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PROPHET COMPARED TO GAMBLER: AN INEQUALITY FOR
TRANSFORMS OF PROCESSES!

BY ULRICH KRENGEL AND LOUIS SUCHESTON

_ University of Géttingen and The Ohio State University

A prophet is a player with complete foresight; a gambler knows only the
past and the present, but not the future. If each of them bets on differences
of consecutive nonnegative random variables X; such that E(X;|X;_,) = EX;,
the players multiplying their stakes by uniformly bounded variables, then the
expected gain of the prophet is at most three times that of the gambler. The
constant 3 is optimal.

1. Introduction. A prophet is a player with complete foresight; a gambler
knows only the past and the present, but not the future. We show that if each of
them bets on differences of consecutive nonnegative random variables such that
any two adjacent random variables are independent, then the expected gain of
the prophet is at most three times that of the gambler, the constant 3 being
optimal. If the random variables are independent and the only permitted action
is stopping, then the constant is known to be 2 [5]; see also [6].

The actual setting is somewhat less restrictive. Usually, one assumes that the
gambler knows the distribution, but our gambler has to know only the expecta-
tions of random variables. Also, less than adjacent independence is required. Let
Xy, X;5..., X, be integrable random variables, with expectations e,, e, < X,.
Let &, be sigma-algebras of events such that each X is measurable with respect
to &,. At time i + 1 the gambler wins U, (X;,, — X;), where the factor U, , is
chosen by the gambler on the basis of the information provided by ., i.e., U;,
is measurable with respect to .Z,. We then say that U, is predictable with respect
to %#,. The two main particular cases are %, = (X, ..., X;), when U is simply
called predictable, and &, = o(X;), when U, is called presently predictable: The
player multiplies his stake by the random variable U, ;, which depends only on
the present. In any event, the gain of the player up to the time n is

Z Ui+1(Xi+1 - Xi) =Z,.
0<i<n
The sequence Z, is called the transform of (X,) by (U,), a terminology that
originated with Burkholder (1966); one writes Z, = (X *U),. We will assume
that all the U,’s are bounded in absolute value by a fixed constant c. If T is a
stopping time, then X, , — X, is the sequence X,, transformed by the predict-
able sequence 1,7, ,. In the present article the gambler transforms the process
X by a presently predictable U (bounded by c); the collection of all such U'’s is
denoted by II. The set of all U’s (bounded by c) is A,. The corresponding sets
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limited to nonnegative U’s (our main concern) are simply II and A. The
maximal gains of the prophet and of the gambler are

P,=supE(U*X), G,=supE(U=*X).
A, I,

The corresponding expressions when U is restricted to A and I are denoted
by P and G. It is easy to see that the suprema in the expressions for P,, G,, P
and G are reached. We impose on the X;’s the condition

(E) E(X)|X;_,) = e, i=1,...,r.

This condition is in particular satisfied if for each i, X; and X;_, are pairwise
independent. The condition (E) also holds if the centered random variables
X, — e; are martingale differences. The main theorem asserts that P < 3G; if
X, = ey, then also P, < 3G,.

Clearly, these inequalities remain true if the U,’s are only assumed predict-
able, instead of presently predictable, since then the suprema in the expressions
for G and G, are taken over larger sets.

2. Proving the prophet inequality. Let X|,..., X, be integrable random
variables with expectations e;. It will be useful to introduce a functional p
involving moments defined on L, by

w(X) = EX - LE|X - EX] =EX-E(X-EX)".

The functional p is superadditive and homogeneous. We only prove the
following simple fact: If X, > e,, then p(X,) < u(X,). Indeed, the same con-
stant may be subtracted from X, and X, without changing u(X,) — p(X,); we
may therefore assume e, = 0 and X, > 0. Then u(X,) = —E(X,)* < 0, while
mX,)=e.— 3E|X, —e|=>e, — 1E|X|— te,=e,— e, =0. Finally, if the
random variables X|,..., X, are nonnegative and both players receive X;, then
the addition in the beginning of the random variable X, = 0 does not change
anything, hence, in this case supposing X, > e, is not a loss of generality. We
observe this to justify the assumption p(X,) < u(X,) frequently made in this
paper.

2.1. THEOREM. Let &, be sigma-algebras such that for each i, X; and U,
are Zrmeasurable. Assume that p(X,) < w(X,) and
(E) E(Xlle—l) =el, i= 1,...,r.

Then P < 3G. This inequality is strict unless all the random variables are
identically equal to the same constant. .

Proor. Without loss of generality, we can and do assume that %, is the
sigma-algebra generated by X; because the gain of the gambler using optimal
strategies increases if the sigma-algebra is enlarged. .

For the gambler, since U, is X;_,-measurable, we have

E[Ijz(Xt - Xi—l)] = E[E(Ui(Xi - Xi—l)%—l)] = E[Ui(ei - Xi—l)]"
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Assuming 0 < U; < 1, this is maximal for U; = 1%,  ..,,. Hence,
G= i E(e; — Xi—1)+'
i=1
On the other hand,
P= Y E(X- X))’

i=1

i [E(Xi —e)" + E(e; - Xi—1)+]

i=1
i=1

It is therefore sufficient to show that

A

(2.2) Y E(X,—e)" <2G.
i=1

The identity E(e; — X;_;)" = E(X;_, — ¢;)" + e, — e,_, yields
r—1

(2.3) G= L E(X;—e;,) +e,— e
i=0

For the comparison of terms a;, = E(X; — e;)" and b, = E(X; — e;,,)", we
prove a lemma.

24. LEMMA. If X is an integrable random variable and a and b are
constants, a < b, then

(b-a)P(X=2b)<E(X-a) —E(X-b)"<(b-a)P(X > a).
Proor. Let F(x) = P(X < x). Then
E(X-a)"= fa°°(x - a)F(dx).
Hence,
E(X-a)t—E(X-b)"= f:o(x —a—x+ b)F(dx) + j;b_o(x — a)F(dx)

> f:o(b — a)F(dx) = (b - a)P(x > b),
E(X-a)"-E(X-b)"s [ (x-a-x+b)F(dt) = (b— a)P(X > a).
’ O

2.5. LEMMA. Let X be an’integrable random variable with EX = e. Then for
any constant e’,

E(X-e)"<E(X-¢)"[1+P(X<e)] +e —e.
If e < e’, the term P(X < e) may be omitted.
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ProOOF. If e < ¢/, then by the previous lemma,
E(X-e)'<E(X-¢)"+e —e.
Now assume e > e’. Then the first inequality in Lemma 2.4 gives
E(X-e) <E(X-¢) +(e!—e)P(X 2 e)
=E(X-¢)"+(ef—e)—(e'—e)P(X <e)
<EX-e¢)'[1+P(X<e)]+e—e
because E(X —e)* > E(X—e)=e—¢'. O

Applying the previous lemma with X = X;, e = ¢;, ¢’ = e;,; and summing,
we find

r-1 r—1
(2.6) Ya;< Y [1+P(X;<e)|b;+ e, — e,

i=1 i=0
Hence, by (2.3)

r—1

r
Zaisa,—a0+2(Zbi+e,—e0)—2(e,—e0)+er—e0
i=1 i=0

=2G - (e,—a,— ey + a,)
=2G - [u(X,) - n(X,)].

Thus (2.2) holds because we assume p(X,) > p(X,). Hence P < 3G.

Finally, we show that P < 3@, unless all X; = e,. The computation following
(2.6) shows that the inequality is strict unless p(X,) = p(X,). Therefore, we can
and do assume p(X,) = p(X,). Now, if one of the b;’s is strictly positive, then
P < 3G follows from the inequality 1 + P(X; < e;) < 2. We can therefore as-
sume that all b, = 0 and X; < e, ,. Hence, a; < e;,, — e; and this inequality is
strict unless e,,, = e; and X; = e,, We may therefore assume L;”ja; < e, — e,.
Now (2.3) shows that G = e, — e,, hence, G = a, — a, because u(X,) = p(X,).
The estimate preceding (2.2) now implies that

r r-—-1
P<G+ Ya,=2G+ Y a;,<2G +e,—e,=3G.

i=1 i=0

Thus P < 3G unless all X; = e,. This completes the proof of the theorem. O

Actually, the ratio P/G is sometimes < 2. Such is the case if all the e;’s are
equal.

2.7. COROLLARY. Suppose thate, < --- < e,. Then, under the assumptions
of Theorem 2.1, P < 2G + e, — e,.
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Proor. If e; <e;,,, then, by Lemma 2.5, the term P(X; < e;) may be
omitted in (2.6). Hence,

r r—1
Ya,<a,—ag+ Y b+te —e,=a,—a,+G.
i=1 i=0

Using this instead of (2.2), one obtains that P < 2G + a, — a,. [This is true
also without the assumption p(X,) > p(X,).] Since p(X,) < n(X,), @, — ag <
e, — ey hence, P<2G +e.— e, 0

3. The case of signed U’s. We now allow U;’s with —c < U; < +¢, ¢ > 0.
Without loss of generality, we may assume ¢ = 1. In the notation of the
introduction, the optimal gain of the gambler is G, and the gain of the prophet
is P,.

3.1. THEOREM. Let %, be sigma-algebras such that for i, X; and U, , are
Z-measurable. Assume

(E) E(‘Xll‘Xt—l) =el, i= 1,..., r.

Assume, also, p(X,) < p(X,) and e, = e, (this is in particular true if X, = e).
Then P, < 3G,. If e, = e,, then P, = 2P and G, = 2G.

Proor. With the U;’s signed, the optimal gambler receivers X; — X;_; on
the set {X;_; <e;} and —(X; — X;_,) on the set {X;_, > e;}. Hence

G,= X [E(e;— X;_,)" + E(e;— X,_,)" |-
i=1
The difference of the summands in the brackets is e; — e;_,, hence

G=2Y E(e;—X;_1) — 2 (e;—ey)
i=1

i=1
=2G — e, + e,.

Similarly,
P =2P—e, + e,
Now, P < 3G and e, > e, implies P, < 3G,. O

4. Optimality of the constant 3. We now show that the constant 3 cannot
be replaced by a lower constant in Theorems 2.1 and 3.1. Given & > 0, we
construct independent integrable nonnegative random variables X{, X7,..., X/,
with P’ > (3 — €)G’. Here P’ and G’ are the expected gains of the prophet and
of the gambler for the primed process. ¥/ is the o-algebra generated by
X4, ..., X! It will follow that 3 is optimal also for a smaller .Z;.

The sequence (X;) will be obtained from a sequence X, ..., X, by inserting
constant random variables between the X;’s, namely, the expectation of the X;
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to the right. We put s =2r and X{=X,, X/ =e¢,, X;=X,,..., X};_1=¢;
and X/, = X,,..., X;,_, = X,. For 0 <j = 2i, we have e/ =¢; and X/ , = e,.
For j=2i — 1, we have ¢; = ¢, and X/ ; = X; ;. Hence,

2r r
G'= Y E(ef- Xj’—1)+= YE(e;- X)) =G.
1

J=1

Similarly,

2r r r
P = ZE(Xj'_Xj'~1)+= YE(e,— X)) '+ LE(X,—e)”
i=1 i=1

Jj=1

=G+ YE(X,—-e)".

i=1
Recall the definitions of @, and b; from Section 2:
a;=E(X;-e)", bi=E(Xi_ei+1)+'

We will construct X,..., X, so that £]_,a; > (2 — ¢)G and X, = X, = 0. Then
(2.3) gives G = LI_(b;. Let X, =n=e, and e;,, = ¢;/p (1 < i < r — 2), where
1 and p are constants, p < 1. r will be a larger integer to be chosen later. For
2 <i<r-2,let X; be random variables such that

P(X;=e;.1) =p, P(X;=0)=1-p.

Then b, = 0 and a; = (e;,, — e;)p for 2 < i < r — 2. Choosing 1 = e, small and
p close to 1, we can have the sum

r—2 r—2
E a; = Z a;=(e,_; — e;)p,
i=2

i=1

arbitrarily close to e,_,. Choosing r big, we may assume that e,_, = e;p?™" > 1.
Now define X, ; so that P(X,_,=e,_,/a)=a and P(X,_,=0)=1— q,
where a is a constant. Then, a,_, = ((e,_,/a) —e,_,)a =e,_, — e,_,a will be
close to e,_, if a is small. Now, a,=0 and b,_, =e,_;,. Thus, ¥_,a; is
arbitrarily close to 2e,_,, while X7_b, = e,_; = G. Hence, the inequality in (2.2)
is arbitrarily close to an equality, which implies that 3G is arbitrarily close to P.
Thus, the constant 3 is optimal in Theorem 2.1.

Since X§ = X/, Theorem 3.1 implies that P, = 2P and G, = 2G, which shows
that the constant 3 is also optimal in Theorem 3.1.

REMARK. It is known that a prophet inequality-is true for averages X, of
positive random variables if transforms are restricted to stopping (see [5] and
[4]). 1t is, therefore, natural to consider the problem of such averages in our
present setting. It is easy to show that the answer is negative, even if X, =
1/n)Y, + -+ +Y,), where Y, are independent random variables, with
P(Y; = 0) = P(Y; = 2) = }: There is no bound for P/G.
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