be a uniformly bounded set of functions. Assume that Z is not
stable. Let A with P(A) > 0, a < B be such that for each n,

P2*(B, (A, a,B)) = P(A)™".

Then there exist two measurable functions u,v with E(v) > E(u) +
(B — a)P(A)/3 such that for each n, we have P*"*(B, (Q,u,v)) = 1.
(d) If Z, Z¢ are as in (b), Z¢ is stable whenever Z is stable

ProoF. (a) Consider a bounded function v with E(v) > max(d(Z ), d(Z,)).
For i = 1,2 and each n, denote

n,i= {(sl9°--’sn) € Qn; 3 f eZi’VjS n, f(sj) > D(sj)}°

Since E(v) > d(Z;), we see easily that for some n and some 8 < 1, we have
Pr*(K, ;) <8 for i = 1,2. Let p be large enough that §” < 1/2. Let m = pn.
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Since K,, ; C (K, ;)?, we have P"*(K,, ;) <&? for i = 1,2, so P™"*(K, , U
K,, ;) < 1. In other words,
P™*({(sy,..-,8,) €EQIfEZ,UZ,Vi<n, f(s;) >v(s;)}) <1.

This proves the result.

(b) Step 1. We can suppose ZC B= {f€ZL*, |f]|l, <1}. Since d(Z) >
E(f) for any f in Z, we have d(Z¢) > 0. Suppose, if possible, that d(Z¢) > 0.
Then there exists v with E(v) > 0 and for all n, P**(K,) = 1, where

K,={(s1,...,8,) €% 3f€Z,Vi<n, f(s;) — E(f) > v(s;)}.

We first prove the following claim: There is 2 in B, such that for each weak
neighborhood V of 4 in L?(P), and each n, we have

P*({(sy,..-,8,) €EQ43IfeVNZVi<n, f(s;) — E(f)>v(s;)}) =1.

Otherwise, we can cover B by a finite collection of weakly open sets ( V))j < such
that

P"f*({(sl,..., $,) EQIfEV,NZVi<ng, f(s;) - E(f)> v(si)}) <1,
for some n; € N. Let n = max{n; j < k}. Then there is a § < 1 with
P *({(s1,...,8,) €QK3feV,NnZ,Vis<n, f(s) - E(f) > v(s)}) <3,

for j < k. Choose p in N with 8” < 1/k. Let m = np. Then for j < k, we have
P™*(K,, ;) <8P, where

K, ;={(s5-.,8,) €Q@m3feV,nZ,Vi<m, f(s;) - E(f) > o(s;)}.

Since K,, cU, K
proof of the claim.

Step 2. Let v and h be as above. Let a = E(v)/3, so E(v + E(h) — a) >
E(h + a) and a < 1/3. We show that P2"*(L,) = 1, where

L, = {(sl,...,sn, t,...,t,) €W 3IfeZVi<n,
f(¢) <a+ h(e), f(s;) > o(s;) + E(h) - a}.
Let C c Q2" with P?*(C) > 0. We will showthat C N L, # @.Let 8§ = (3a/14)".

we get P™*(K,,) < 1. This contradiction concludes the

m, j?

There exist measurable sets B,,..., B,,, of positive measure, with
P“(Cn I1 B,.) > (1 - 3)P2n( I1 B,.).
i<2n i<2n
For s = (sy,...,s,) € Q% let
C(8) = {(t1+- s 1) €075 (15000, 8y Byvs ta) €C T] By
i<2n
£et

D= {(sl,...,sn) e Qr; PYC(s)) > (1 - 8)P"( I Bi)},

n<i<2n

so P*(D) > 0.
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Step 1 shows that P**(T,) = 1, where
T, = {(sl,...,sn) €eQ3feZ|E(f) - E(h)|<a,
Vis<n, f(s;) > o(s;) + E(f),
Vn<i<2n, fBifdPs /&hdp + aP(Bi)/2}.

Since P*(D) >0, P"*(T,) =1 we have DN T, # &. So there exist s =
(81,---,8,) € D and f € Z, which satisfy the following conditions:

Vi<n, f(s;)>0(s;) +E(f); |E(f)- E(h)|<a,
Vn<i<?2n, ffdPsfth+aP(Bi)/2.
B; B;

For n <i<2n,let D;=B,Nn {f<h+a}. We get, since —1<f, h<1 and
a<1/3, .

[tdP> [ (h+a)dP-P(D,) = [ hdP + aP(B,) - 1P(D)).
B; B\D; B,

Since [p fdP < [p hdP + aP(B,)/2, we get P(D,) > 3aP(B;)/14 = §/"P(B,),
S0
P”( I1 D,.) > 8P"( I1 Bi).
n<i<2n n<i<2n

Since

Pr(c(s)) > (1-8)P"( TT B,
n<i<2n

we have C(s)NIl,.;_,,D;# @, so there is (¢t,...,t,) € C(s) such that
f(t;) < h(t;) + a for i < n. Since E(f) > E(h) — a, we have f(sy) > v(s;) +
E(h) —afori<n,so(sy,...,S,t,...,t,) € L,.

Since (..., t,) € C(s), we have (s,,..., s,, t;,...,t,) €C,s0 L, N C + .
Since C is arbitrary, we have P?"*(L,) = 1.

Since E(v + E(h) — a) > E(h + a), there exists a set A with P(A) > 0, and
a <pB with Ac{v+ EMh)—a>B}N{h+a<a) It follows from
P27*(L ) =1 that

P2"*({(sl,...,sn,tl,...,tn) €A™ 3feZ Vi<n,

f(t:) < a, 1(s;) > B}) = P(A)™
This shows that Z is not stable and finishes the proof.

(c) Take A c @ with P(A) > 0 and a < B such that for each n we have
P?"*(B, (A, a, B)) = P(A)?". We leave to the reader to use the method of (b),
step 1, to show that there is a function A such that for each weak neighborhood
Vof hin L* P) and all n we have P2**(B, (Z NV, A, a, B)) = P(A)®". Let
a=(B—-a)P(A)/3.Let ubegivenby u=h+aon 2\ Aand u = aon A. Let
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vbegivenbyv=h—aon 2\ Aand v=8on A. Then E(v) > E(u) + a. For
two subsets I, J of {1,..., n}, let

K, ,= {(sl,...,sn, t,...,t,) EX s,€eAeicel ;€A ejeJ}.

We also leave to the reader to use the method of (b), step 2, to show that for
each n, I and J,

P2*({(sy,..., Sprbys..n t,) EK; 33fEZ,Vi<n,

f(s:) < u(s), f(&;) > o(t)}) = P*"(Ky, ).
Summation over I, J gives P?**(B, (Q,u,v)) =1, and this completes the
proof.
(d) If Z is stable, then obviously —Z = {—f; f € Z} is stable, so by (b),
d(Z°)=d(—2°) =0. If Z° is not stable, by (c) there exist two measurable
functions u, v with E(u) < E(v) such that for each n

P2n*({(sl,..., Sprtiyeeer ty) € Q2n,
3feze,Vi<n, —f(s)> —u(s), f(t;) > o(t)}) = 1.

This shows that 0 =d(Z°) > E(v), and 0 =d(—Z°) > E(—u), so E(v) —
E(u) < 0, a contradiction.
This completes the proof. O

The following result goes a long way toward understanding the structure of
stable sets.

THEOREM 17. Let Z be a uniformly bounded set of measurable functions.
Then the following are equivalent:

(a) Z is stable;

(b) for each & > 0, there exists a finite subalgebra & of = and a finite family
ZF of pairs (n, D), for n €N, D€ =", and y > 0 such that for each atomic
probability p on (2, ) that satisfies

V(n,D)E.?z', |I"‘n(D)_Pn(D)I<Y,
we have

viez,  [If-E(fl)ldu<e.

ProOF. (a) = (b). For a function g, write g = max(g,0), g~ =
max(—g,0),s0 g=g"— g7, |g| =g" + g~. We first note the following conse-
quence of Lemma 14. If T is a uniformly bounded set, with d(T') < 0, and § > 0,
there is 7 > 0 and a finite family ¢ of pairs (n, D) for n € N, D € =" such that
for each atomic probability measure p on (£, =) that satisfies

V(n,D)e9, |p(D)-P(D)|<n,

for each f in T we have f < f, + h, where f, is ##measurable, [f, dp < 6 and
[lh|dp < 8.
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We first apply this observation to Z° = {f — E(f); f € Z), with § = ¢/11.
From Theorem 16(b), we have that d(Z°) = 0. (We shall not use explicitly the
fact that Z° itself is stable.) We then find a finite family ¢ of pairs (n, D), for
n €N, D € =", such that for each atomic probability measure p on (2, 2) that
satisfies

V(n,D)e ¥, |p(D)-PYD)|<n,

for each f in Z¢ we have f < f, + h where f, is sZmeasurable, [f, dy < & and
[lh|du < 6.

We now enumerate the atoms of &/ as A,,..., A,. We can assume that they
are all of posmve measure. For 1 <j < &, con81der the probability P; on (2, 2)
given by P(B) = P"Y(A)P(BN A ;) for B € Z. It is obvious from the definition
that Z is stable on (2, 2 P). So —Z is also stable on (2, Z, P). It follows from
Theorem 16(b) applied to —Z in (2, Z, P)) that if we set

T,={-f+P" (A)E(f1,); f ez},

then d(T;) = 0 (where the basic probability is still P,).
Cons1der now

= {(=f + B(f))1y; f € 2).

We show first that, for the probability P, we have d(Z;) < 0.Let v € V(Z, P),
so we also have v € V(Z;, P;). The restrictions of Z; and T; to A; coincide. Smce
P(A;) =1, we have v € V(T}, P,). Since d(T) = 0 for the basw probability
space P;, we have [, vdP < 0. Smce the functlons of Z; are zero outside A;, we
have v < 0 as. outside A, s0 E(v) < fAJodP <0. ThlS shows that d(Z) <0.

We now use the form of Lemma 14 that was spelled out at the beginning of
the proof, to obtain 1, > 0 and a finite family 9, of pairs (n, D), for n € N,
D € =*, such that for each atomic probability measure p on (£, X) that satisfies

V(n,D)e g, |p(D)-PYD)|<n,,

we have [gdp < 8/k for each f in Z;. So we have [(—f + E(f].sa())lA dp < 8/k
for each f in Z. Consider now the collectlon Z of all pairs (n, D) that belong
either to & or to one of the ¢, 1 < j < k, or are of the type (1, A) for A atom of
/. Let 0 < a < min(n, 7,, 1 s J < k). We can assume that « is small enough
that for each function f in Z, for each probability measure p on (2, 2) such that
[#(A) — P(A)| < a for each atom A of &7, we have |[E(f|«/)dp — E(f)| < 6.
Consider now an atomic probability measure p on (£, £) such that |u*(D) —
P™(D)| < a for each (n, D) € #. Fix f in Z. Then we have f — E(f)<f, + h
where, f, is wZmeasurable, [f,dp < 8, [|h|dp < 8 and for 1 <j < k we have
Ja(f — ECf|)) dp > —8/k.

"Let fo="Ffi+ E(f)— E(f|), so f, is o#measurable and [f,dp < 28. Let
g=f—-E(f|l« ), S0 g < f, + h. Integrating over A ;, we find that the integral of
f, over A; is —-0/k — fA | A du So we have [fa dp <28, so [fy du=
[fs dp + ff2 dy < 48 so since g* < f;f + h*, we have [g* dp < 58. Since for
each 1 <j <k, we have Ja,8dpn > —8/k, we have [gdp > —8. This shows
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that [“gdu = [Tgdp — [gdp < 68. So we have [|f — E(f|A)|dp = [|g|dp <
118 = ¢ and the proof is complete.

(b) = (a). If Z is not stable, from Theorem 16(c) there are measurable
functions u, v with E(u) < E(v) such that for each n, P***(B, (@, u,v)) = 1.
Let ¢ > 0 with 6¢ < E(o) — E(u) and let &/ be a finite subalgebra of = and #
be a finite family of pairs (n, D) and y > 0 such that for each atomic probability
p on (£, 2) we have

V(n,D) €&, |w(D)-PYD)|<y= flf—E(fw')lduw, Viez

For each m and s € Q%™ let
MBy,s = m_l Z 85,«’ Mo s = m_l Z 83,’

i<m m<i<2m

It follows from Lemma 18 (to be proved later) that for m large enough we have
P2?™(B) > 0, where

B- {s € Qv i=1,2,V (n,D) € #, |u? (D) - PD)| <¥;
h"‘i,s(u) - E(u)l <eg, I""i,s(v) - E(D)l < E,er Loo, ”f“ <1,

UE(fW)dMi,s—E(f)‘ <e}.

It follows that thereis s € B and f € Z with
Vi<m, f(s;) <u(s;); Vi,m<ix<2m, f(s;)>v(s;),

so we have

e [|f - E(flsf)|dpy,, 2 [E(flsf) dpy,, — [udpy, > E(f) — E(u) ~ 2e,

e [|f— E(fls)|dpy,, > fodp, .~ [E(fI)dp, = E(v) — E(f) - 2,

so E(v) — E(u) < 6¢, a contradiction. This completes the proof. O

3. Laws of large numbers. The following is a special case of the conver-
gence of V statistics. The simple proof is included for completeness.

LEMMA 18. Let A C Q* be measurable. Then
P*a.s. limQ%t)(A) = P*¥(A).

ProoF. Let

%) =

n—-1)---(n—k+1)

where the summation is over all the choices (i, ..., ;) of distinct integers < n.

Y8, x8

¥ t'2

X oo X8ti,,’
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It is enough to show that Q.(¢)(A) —» P*(A) as., since [|Q%(¢) — Q.(2)|| - 0,
where | -|| is the total variation norm. Let 2, be the subalgebra of =<,
generated by the sets that are invariant by permutation of the first n coordi-
nates. It is easy to check that (Q.(:)(A)), is a martingale with respect to the
decreasing filtration (,,). So it converges a.s. to its expectation P*(A). O

Now let Z be a set of (not necessarily measurable) real-valued functions on .
For s € Q%, let

1
G.(s) = sup— ). f(s;)-
fez M i<n
The relevance of this quantity to the study of the empirical discrepancy of a
subset of £ is as follows. Suppose that Z is an order-bounded set of measur-
able functions. Let Z’ = Z¢ U (—Z°). Then the empirical discrepancy of Z,

1
D,(x) = sup| = ¥ f(s,) — E(f)],
fez| M i<n
coincides with the function G,(x) relative to the set Z’. So, the forthcoming
Theorems 19 and 20 can be seen as results about the empirical discrepancy. We
have stated them separately since they are valid for sets of functions that need
not be Glivenko-Cantelli classes. It is also useful to note that by Theorem 16(a),
d(Z’) = max(d(Z°), d(—Z°)). (This fact will become clearer in light of the proof
of Theorem 19 below.)

Since Z is uncountable, even when Z consists of measurable functions, there is
no reason why G,(s) should be measurable, so it is natural to consider the
function G,*(s). Also of interest are the functions lim sup G,(s) and liminf G,(s).
As these functions do not depend on the first coordinates, the zero one law shows
that (limsup G,)*, (limsup G,,),, (liminf G,)* and (liminf G,), are all constant
a.s. In general, the numbers (limsup G,), and (liminf G,), bear little significa-
tion, as the following example shows: Let (2, =, P) be [0,1] with Lebesgue’s
measure, let X C @ with P*(X) =1, P*(Q\ X) =1, and let

Z = {f:Q - {0,1}; f has finite support, f =0on X}.
Using the fact that P>*(XN) = P**(2\ X)V) =1, it is clear that
(limsup G,)4 = (liminf G,), = 0, while
(liminf G,)* = (limsupG,)* =1, limsupGX*(s) =1 as.
So in that case (liminf G,), and (limsup G,), do not carry much information

about the behavior of Z. As we shall see, the quantities (limsup G,)* and
(liminf G,)* are much more instructive.

- THEOREM 19. Let Z be a set of (not necessarily measurable) functions on .
Suppose there is u € £(P) such that |f| < u for f € Z. Then

(a) im G }(s) = d(Z), where the convergence is a.s. and in L'( P®);
(b) (limsup G,)* = d(2).
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PrOOF. (a) Let £ > 0. Let a be large enough that ||u’||, < ¢, where u’ = u —
uAa For feLlet f*=(fAa)V(—a),so |f—f%<u’ for f€Z Let
Z'={f% feZ).

We now check that d(Z’) < d(Z) + 2¢. Let v € V(Z'’). Let n > 0. Define w
by w=von {u<a} and w= —u—1n on {u > a}. We then have |w — v| <
2u’ + m, so E(w) > E(v) — 2Eu’ — 1. On the other hand, if f%(s) > v(s), then
either u(s) < a, in which case f(s) = f%s) > v(s) = w(s) or u(s) > a, in which
case f(s) > —u(s) > w(s). This shows that w € V(Z), so d(Z) = E(w) >
E(v) — 2Eu’ — . It follows that d(Z’) < d(Z) + 2Eu’ < d(Z) + 2¢ and this
proves the claim. We set

1
Gi(s) = sup— 3 f%(s;).
fez ™ i<n

Let u/(s) = (1/n)Z;_,u'(s;) and u,(s) = (1/n)X,_u(s;). The usual law of
large numbers implies that u/(s) = E(u’) [resp. u,(s) - E(u)] as. and in L'
We have G,(s) < G(s) + ul(s). It follows from Corollary 15 [replacing n by &,
then setting p = @,(s)] and Lemma 18 (for A = D) that for each > 0, there is
aset A C Q% with P*(A) > 1 —n and m in N with

VseA,Vn>m, G)(s)=<d(Z)+ 2,
so we have
Vazm, GF(s)<1,(d(Z) + 2¢e) + 1go qu,(s) + uy(s).

It is routine to conclude that G*(¢) V d(Z) — d(Z) goes to zero in L' and a.s.

On the other hand, for € > 0 there is a measurable function v with E(v) >
d(Z) — ¢, such that v € V(Z). It follows that if v,(s) = (1/n)X;_,v(s;), then
P>*({G, > v,}) = 1, s0 G;* > v,. Since v, goes to E(v) in L' and as., we have
d(Z) — d(Z) A G¥(t) - 0 as. and in L', and the proof is complete.

(b) Since (limsup G,)* < limsup G,*, we have (limsup G,)* < d(Z). Let ¢ >
0. Let v be measurable with E(v) > d(Z) — &, such that for each n, P**(4A,) =
1, where

A, =A,(Z,v)={(s1,...,8,) €Q5IfeZ;Vi<n, [(s;) > o(s;)}.

Since f > —u for f in Z, we can assume v > —u — 1. Let (n,) be a sequence
with limn,/n,, , = 0. Let A C Q* be given by

A= {s €Q% VR, (s, 11,-:8,) EA

nk—nk—l'}’
so P**(A) = 1. Let
A=A (s 0% Q,(s)(u) > E(u)),

so P**(A’) = 1. We show that for s € A’ we have limsup G,(s) = d(Z) — .
Since P**(A’) = 1 it will follow that (limsup G,)* > d(Z). So let s € A’. There
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is f € Z with f(s;) > v(s;) for n,_, <i < n,, so we have

Go(8)2— T f(s) 2~ L o(s) - — T o(s)~— ¥ uls)

ki<n, ki<n, ki<n, ; ki<n,

> Yols) - — ¥ (uls) +1)

k ith k isn,,_l
1 ny_, ‘

=— X o(s;) - 2——(Qn, (5)(u) +1),
ki<ny Ry

so limsup,G, (s) = E(v) > d(Z) — . The proof is complete. O

REMARK. Assume that for each measurable function v, the sets A, =
A,(Z,v) are measurable. Then it is easy to show that actually we have
liminf, G, (s) = d(Z) P® as. Indeed let ¢ > 0, and let v be a measurable
function with E(v) > d(Z) — ¢, and such that for each n, P*(A,) = 1. Consider
A C Q% given by

A={s€eQ*;Vn,3feZ Vi<n, f(s;) > v(s)}.
Then A is measurable and P*(A) = 1. Let
A'=AnN{s€Q; Q,(s)(v) = E(v)},

so P®(A’) = 1. For s in A’ and n in N, there is f in Z such that f(s;) > v(s;)
for i < n; so

1 1
Gu(s) =2 — X f(s;) =2 — X o(sy),
Nicn i<n
so liminf,G,(s) > E(v), and this proves the result.

It is not true in general, as Example 21 will show, that we have
(liminf G,)* = d(Z). At the expense of considerable extra work, the next theo-
rem will show that (liminf G,)* still carries information. The result is presented
at this point for logical reasons, but the reader is not advised to go into this kind
of extreme refinement before feeling comfortable with the simpler results.

THEOREM 20. Let Z c LY P) be order bounded, such that E(f)=0 for
each f € Z. Then if d(Z) > 0 we have (liminf G,)* > 0 a.s.

PrOOF. Step 1. Let v be measurable bounded with a = E(v) > 0 and such
that for each n, P"*(M,) = 1, where M, = A,(Z, v). Let u € ' with |f|<u
for each f € Z and let b = E(u). Let k € N with £ > 1 + 16b/a and & > 2.

Step 2. ForpeN, feZ, let

F(£) = {(seno0) € 853 < B2, T 1(5) < —akr~1/4).
i<j
We shall prove that ¥ sup; < ,P*(F,(f)) < oo. Let B be large enough so that
E(u’) < a/16k, where u’ = u — u A B. Let

F,= {(sl,...,skp) eQ¥; Y u(s;) = ak”‘l/S}.

i<k?
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For f € Z, let f’ be the truncation of f at —f8 and B. Since |f — f’| < u’, we
have |E(f’)| < a/16k.
For (s;, ..., spr) & F,, we have for j < k?,

E(f/(si) - E(f')) = Zf(si) + Z u'(s;) + k”|E(f’)|

i<j i<j i<k?
< Y f(s;) + akP~1/8 + akP~1/16.
i<j

So we have F,(f) c F, U FJ(f), where

F;r,(f) = {(sl’”"sk") € Qkp; HjS kp,Z(f/(si) - E(f,)) < _akp_1/16}°

i<j

The sequence X; _ ( f '(s;) — E(f ’)) is a martingale, so

P¥(F)(f)) < Z (f(s:) -

kl’l

Since |f’| < B, computation shows that

X (f(s) - E(f’ ))

i<kP

< 2ka/2’

SO

¥ sup PH(ES( 1)) < o0

Let I(p) = L, . k" Let

F) = {s € Q>; Y u'(s;) = ak”‘l/S}.

Up)<isUp+1)
Let s € limsup,F,;/, and p with s € F;. We have
Qup+1(8)(u’) = ak?~1/8l(p + 1) = ak?}(k — 1)/8(kP*! - 1),
so
limsup@,(s)(u’) > a(k — 1)/8k? > a/16k > E(u’).

n

This shows that P>(limsup,F;) = 0, so LP°(F;) < o0, so LP*(F,) < o0. The

step is complete.
Step 3. Let

B, = {(s)icws T uls)) > 2587},

i<kP
C, = {(si)isk"; Y o(s) < akp/2}-
i<kP

Using the fact that & > 1 + 16b/a, the method used to show that LP*{F,) < oo
p
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shows that LP*(B,) < o0, LP*(C,) < 0. Let
d, = P¥(B,) + P¥(C,) + supP*(F,(f)).
fez

We have ¥d, < .

Step 4. Let A’ C Q® with P®(A’) > 0. Then we can find a decreasing
sequence (A,) of sets of 2, each depending only on finitely many coordinates,
and such that if A =N,A4,, we have P®(A) >0, AC A’. Let ¢ €N with
L5 ,d; < P*(A).

For each p > 1, let m(p) = k?*? and n(p) =X, ;. ,m(i). For each p, we
write Q° = Q") x T, where T, = Q1> =l Let @, be the product probability
on T, so P° = P"?” ® Q,. For each ¢t € Q™P), let

A (t) = {seT,;(ts) e A}
By induction over p > 1, we construct points (8;),p—1)<i<n(p) of & and f, € Z,
such that the following hold:
(3) If tp = (si)isn(p)’ then Qp(Ap(tp)) > Z di'
i>p+q

@) I 8P = (Sy0p-1)r10+++» Sn(p)) € ™D,

then s?P¢ B, ,UC,, U F;,M( fp_l).
(5) For n(p-—1) <i<n(p), wehave f,(s;) > v(s;).

The first step is almost identical to the general step, so we just perform the
step to p + 1. Let

U= {S' € Qmr+D; Qp+1(Ap+1((tp’ s,)) > X di}'
i>p+q+1
Condition (3) and Fubini’s theorem show that P™?*YU) > d,, .. It follows
that there is s’ = (s{,..., 8;,p+1)) € @™P*D with

s'e (Mm(p+l) N U) \ (Bp+q+1 U Cp+q+l v F;)+q+l( fp))'
For n(p) <i<n(p+ 1), we set s; =s/_,(p) and we pick f,,, to satisfy (5).
The construction is complete.

Step 5. Let s = (s;) € 2 be the sequence constructed in step 4. Condition
(3) shows that for each p there exist #,,),;,... in & such that
(8155 Sn(pys tn(py+15 - - -) belongs to A. Since each A, depends on finitely many
coordinates, we have s € A, for each n, so s € A.

We now show that liminf G,(s) > a(k — 1)/8k2. Since A’ was arbitrary, this
will show that (liminf G,)* > a(k — 1)/8%k?2 and will complete the proof. Let
n € N and p with n(p) <n < n(p +1). We have G,(s) = n"'E,_, f,(s;). For
!l <p -1, from (4) we have

Y h(s)] =< Y u(s) <2bm(l+1),
n(l)<i<n(l+1) n(l)<isn(l+1)
and so
T fls) =z —26n(p-1).

i<n(p-1)
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From (4) and (5) we have
> fp(si) 2 )y o(s;) = am(p)/2.

n(p—1)<i<n(p) n(p—1)<i<n(p)

From (4) we get
Y f(s) > —am(p)/4.

n(p)<isn

So, finally,
G,(s) = [am(p)/4 — 2bn(p - 1)]/n(p + 1)
and easily liminf G,(s) > a(k — 1)/8k2. The proof is complete. O

ExaMPLE 21. There exists a set Z of measurable functions valued in {0,1}
with d(Z) = 1 and (liminf G,(s))* = } as.

ProoF. Let (2,2, P) be [0,1] with Lebesgue’s measure, and let (£2,,) be a
partition of © with P*(Q,) = 1 for each n. Let Z, be the set of functions 1, for
A cQ,and card A < n. Let Z = UZ,. It is clear that G,* = 1 a.s. for each n, so
d(Z) =1.

Let s € 2* and m € N. Suppose that G,,(s) = 1/2. Then there is p such
that for some A c {2, with card A < p, we have

card{i < m; s;€ A} > m/2.
So we have p > m/2. Let q be the largest integer < 2p such that
card{i < q; 5, € Q,} = q/2.
Sog=>m.Let r=q+ 1.1f g =2p, for f in Z,, we have
Q(s)(f)<p/(g+1) <1/2.
If g <2p,wehavecard{i<r; s;,€Q,} <r/2,s0
Q(s)(f) <r/2r=1/2.
For n#p, f € Z,, since @, N Q, = &, we have
Q.(s)(f)<(r—q/2)/r<(r+1)/2r=1/2+1/2r.
So, since r > ¢ > m, we have
kiEfnGk(s) <1/2+1/2m,
so liminf G,(s) < 1/2 for each s, and (liminf G,)* < 1/2. Now let
L={seQ%Vn,i,nl<i<(n+1),s€Q,}.

Then P**(L) = 1. We leave to the reader the easy proof that liminf G,(s) = 1/2
for s € L. This shows that (liminf G,)* > 1/2 and finishes the proof. O

We now come to the various characterizations of Glivenko—Cantelli classes.
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THEOREM 22. Let Z be a subset of £. The following are equivalent.

(I) The quantities |E(f)|, for f € Z, are bounded, and Z is a
Glivenko—-Cantelli class, that is, lim,D,(s) = 0, P* a.s.
(IT) Z is stable and order bounded.
(IIT) Z is order bounded, and for each ¢ > 0, there exists a finite subalgebra
& of = such that

limsup(z-f;ug Q.(s)(| f — E( fly)l))* <e, P%a.s.

(IV) For s € Q>, there exists a number a(s) > 0, such that for s € Q@ and
f € Z there exists a number b(s, f), with |b(s, )| < a(s) such that

li'rlns;ug|Qn(s)(f) -b(s,f)|=0 a.s.

(V) Z is order bounded, and lim,D}*(s) = 0, P® a.s.
(VI) Z is order bounded, and lim ,E(D3X(s)) = 0.
(VII) Z is order bounded, and for each ¢ > 0 we have

limsup P¥({D, < ¢}) > 0.

(VIIL) Z is order bounded, and liminf,D,(s) = 0, P® a.s.

Moreover, even when Z is any set of (not necessarily measurable) functions on
Q, condition (IV) implies that Z c ' (and hence implies all the other condi-
tions).

REMARKs. (1) Note that the assertion lim,D*(s) = 0 a.s. is a priori much
stronger than the assertion lim,D,(s) = 0 ass.

(2) If Z consists of the constant functions, then Z is a Glivenko-Cantelli class
that is not order bounded, so some kind of boundedness is necessary in condition
@.

(3) Condition (IV) is not a far-fetched refinement, but exactly what is needed
to prove Theorem 26.

Proor. It is obvious that (V) implies (I) and that (I) implies (IV). Let
Z°={f-E(f), feZ}, Z' = Z° U (—Z°). If we apply Theorem 19 to Z’, we
see that (V), (VI) and (VII) are equivalent, and that they are equivalent to
d(Z') = 0. If we apply Theorem 20 to Z’, we see that (VIII) is also equivalent to
d(Z’) = 0, so (V) to (VIII) are equivalent. Theorems 16(a) and (b) show that (II)
implies d(Z’) = 0 so (II) implies (V) to (VIII).

When Z is order bounded and ./ is finite,

lim sup §u2|Qn(s)(E( flz) — E(f))|=0, P> as.
n e
and one deduces easily that (III) implies (I). To see that (II) implies (III), one

uses the same truncation argument as in the proof of Theorem 19, to deduce (III)
from Theorem 17 and Lemma 18.
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To finish the proof of the theorem we show that if Z is any set of functions
(not necessarily measurable) that satisfies (IV), then Z c #' and Z satisfies ().
We first show that there is u € #! such that |f| < u for each f € Z. Condition
(IV) implies that

1 n+1
limsup|— Y f(s;)— Tb(s, f)|=0, P*as,

n fez|Mi<n+1
S0
lim sup |n~f(s,,,) — n7'b(s, f)| =0, P> as.
n feZ

Since |b(s, f)| < a(s), we have
lim sup |n"'b(s, f)| =0, P> as,
n feZ

SO

lim sup |[n"f(s,)| =0, P> as.
n fez

Let X, = {«w € Q; sup; c 5| f(w)| = n}, and let U, € = be a measurable cover of
X, Let u=1+Y,,,1;. We have |f| < u when f € Z, and u is measurable.
We show now that ¥ P(U,) < oo. Otherwise, there is an increasing sequence (%,,)
such that

P°({s€Q®;3i, k,<i<k,,;s,€U})=21-2""

Now notice that in any probability space, for sets X, X,,..., X,,, if U, is a
measurable cover of X;, U;_,U, is a measurable cover of U, _ ,X;, so we have
P**({s€Q®;3i, k,<i<k,.;s€X]})=21-2""
So P**(M) > 0, where
M={s€Q*;Vn,3i,k,<i<k,.,s €X;}.

For s € M, we have limsup,sup; c z/n"'f(s,)| = 1. This contradiction finishes
the proof that u € £,

We show now that each function f in Z is measurable. Suppose, if possible,
that for some f in Z we have f * # f, on a set of positive measure. Then there
exist two measurable functions v, w with |v|, |w| < u + 1, E(v) < E(w), v > f 4,
w < f* So,if A= {f>w}, B={f<v}, wehave P*(A) = P*(B)=1.Let n,
be a sequence with limn,/n,_, = 0. For n,, <n <n,,,,, let C,=A; for
Nop+1 <N < Ngpyy, let C, = B. Let C =11C,. Then P**(C) = 1. Let

C’' = {s € C; li'rann(s)(”) = E(v);

lim Q,(s)(w) = E(w); limQy(s)(x) = E()).
Then P**(C’) = 1. Let ¢t € C’. We show that a, = (1/n,)X; ., f(¢;) does not
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converge. Suppose, if possible, that it converges to some a. We have

ny, 1
Gop+1 = Qgp + Y w(t)
UTES] Mok+1 nyy<i<ngg,,

Ny, 1 1 .
2 Qg + X w(t) - 2 (u(s) +1).
Nar+1 N2kt i<ng,,, Nok+1 i<n,, ‘

This shows that @ > E(w). Similarly, one sees that a < E(v), a contradiction.
This proves that f, = f * a.s., so f is measurable.

We show now that Z is stable. Otherwise, there is A € =, P(A) > 0 and
a < B with P?"*(B, (A, a, B)) = P(A)*" for each n. Let a = (8 — a)P(A)/9.
Let b > max(|al, |B]) be large enough that E(u’) < a, where u’ =u — u A b.
For f in Z, denote by f’ its truncation at —b and b. Let Z’ = {f’; f € Z}. We
have P?"*(B, ,(Z’, A, a, B)) = P*"(A) for each n. Theorem 16(c) shows there
exist two bounded measurable functions v,w on @, with E(w — v) > 3a and
(P**1y*(M(k, 1)) = 1 for each k, I, where

M(k, 1) = {(s1,..r 84, iy oos ) €EQ*LAfEZ, Vi< b,
fr(s) <o(s;), Vi<l f(¢) = w(tj)}-

We can assume v<u+1 and w> —u — 1. Let n(p) be a sequence with
lim n(p)/n(p + 1) = 0. Let

M= {s € Q%Y P, (Spi2pyr1r+++s Sn@p+2)
€ M(n(2p + 1) — n(2p),n(2p + 2) — n(2p + 1))},
so P2*(M) = 1. Let
M’ = {s € M; im@,(s)(u) = E(u); im@Q,(s)(w’) = E(w');

limQ,(s)(0) = E(v); limQ,(s)(w) = E(w)),

so P**(M’) = 1. Fix s € M". For each p, let f, € Z with 5 (s;) < o(s;) for
n2p) <i<n@2p +1); f/(s) > w(s;) for n(2p + 1) <i < n@2p + 2). We have

Qn(2p+1)(s)( fp) = Y o(s)+ Y (u(s) +1)

n(2p +1) l<n@p+1) n(2p +1) isn(2p)
— T w(s)
- u'(s. ,
n(2p +1) isn@p+1) '
Q (Nh)z——% X w(s)-—o—= X (u(s)+1)
nept2) ( p) n(2p +2) i<n@p+2) n(2p +2) isn@p+1)
1
——— Y u'(s),
n(2p +2) i<n@p+2) '
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SO
2lim sup 7ug|Qn(8)(f) - b(s, f)]

2 lim:uP(IQn(zpn)(s)( fp) - b(s, fp)l +|Qn(2p+2)(s)( fp) - b(s, fp)')

2 limsupIQn(2p+2)(s)( fp) - Qn(2p+1)(s)( fp)l
p

> E(w) — E(v) — 2a > 0.
This contradiction shows that Z is stable. The result is proved. O
ProoF oF THEOREM 7. (a) We actually show that for each &> 0,
(1/n)log N>*°*(Z,e,s) > 0 as. and in L'
Step 1. We assume that Z is bounded, so we can suppose Z C [—1/2,1/2]%
Since (1/n)log N*(Z, ¢, s) < log(l + 1/¢) it is enough to show that
(1/n)log N**(Z, e, 8) > 0 as. Let 8> 0. Let 0 < @ < ¢ be such that

(6) alog(l + 2/¢) + aloga| + (1 — a)|log(l —a)| < B.
From Theorem 22, there is a finite subalgebra .« of = such that

limsup(iqun(s)(l f— E( fl.sai)l))* <ag/2 as.

Let Z, = {E(f|¥); [ € Z}; Z, = {f — E(f|«); [ € Z}. We have
N»(Z,2¢e,8) < N*(Z,,¢,8)N*(Z,, ¢, s).

Since & is finite, we have (1/n)log(N>(Z,, ¢, s)) — 0 a.s. so it is enough to show
that

1
(7) lim sup —';log(N,f*(Zz, e,8)) < B as.
Note that Z, c [—1,1]% Let

A= {s €0, swQ(s)(11 - E(f1)) = ae),
e

so P®(liminf, A,) = 1. For s € A,, for each f in Z,, we have Q,(s)({|f| > ¢}) <
a. Let m =[an].

Consider the set of functions that are zero everywhere, except at most at m of
the points s,,..., s,, where their values are of the type ke (k € Z) with |ke| < 1.
For s € A, each function of Z, is at distance < ¢ from this set; so

Ne(Zy,6,8) < ()1 +2/2)",
so
log N**(Z,,¢,8) < log(,':l) + nalog(l + 2/¢).
Computation using Stirling’s formula shows that
li'rtn —:;log(,r,;) = aflog a| + (1 — «)|log(1 — a)|,
so (7) follows from (6).
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Step 2. Let ¢ >0 and B> 0. Let u be such that |f| < u for f € Z and
log(u + 1) € £. Let b be large enough that
P({u> b})llog ¢l < B/2, E(l{uzb)log u) < B/2.
For f € Z let f’ Dbe the truncation of f at —b and b. Let
Zi={fsfeZ}; Z,={f-f" feZ}.
We have
N(Z,2¢,8) < NX(Zy, €, 8) N2 (2, ¢, ).

Step 1 shows that limsup,(1/n)log(N>®*(Z,, ¢, s)) =0, so it is enough to
prove that

1
BV —';log N2*(Zy,e,8) —B—>0 as.andin L'.

For t € Q, we set v(t) =1 for u(t) < b+ ¢, v(¢) =1+ (u(t) — b)/e otherwise.
We see that

Ny*(Zy,¢,8) < [1o(s;).

i<n

Since for u(t) > b + ¢ we have v(t) < u(t)/e, we get
E(logv) < E(1(,, »logu) + loge| P({u> b +¢}) < B
and the result follows from the law of large numbers.

(b) Suppose first that Z is bounded, and let ¢ > 0. From Theorem 22, there is
a finite subalgebra .7 of 2 such that

lim sup iqun(s)(l f—E(fi?)]) <e/3 as.

Let Z, = {E(f|/); f€ Z). If
§qun(s)(| f— E(fl#)]) < 2¢/3,

we have
N Z,e,s) < NNZ,,¢/3,s),
so we have
limsupNX(Z, e, s) < limsupNX(Z,,¢/3,s) as.
n n

and the result follows since .« is finite.

The case where Z is order bounded reduces to the case where Z is bounded
using the usual truncation argument.

(c) If Z is not stable but satisfies condition (M), Proposition 4 shows that
there is A € 2, with P(A) > 0 and « < B8 such that for each m, P™(B,,) =
P(A)™, where

B, ={(s,...,s,) €A™ VIC{L,...,m},3feZ,Viel, {(s;) <a,
viel, i(s) > B).
For s € Q®, let m,(s) = card{i < n; s, € A}. If i(),..., i(m,(s)) are the indices
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i < n such that s;€ A, let s(n) = (s;q),--» Siim,(s)- Then it is clear that
P>(C) = 1, where

C= {s € Q®;V n,s(n) e an(s)}.

We now observe that in a set I of % elements, one can find subsets D,,..., D,,
with /> e*/® and card(D;2 D)) > k/4 for i+ j. (This follows, e.g, from a
random choice and Hoeffding’s inequality.) It follows that for s in C, if m (s) >
nP(A)/2 and ¢ = (B — a)P(A)/16, then NXZ, ¢, s) > e™(/8 g0

m,(s)
8n
The law of large numbers shows that lim ,m (s)/n = P(A) a.e., so

1
;log NXZ,e ) >

1
liminf;log N Z,e,s) > P(A)/8 a.e.
This concludes the proof. O

We now give an example to show that Theorem 7(c) fails when no measurabil-
ity assumption is made.

ExampLE 23. Let (2, =, P) be [0, 1] with Lebesgue’s measure. There exists a
set Z of {0,1}-valued measurable functions that is not stable, but such that for
each e > 0, [(1/n)log N**(Z, ¢, s) dP*(s) — 0; for each n, s, NX(Z,¢,8) < 1/e.

ProoF. It is routine to construct a disjoint family . of finite sets such that
if Z = {1,; A € &}, then G;}(s) = 1 a.s. for each n. However, for each n, each ¢,
and each s, one has N¥(Z,¢,s)<n+1 and NXZ, ¢, s) < 1/e. The result
follows. O

This example also shows that condition (M) cannot be dropped from
Theorem 5.

We conclude this section with two stability properties of Glivenko—Cantelli
classes.

ProPOSITION 24. Let Z,,...,Z, be uniformly bounded stable sets. Let 0:
R” —» R be a continuous function. Then

Zy={0(f1,..., f,);Vi<n, f,eZ)}
is stable. ’

PROOF. Observation1: If Z, is stable, and [a, b] contains the range of each
function of Z,, for each homeomorphism ¢{ of [a, b] onto its image, {(Z,) = {{° f;
f € Z,} is stable; this is obvious from the definition of stability.

Observation 2: 1f Z,, Z, are stable and uniformly bounded, Z, + Z, = {f, +
fos f. € Z,, f, € Z,} is stable. This is also obvious since Z,, Z, are
Glivenko—Cantelli classes and so Z; + Z, is also a Glivenko—Cantelli class. (It is
however not obvious from the definition of stability!)
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The proof will follow from repeated application of these observations. We first
show that

Z\Zy={f1fy; L €Z,, € Z,) )
is stable. Let a be large enough that f + @ > 1 for f € Z, U Z,. Observation 1
shows that log(Z, + a) and log(Z, + a) are stable. Observation 2 shows that
log(Z, + a) + log(Z, + a) is stable. Observation 1 again shows that
Z, = exp(log(Z, + a) + log(Z, + a)) is stable. We have

Zy={(fi +a)(fy + a); f, € Z,, [, € Z,}.
Observation 2 shows that
Z,=2,—aZ, — aZ, — a*
is stable. We have
Z,= {( frta)(f,+a)—afs—af,—a* fi, €2, fp, fs € Zz}-

Since this class contains Z,Z,, the claim is proved.

It follows that if % is the class of functions 6§ for which Z, is stable, ¥ is an
algebra. This algebra contains the coordinate functions. A routine argument
shows that it is closed for uniform convergence on compact sets. The result
follows. O

Our next result is a comparison principle for processes. (In a further work [10],
we prove a similar principle for the Central Limit Theorem.)

PROPOSITION 25. Let X be any set. Consider two bounded functions ¢, y:
X X @ - R. Assume that ¢(x, -) is measurable on Q for each x in X and
Vx’ Y€ X,VS € 9’ |¢(x’ S) - ¢(y’ S)I SI‘P(x’ S) - ‘P(y’ S)'-
If
Z,= {s > y(x,5); s € X}
is a stable set, then
Z,= {s > ¢(x,5); x € X}
is also a stable set.
REMARK. (1) This is of course a statement about the law of large numbers,

since the hypothesis that Z, is stable is equivalent to saying that the process ¢
satisfies the law of large numbers in the following sense:

lim sup sup (|n-1 Y ¥(x ) - E($(x, 5))

n xeX i<n

%
) =0, P%as.

(2) The hypothesis of boundedness can be relaxed with the usual truncation
argument to |p(x, s)| < u(s), |¥(x, s)| < u(s) for each x, where u € £*.

ProOF. For x € X, let ¢, (resp. ¢,) be given by ,(s) = Y(x, s) for s € @
[resp. ¢.(s) = ¢(x, s)]. Let ¢ > 0. Apply Theorem 22 to Z,, and let &/ be a finite
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algebra as in the condition (IIT) of this theorem, that is,
*
limsup( sup Q,.(s)(|¥x — E(¢,) |)) <e P*®as.
n xeX
Forx, y € X, let

d(x, y) =| E(.l) - E(y,)) |,

We note that since & is finite, for y € X we have by the usual law of large
numbers

lim sup sup Qn(s)(|E(xpx|Jz¢) - E(¢y|.sa¢)|) <e P®as.

n x€X; d(x,y)<e

Let F be a finite subset of X such that
vxeX,3yeF, d(x,y)<e
Given y € F, we have

limsup( sup Q,(s)(|¥, — gby|))* <3¢, P%as.

n d(x, y)<e
Since |¢, — ¢,| < |¢, — ¥,| by hypothesis, we get

limsup( sup Q,(s)(l¢, — ¢y|))* <3, P®as.

n d(x,y)<e
Since

d(x, y) <e=|E(¢,) - E(3,)| <&,
we get for each y in F

timsup( sup [Qu(s)(¢:) — E(6.) ~ Quls)(#,) + B(s,)|) <4e, P as,

n d(x, y)<e
so since F is finite,

limsup(su[;{]Qn(s)(@) - E(¢x)|)* <4e, P> as.

The result follows by Theorem 22 again.

4. The law of large numbers in a Banach space. Let E be a Banach
space, and E* be the unit ball of E *. Consider a map ¢: & — E (no measurabil-
ity is assumed). We define the (extended) L-norm of ¢ by

*
el = [Tliol P.
We define the Glivenko—Cantelli norm of ¢ by
. *
I$llcc = limsup [’g, dP=,
n

where

6:(s)= s — ¥ [x*(s(s).

x*eEF " i<n
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It is useful to note that, by subadditivity, ||¢||qc = inf, [ *g, dP*. Since g,(s) <
(1/n)E; . ,ll9(s))ll, we have [*g, dP® < |||, so [$llgc < II¢ll}*- We define the
Pettis norm of ¢ by

* *
gl = sup [“|x*oo|dP.
x*eE¥
For x* € E, we have g,(5) > (1/n)L; . ,Jx* * {s,), 50
* * .
[&.dP> = [“x*4|dP, so 1I4llp < [9llcc-

(- 11 |l - llgc and || - || p are actually only seminorms.)
Let
Z,= {x*o¢; x* € E}}.

We say that ¢ is properly measurable if Z, is stable. We note that [|¢||* < oo if
and only if there is u € #' with ||¢|| = sup,« c g«|x* ° ¢| < u everywhere. In
other words, ||¢|| < o if and only if Z, is order bounded.

The following characterizes the maps that satisfy the strong law of large
numbers. :

THEOREM 26. Given a map ¢: @ = E, and s € Q%, set S (s) = L, . ,9(s;)-
The following are equivalent:

(a) For almost each s € Q%, the sequence (1/n)S,(s) converges in norm.

(b) There exists a € E such that (1/n)S,(s) = a in norm a.s.

(c) ¢ is properly measurable, and ||¢||} < co.

(d) For each & > 0, thereis a step function : & — E such that ||¢ — Y||gc < &

REMARK. When these conditions hold the one-dimensional law of large
numbers shows that for x* in E*, E(x* o ¢) = x*(a). So a is the integral of ¢
in a weak sense.

Proor. (a) = (c). Let , c Q* with P®(Q,) = 1 be such that for s € Q,
the sequence S,(s)/n converges in norm to some x(s) in E. Let a(s) = ||x(s)||.
For x* € E*, let b(x*,s) = x*(x(s)), so we have |b(x*,s) < a(s). Since
S,(s)/n converges to x(s), we have

lim sup l.'Jc"‘(Sn) —x*(x(s))|=0 as.
n x*eEx n

The last assertion of Theorem 22 shows that x* o¢ is measurable for each
x* € E*. (In other words, ¢ is scalarly measurable.) So Z, is a set of measurable
functions that satisfies condition (IV) and hence all the conditions of Theorem
22. In particular this means that (c) holds.

(c) = (d). Using Theorem 22, we see that there is a finite subalgebra .« of =
such that

(8) ]imsup/ sup [% Y |x*o¢(s;) — E(x* o¢|ﬂ)(8i)|:| dP*(s) <.

x*€Ef i<n
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Since ¢ is properly measurable and ||¢||;* < oo, [9], Theorem (6-1-2), shows that
¢ is Pettis integrable; so in particular for each atom A of &7 there exists x, € E
with

Vx*e E*, x*(xA)=fx*o¢dP.
A

Define ¢: @ - E by ¢ =Xx,1,, so E(x*o¢p|A) =x*oy for each x* € E*.
Now (8) means that ||¢ — ¢||gc < &

(d) = (b). For each £, let ¥, be a step function such that ||¢ — ¢,|lcc < 2%
Then

<27k P*as.

~F (8(5) - 9u(5)

i<n

lim sup
n

This is a consequence of Theorem 19(a) (or, much more easily of a simple
subadditivity argument). So, since ¢, takes only finitely many values, we get

1
lim sup n 2 ¥u(s;) —E(y,)| =0, P~as,
s0
1
lim sup ;Sn(s) —E(Y,)|<27% P>*as.

This implies | E(¥,) — E(¥,., )l < 27%%, so the sequence (E(¢,)) converges in
norm to some a € E, and it is routine to check (b).
(b) = (a) is obvious. O

COROLLARY 27. If ¢ is properly measurable and ||¢||¥ < oo, then ||¢|gc =
ll®ll -

Proor. This holds when ¢ is finitely valued. In general, Theorem 28(d)
shows that ¢ is the limit in || - ||g; (and hence also in || - || ) of a sequence of
finitely valued functions. O

The notion of properly measurable function has other interesting aspects. In
particular, it seems to be the right class for Pettis integration. This aspect is
expanded on in [9].
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