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CONTINUOUS MULTI-ARMED BANDITS AND
MULTIPARAMETER PROCESSES

By Avi MANDELBAUM
Stanford University

A general framework is proposed for continuous time dynamic allocation
models of a scarce resource among competing projects. The allocation model
is formulated as a multi-armed bandit model and solved as a control problem
of a multiparameter process. In contrast to discrete time bandits, where only
one arm can be pulled at a time, the continuous time bandit must allow
simultaneous pulls. The multiparameter approach allows a strong solution of
diffusion-type bandits. Here the main problem is to define precisely how to
switch among arms and the solution involves local times.
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1. Introduction.

1.1. Models of dynamic allocation of a scarce resource to competing projects
have been widely used and are of great importance. The main objective of the
present work is to propose a general framework for dynamic allocation models in
continuous time. The problem of finding the best allocation strategies in such
models is naturally formulated as a control problem of multiparameter processes.
These are stochastic processes evolving in “time” that is only partially ordered.
The focus here is on processes with continuous sample paths. We believe,
however, that the formulation is appropriate for Poisson models [22], Lévy
models [3] and many other scheduling models as well. As observed by Berry and
Fristedt ([3], Chapter 8), the main challenge in the formulation is the ap-
propriate definition of an allocation strategy. We resolve this difficulty by
identifying an allocation strategy with the multiparameter concept of an op-
tional increasing path [24] or, equivalently, a multiparameter random time
change [13]. A byproduct of our approach is a new approximation scheme of
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1528 A. MANDELBAUM

continuous optional increasing paths by discrete ones (Theorem 7) and a nontriv-
ial unique strong solution to a multiparameter random time change problem (at
the end of Section 4.2). The reader is referred to [21] for a comprehensive list of
references to the multiparameter theory relevant to the present work (see,
however, our remark at the end of Section 7.8).

1.2. The nature of dynamic allocation in continuous time is well demon-
strated by the following example. A firm is producing a single product. A
customer is expected to arrive at some random time in the future and buy all the
available quantity. At any time, one out of d production processes can be used
and the costs of switching from one process to another are negligible. There are d
inventories of raw material and process i uses only inventory z, i = 1,..., d. The
technology involved in process i is such that if i is activated during the kth
period, a fraction r;A, of the ith inventory is depleted, where A, is the duration
of period k. The probability that the customer arrives during the kth period is
A, B. Assuming that one unit of raw material turns into one unit of final product,
the firm’s problem is to sequence the processes to maximize the expected
quantity produced before the customer arrives.

1.3. If switching among processes is allowed to become more and more
frequent (A, |0), the firm’s model converges to the following continuous time
model. The arrival time 7 of the customer is exponentially distributed with mean
1/B. Let X,(u) be the amount of raw material in inventory i after process i has
been activated for u time units. Then X; evolves according to the differential
equation dX,(u) = —r;X;(u)du, X,(0) given. A strategy is modelled by an
R-valued process T(t) = (Ty(2), ..., Ty(t)), where T(¢) is the time allocated to
process i during the interval [0, ¢], ¢_,T(¢) = ¢ for ¢ > 0. The firm’s problem is
to maximize the expected cumulative production R(T) = E[J[ X2, dX,(T«(¢))]
over all strategies T. By the exponential distribution of =,

(11) R(T) = [ et L Z(T(1)) dT(2),

where Z,(u) = X,(0)r,e” "%, u > 0, and the firm’s problem has been reduced to
that of “sequencing continuously” the processes Z,,..., Z, so as to maximize
(1.1). It is rather clear that because all the Z; decrease in time, the greedy
strategy which activates the process with the largest Z; is optimal (see Section
3.1 if not convinced). Formally, T is optimal if each

1.3.A. Ty(t) increases only at times ¢ such that Z,(T,(¢)) = V9.,Z(Ty(2)).

It is obvious how to implement 1.3.A when there is a unique largest Z,.
Eventually, however, there must be a time in which several of the Z,’s are
maximal simultaneously. For simplicity, assume that this occurs at time ¢ =0
and Z;(0) = Z,(0) for all i, j. Then the unique strategy that satisfies 1.3.A is the
one which maintains equal Z; at all times, namely,

(1.2) Z(T(t)) = Z,(T/(¢t)) foralli,j, t=0.
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It follows that r7T(¢)=rT(¢) for all i, j, t>0, which together with
Y& T(t) = t, implies that for i = 1,..., d, the optimal strategy is

i=1
1/r,

t, t=0.
+ e+ 1/,

(1.3) T(8) = § o

1.4. In the discrete model of Section 1.2, only one process was activated at a
time. In contrast, the optimal solution (1.3) activates several processes simulta-
neously. Our formulation of a strategy resolves the difficulty of modelling a
continuous-switching mechanism. The phenomenon of simultaneous processing is
unavoidable if “continuous sequencing” is allowed. Bellman ([2], Chapter 8)
recognized this fact long ago when he solved a continuous version of his
gold-mining problem, which is essentially the firm’s model of Section 1.3. The
firm’s model is a very special case of the stochastic dynamic allocation model we
now describe and later solve. For historical reasons we have chosen to describe
the allocation problem as that of a gambler facing a multi-armed bandit.

1.5. A discrete d-armed bandit consists of d statistically independent arms
which may be pulled in any order and one at a time. The duration of a pull is
one unit of time and each pull results in a reward. The problem is to find a
strategy which maximizes the expected present value of rewards over an infinite
horizon. The bandit model in which arms evolve like Markov chains was
formulated and solved by Gittins and his collaborators. Their solution is de-
scribed in [8]. Alternative solutions have been proposed by Whittle [25] and
Katehakis and Veinott [12]. Recently, Varaiya, Walrand and Buyukkoc [23]
proposed and solved a bandit model in which the evolution of the arms is
described by arbitrary independent processes. This general model was refor-
mulated in [18] using concepts from the theory of multiparameter processes (see
Sections 5.2-5.3 of the present paper for a description). The multiparameter
approach is especially useful for solving the continuous d-armed bandit which is
the limit of discrete bandits as the durations of pulls decrease to zero. Specifi-
cally, arm i of the continuous bandit is modelled by a continuous time stochastic
process Z;: Z,(u) is the instantaneous reward from arm i after u time units have
been allocated to it. The problem of controlling the d stochastic processes
Z,...,2Z,; is viewed as a control problem of the multiparameter process Z(s) =
(Z((8,),.--,2Z4(s;)) with parameter s = (s,...,s,) taking values in the d-
dimensional nonnegative orthant RY. Similarly, the information accumulated
from pulling the arms can be modelled by a filtration indexed by s in R¢. With
the multiparameter formulation, it is easy to add to the description of a strategy
T, given in Section 1.3, the requirement that T should be nonanticipating (see
Section 2.2). The continuous d-armed bandit problem is to find a strategy which
maximizes the expected cumulative discounted reward ER(T') over T, where
R(T) is defined in (1.1).

1.6. The model of the firm in Section 1.3 is an example of a d-armed bandit
with decreasing reward processes. We call such bandits deteriorating bandits.
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The optimal strategies for deteriorating bandits simply pull the arms which yield
maximal immediate rewards. (The existence of such strategies is proved in
Theorem 3. Necessary and sufficient conditions for the uniqueness of such
strategies are described in Proposition 2.) Deteriorating bandits play an im-
portant role in our theory because of the following remarkable fact. To any
general bandit there corresponds a deteriorating bandit so that a solution to the
general bandit is obtained from the solution to the deteriorating one. Moreover,
the values of these two solutions coincide. The solution to the deteriorating
bandit is described in detail in Section 3. The reduction of the general bandit to
the deteriorating one is described in Section 7.1. The value of the general bandit
is related to the value of the corresponding deteriorating bandit via formula
(7.3). Formula (7.3) is a useful relation that is especially interesting in the context
of Markovian bandits.

1.7. The solution to the Markovian bandit in discrete time ([8], [25] and
[12]) associates with each arm a numerical function of its possible states. This
function is called a priority index function. Optimal strategies for the discrete
Markovian bandit are exactly those strategies which always pull the arm with
the highest index value. A continuous time version of the Markovian bandit was
formulated and solved by Karatzas [11]. In Karatzas’ model, arms evolve like
solutions to Ito stochastic differential equations. We call such bandits diffusion
bandits. The solution to the diffusion bandit also involves index functions
associated with the arms. Again, the optimal strategy pulls the arm with the
highest index. However, this is no longer a simple matter because of the sample
path behavior of diffusion processes. Karatzas overcame this difficulty by provid-
ing a weak solution. The multiparameter approach allows a strong solution
which is always unique due to the nature of the diffusion paths. An explicit
formula for the index function, which was derived analytically in [11], is
rederived probabilistically in Section 4.3 using formula (7.3). The strong solution
of diffusion bandits is intimately related to the excursion theory of Markov
processes. In fact, formula (7.3) can probably be verified directly using exit
systems (see the end of Section 4.6 for more details). The solution to the
diffusion bandit is described in Section 4. For the two-armed diffusion bandits,
the solution involves a partition of R? into two parts, say, A, and A,. Suppose
that arm 1 is in the state x; and 2 in state x,. Then arm i is pulled if
(xy, x3) € A;, i = 1,2. The intersection A, N A, is a switching curve on which
the controlled process exhibits a local time behaviour. A simple example is
described in Section 4.5. More details can be found in [17].

1.8. The diffusion bandit problem can be viewed as a control problem of
degenerate diffusion processes in R? The related Bellman equations were in-
vestigated by Lions [14] as totally degenerate elliptic nonlinear equations. A
similar model with general Markov processes was formulated in Grigelionis and
Shiryayev [9] and partially solved as a Stefan problem. Both [14] and [9] (see
also [1] and [5]) are typical examples of the way dynamic allocation models in
continuous time have been treated in the literature: The precise description of
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the continuous time problem that is solved is missing. We believe that the
multiparameter approach provides a natural and convenient framework that will
enable one to fill such gaps in the future.

1.9. The paper starts by describing the continuous bandit model in Section 2.
Solutions to the deteriorating and diffusion bandits are given in Sections 3 and 4,
respectively. The solution to the discrete bandit is the subject of Section 5, and
Section 6 deals with the approximation of continuous strategies by discrete ones.
The general model is solved in Section 7 under appropriate conditions and we
end in Section 8 with suggestions for future research. A recommended first pass
through the paper is to read Section 2, proceed with Sections 3.1, 3.2, 4.1, 4.2, 4.5,
4.6, 5.1, 6.1 and 7.1 and conclude with Section 8.

2. The continuous bandit model.

2.1. Let (R, B, P) be a probability space. A continuous d-armed bandit is a
collection of pairs {(Z;, F,), i = 1,...,d)}, where Z, = {Z(t), t = 0}, the reward
process associated with arm i, is a bounded real-valued stochastic process on
(2, B) with continuous sample paths and F, = {F(t), t > 0}, the information
process associated with arm i, is a complete right-continuous filtration in B. We
assume that the arms are independent, meaning that for i =1,...,d, Z; is
adapted to F, and the o-fields F;(o0) are independent.

2.2. Denote by S the d-dimensional nonnegative orthant (S = R%). An
allocation strategy is an S-valued stochastic process T = {T(t), ¢t > 0} on (2, B)
which satisfies properties 2.2.A-2.2.C. The ith coordinate of T at ¢, T;(t), models
the total amount of time allocated to arm i over the interval [0, ¢]. In accordance
with this interpretation,

2.2.A. T,= {Ti(t), t = 0} increasesfromOforalli=1,...,d,
and the following two properties should hold for all £ > 0:
2.2.B. T(¢) + -+ +Ty(t) = t,
2.2.C. {Ty(2) <sp,...,Ty(t) <55} € Fi(s;) V -+ VFy(s,)
for all (s,,...,5,) € S.

Property 2.2.C is a mathematical formulation of the nonanticipative nature of
an allocation strategy: For all i, the event “no more than s; time units have been
allocated to arm i” does not depend on information beyond F(s;).

REMARK. For all i, 0 < T(u) — T(¢) <u—t when u >t > 0. Hence, the
sample paths of T} are absolutely continuous and those of T are continuous in S.

2.3. Introduce in 8 = R% the partial order

r=(ry,....,ry) <(s1,...,85) =s iffr;<s;,i=1,...,d.
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Properties 2.2.A and 2.2.C can be expressed more compactly as:

2.3.A. T has sample paths that increase (from 0) continuously with respect to
the partial order in S.
2.3.B. {T(t) < s} € F(s) for all s € S, where

(2.1) F(s)=F(s))V -+ VFy(sg), s=(s1,-..,84)

is the o-field that models the information available after s; units of time
have been allocated to arm i, i = 1,..., d.

In the usual theory of stochastic processes (d = 1), properties 2.3.A and 2.3.B
are the defining properties of a continuous random time change T with respect
to the filtration F = {F(s), s € S}. In particular, the random variable 7(¢) is a
stopping time with respect to F. In the language of multiparameter processes
(d = 2), T(t) is a stopping point [19] and the multiparameter random time
change T [13] is an optional increasing path [24] with respect to F.

REMARK 1. In the sequel, stopping points, pre-7(t) o-fields and multiparam-
eter martingales will be used. These concepts are obvious generalizations from
the usual theory of stochastic processes to processes that “evolve” in “time” that
is only partially ordered. For precise definitions and related theory, the reader is
referred to [19] (discrete time) and [24] (continuous time).

REMARK 2. The filtrations F; are right continuous. Hence,

F(s)= ) F(r),

r=s
r+s

which is taken as the definition of a right-continuous multiparameter filtration.

2.4. The present value R(T) of future rewards associated with a strategy T
is the random variable

(2.2) R(T) = fo “e~Biz(T(t)) dT(2),

where the discount factor 8 is a positive real number and Z(T(t)) dT(t) is an
abbreviation for ¢ ,Z(T.(t)) dT(t). The continuous bandit problem is to find
optimal strategies which maximize the value function V(T) = ER(T') over all
strategies T.

Since T, has absolutely continuous sample paths, (2.2) can be rewritten as

R(T) = /0 “ePz(T())1(2) dt,

where Z(T(t)T(t) = E&,Z(Ty(t))Ty(¢t) and T,(t) is the derivative of T; with
respect to ¢. Thus, deciding on a strategy is equivalent to a decision on the rates
at which arms are pulled and rewards accumulated.

2.5. By increasing several of the component processes T; simultaneously, our
formulation does allow the gambler to pull more than one arm at a time. Still,
the total amount of time allocated to all arms over [0, ¢] must be .
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The option of simultaneous pulls of arms is the main qualitative difference
between the discrete and continuous bandit. However, its role in the solution of
the continuous bandit varies according to the nature of the arms. The two
extremes, in this regard, are the deteriorating bandits and the diffusion bandits
which will now be described.

2.6. An arm (Z, F)) of a continuous bandit is deteriorating if the reward
process Z; has nonincreasing sample paths. We shall call a d-armed bandit a
deteriorating bandit if all of its arms are deteriorating. The solution to the
deteriorating bandit problem is described in Section 3. Regarding the option of
simultaneously pulling arms, a deteriorating bandit is an extreme because its
solution typically involves simultaneous pulls at all times. The other extreme is
a bandit model with a solution that involves simultaneous pulls at essentially no
time. A nontrivial such model will now be described.

2.7. An arm (Z, F)) is a diffusion arm if it evolves like a diffusion process.
Formally,

Z(t) = r(X,(2)),

where the reward function r(x) is a real-valued increasing bounded smooth
function; X is the one-dimensional diffusion process that solves the It6 stochas-
tic differential equation

(2.3) dX(t) = p(X(2)) dt + o,(X,(2)) dW,(2),

where W, is a standard Brownian motion, p;(x) is a smooth local drift coefficient
and o,(x) > 0 is a smooth local diffusion coefficient; F; is the standard complete
filtration generated by X;. The precise meaning of “smooth” for r,(x), u,(x) and
o;(x) is explained in [11], (2.2) and (3.2), respectively. We have omitted the
details because they are never used as far as our results are concerned. A
d-armed bandit is called a diffusion bandit if all its arms are diffusion arms and
the Brownian motions W, ..., W, are independent. The solution to the diffusion
bandit is outlined in Section 4. Due to the “wild” nature of the diffusion sample
paths, the solution to the diffusion bandit involves, vaguely speaking, an uncoun-
table “number of switches” among arms. However, simultaneous pulls essen-
tially never take place.

3. Solution to the deteriorating bandit problem.

3.1. In view of the performance measure (2.2) used, an obvious question is:
Why not allocate all time to an arm which yields maximal immediate reward?
The answer is that there may be other arms which promise large benefits in the
future and, because of the discounting, getting to these future benefits as soon as
possible may turn out to be more attractive. The future, however, is never more
attractive than the present when the bandit is a deteriorating bandit (as defined
in Section 2.6). One expects, therefore, that optimal strategies for deteriorating
bandits do pull the arms which yield maximal immediate reward. We shall now
describe formally the solution to the deteriorating bandit problem. Even though



15634 A. MANDELBAUM

the solution is intuitively obvious, it illustrates best the differences between
discrete and continuous time bandits. Moreover, the solution to the general
continuous bandit problem can be viewed as a reduction to the deteriorating one
(see Section 7.1 and Theorem 12). Hence, the present section is an essential part
of the solution to the general continuous bandit.

3.2. When time is discrete, it is obvious how to pull an arm which yields
maximal immediate reward. For continuous time, we propose the following

DEFINITION. Given d processes Z,,...,Z,; a strategy T = {T(¢), ¢t = 0}
follows the leader among the Z;’s if for i = 1,..., d, T; increases at time t only
when Z; is maximal at that time, namely,

d
(81) T(u)>T(t) Vu>tonlywhen Z,(T,(t))= \_/ Z(T(t)).

j=1
The performance measure (2.2) of such a strategy is given, pathwise, by

(3.2) R(T) = /0 “e BV Z,(T,(2)) dt.

Note that (3.1) is a statement about sample paths, which has nothing to do with
either their random or deteriorating nature. Similarly, the results of the present
section are results about functions rather than stochastic processes and the
concept of “following the leader” is applicable to arbitrary functions, not
necessarily decreasing ones. A strategy that follows the leader among continuous
processes always exists. Its existence is established for deteriorating arms in
Theorem 3. The general case is reduced to the deteriorating one in Theorem 12.

3.3. As anticipated by the heuristics outlined in Section 3.1, any strategy
that follows the leader among the arms of a deteriorating bandit is optimal (see
Section 7.12 for the proof). The nature of such a strategy becomes apparent from

PROPOSITION 1. Fix i #j. Suppose that both arm i and j deteriorate and
Z,(0) = Z/0). If T follows the leader among Z; and Z;, then Z(T(t)) = Z(T\(¢))
for all t > 0.

PROOF. Suppose first that Z(T,(¢)) > Z;(T(t)) for some ¢. By continuity,
there exists an ¢ in [0, £) such that

(3.3) Z(Ty(e)) = Zj(T}(S))
and ‘
Z(T(u)) > Z(T(u)) fore<u<xt.

Hence, T; does not increase over (e, t). Since T; is continuous, Ti(e) = Ty(?),
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implying that
Z(T(o) 2 Z(T(t)) > Z(T(1)) = Z(T(<)),

which contradicts (3.3). Reversing the roles of i and j establishes Proposition 1.
O

From Proposition 1, one concludes that following the leader among deteﬁorating
arms amounts to pulling simultaneously all “current leaders” at rates which are
determined by the following procedure:

3.3.A. Let L be the set of “leaders at time 0,” namely, i € L if and only if

d
Z,(0) = V Z,0).
j=1
3.3.B. Arms out of L are not pulled while arms in L are pulled at rates which
maintain the relations

(3:4) Z(T(2)) = Z(T(t)), =0,
for all i, jin L.

3.3.C. Proceed with 3.3.B until at some time ¢, (3.4) holds for all i in L and some
Jnotin L. All j not in L for which (3.4) holds become leaders as well:
Add these j to L and return to 3.3.B.

REMARK. A strategy that satisfies 3.2.B and 3.2.C clearly satisfies (3.1).

34. We now address the uniqueness of strategies that follow the leader
among deteriorating arms. As mentioned before, the analysis is that of functions
(individual sample paths) rather than stochastic processes. Consequently, the
emphasis will be on the ideas rather than their (cumbersome) proofs.

The simplest situation in which uniqueness holds is when the reward processes
Z; strictly decrease. An illuminating example is the deterministic case Z,(¢) =
—rt,i=1,...,d, with r; strictly positive. The only T = {T}, i = 1,..., d} that
satisfies (3.4) is given in (1.3) (the firm’s problem). Thus, for nonuniqueness it is
necessary that the Z;’s have “flat” parts. The sufficient condition for nonunique-
ness is described in the following

DEFINITION. The two deteriorating arms i and j are simultaneously flat if
there exists a level at which both arms do not decrease, i.e., there are times
t; < u; and ¢; < u; such that

Z(t) =2z(u;), Zt) = Z(u;)
and
Z(t) = Z(¢;).

PROPOSITION 2. A strategy that follows the leader among deteriorating arms
is unique if and only if among the arms that are ever pulled no two are
simultaneously flat.
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PROOF. Suppose that arms i and j are simultaneously flat at time 0
(¢; = t; = 0) and both are the only “leaders at time 0” in the sense of 3.3.A.

One can start by pulling only arm i until the first time it decreases and then
switch to arm j. One can also pull only arm j first, hence, nonuniqueness. To
prove the “if” direction assume that T and U are strategies that follows the
leader among the Z;’s. The first step is to show that

(3.5) \7 Z(T(¢)) = .\l; Z(U(t)) forall t> 0.

Now assume for s1mp11c1ty that Z,(0) = Z,(0) for all i #j. By Proposition 1,
Z(T(t)) = Z(U(¢)) for all i, j and ¢ > 0. If T(¢) > Uy(t) for some i and some ¢,
then T(t) < U(t) for some j # i, Z; is flat over (Uy(?), Ti(?)), Z; is flat over
(Ty(t), U(t)) and we are done. O

An alternative approach to nonuniqueness, which is also helpful for establish-
ing existence, is to consider strategies that apply a priority scheme whenever
nonuniqueness arises. A priority scheme is described by a permutation (i,, ..., i)
of (1,...,d): Arm i, is pulled only when arms i,, [ < m, cannot be pulled.
Formally, we give the

DEFINITION. A strategy T follows the leader among the deteriorating arms
Z; according to the priority scheme (iy,...,304) if T satisﬁed (3.1) and, in
addltlon whenever T; increases at ¢ and Z (T (1) =V ,;Z(Ty(t)) for some
l < m, then Z, decreases at time T;(¢), that is,

(3.6) Z,(u) < Zi,(Ti,(t)) for all u > T,(t).

THEOREM 3. A strategy that follows the leader among deteriorating arms
according to a fixed priority scheme exists and is unique.

ProOF. Rather than building on previous results, we present an alternate
approach which will be useful later as well. For simplicity, assume that
Z0)=0, Z(w)=—00 fori=1,...,d.
Forx >0and i = 1,...,d, define
(38.7) I(x) = inf{t > 0: Z;(t) = —x}

to be the left-continuous inverse of —Z,. Note that arms i and j are simulta-
neously flat if and only if /; and [; have a common pomt of increase. The key
observation is:

3.4.A. The sample path of any strategy T which follows the leader among the
Z.’s must pass through all the points I(x) = (I(x),..., l4(x)), x = 0.

The time when T crosses I(x) is uniquely determined by 2.2.B: For all i,
(3.8) T(o(x)) = l(x), x20,
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where
o(x) =L(x) + - +1l(x), x2=0.
Indeed,
o(x) =inf{¢t>0:C(t) = —x}, x>0,

where C(t) = Z(T(¢)) = Z(Ty(t)) for all i, j, t > 0 by Proposition 1. From (3.8),
the value of all the strategies that follow the leader is uniquely determined at all
times {o(x), x > 0}. Now consider the discontinuity intervals (o(x), o(x + )),
with o(x) < o(x + ). The set L = {i: l(x + ) — l,(x) > 0} determines the arms
that can be pulled during that interval. The order in which arms are pulled is
uniquely determined if T follows the leader according to a priority scheme,
hence, T is unique.

The preceding reasoning also suggests how to construct a strategy T that
follows the leader among Z,...,Z, according to a given priority scheme,
say (1,2,...,d). The values at times o(x) are given by (3.8), the values on
(o(x),0(x +)) are determined by the priority scheme and the values at
o(x +) are determined by continuity. Formally, for i =1,...,d and ¢ in
the interval [Z24(2(x + ) — L(x)), Zin ((Ui(x + ) — 1i(x))],

T(o(x) +t) = U(x) + [ll(x +) - ll(x)]el o

(839) +Hlo(x+) = Loy(x)] ey + |2 - iil(lj(x +) L= +)) €is

J=1

where e; is the ith unit vector. By the construction, T satisfies 2.2.A and 2.2.B.
Property 2.2.C is verified by showing that T is the limit of strategies that pull
only one arm at a time. To this end, fix an ¢ > 0. Let the strategy T'¢ = [T%(¢),
t > 0] operate as follows: Start by pulling only arm 1 until Z, reaches level —e.
Proceed sequentially with each arm i = 2,..., d, until arm i reaches level —¢ as
well. When arm d is at level —¢, return to arm 1 and let it reach —2¢, proceed
with 2,..., d sequentially until they are all at level —2¢, and so on. Arm i
reaches level — ke after /;(ke) units of time have been allocated to it. In other
words, T and the strategy T in (3.9) coincide at the time {o(ke), £ = 0,1,...}.
It follows that with ¢ = 27", T'%(¢) converges to T(t) as n 1 co. This is sufficient
for 2.2.C because T'%(¢) are stopping points with respect to a complete right-con-
tinuous filtration and a limit of such a sequence must be a stopping point as well.

|

4. Solution to the diffusion bandit problem.

4.1. We now describe the solution to the diffusion bandit problem, as defined
in Section 2.7. The main optimality results follow from the analysis in [11]
combined with the solution to the general continuous bandit (see Section 7.11).
In analogy to the discrete time Markovian bandit, an index function is associated
with each arm and an optimal strategy for the diffusion bandit pulls the arm
with the highest index. The rigorous description is based on the ideas developed
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in Section 3.2 in order to “follow the leader” among deteriorating arms. The
focus here is on the elements of the solution that are characteristic of diffusion
bandits.

4.2. The index function M(x;) associated with arm i is the CZ(R) strictly
increasing function

E, [e P r(X(u)) du
4.1 M(x,) = -
( ) z(xz) §l>lp0 Exif(;e—ﬁu du )

where the supremum is over all F’stopping times that are positive a.s. and are
not necessarily finite. Here E, denotes the fact that X; solves (2.3) with initial
condition X;(0) = x

THEOREM 4. The optimal strategy for the d-armed diffusion bandit is the
unique strategy I = {I(t), t > 0}, which follows the leader among the index
processes M(X;) = {(M(X(?)), t=0},i=1,...,d. Thatis, I, increases at time
t only when

42 M) = V35 X(1(0).

The expected present value of future rewards associated with I is
(4.3) V(D) = E [ e PV M X,(1(2))) at
J

Here, the process X; = {X;(¢), t > 0} is the lower envelope of the process X;,
X,(t) = min X;(u).
O<ux<t

When comparing Theorem 4 with the solution in [11], the reader will note the
following improvements. Our solution is a pathwise solution in terms of the
sample paths of the X;’s (a strong solution) and the solution is unique for any
number of arms. We also provide an explicit representation (4.3) of the value of
the optimal strategy in terms of the index functions.

REMARK. The strategy I can be viewed as the unique strong solution to a
nontrivial multiparameter time change problem as formulated by Kurtz ([13],
especially Section 5).

4.3. (4.3) is a consequence of the more general (7.3). To see that, note that
the lower envelope of M,(X,) is M,(X;) by the monotonicity of the index
function M,. Both (4.3) and (7.3) differ from their deteriorating bandit analog
(3.2) in that the latter is a pathwise identity, while the former holds only in
expectation. (4.3) is also valid if applied to a single arm, namely,

(449) E, [ e n(X(0) di = B, [ MM(X(1)) d,
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which is an interesting identity for the resolvent of the function r,, We now use
(4.4) to derive probabilistically an explicit formula for the index function M;(x;).
For notational convenience, the subscript i will be omitted. First, use the strong
Markov property to replace the upper limits co in (4.4) by a stopping time. While
not all stopping times qualify, first hitting times of points below x do, and we get
forall £ > 0,

(4.5) E, fo "¢ e-Btr( X(¢)) dt = E, fo "B ( X(8)) dt,

where 7(x — ¢) is the first hitting time of x — &. Now divide both sides of (4.5) by.
E, [{* 9 Btdt and let £|0. Since M is continuous and X(¢) is “trapped”
between x and x — ¢ at all times before 7(x — ¢), we get

E_ ({9 Ftr(X(t)) dt
4. M = li
( 6) . (x) :I% Exfo‘r(x—e)e—ﬁt dt 4

which identifies a sequence of stopping times that converge to the supremum in
(4.1). By standard Markov process calculations [10],

T(X—¢) —Bt _ . _ G(x)
(4.7) E, fo e Pr(X(£)) dt = R(x) — R(x — ) o G
where R(x) is the resolvent of r and G(x) is determined by the relation
E.e P = G(x)/G(y) for x > y. Finally, (4.6) and (4.7) yield the formula

G(x) }

G'(x)
due to Karatzas [11], who derived it analytically.

(48) M(x) = B{R(x) - R(x)

44. The existence of the strategy I in Theorem 4 is verified in Theorem 12.
An important step is the observation that a strategy that follows the leader
among continuous processes also follows the leader among their lower envelopes.
We now combine this observation with Proposition 2 to show that I is unique.
By Itd’s formula, the process Y; = M;( X;) is a solution to a stochastic differential
equation of the form (2.3) with diffusion coefficient M/( y;,)e(y;) > 0. Uniqueness
of I follows then from Proposition 2 and

PRrOPOSITION 5. Let Y, = {Y|(¢), t=>0}, i=1,...,d, be a solution to the
stochastic differential equation (2.3) with initial condition Y,(0) = 0 and inde-
pendent W,. Then the lower envelopes of the Y;’s are simultaneously flat with
probability 0.

ProOOF. By a change of measure ([15], Theorem 7.19) one may assume,
without loss of generality, that the drift coefficients of the Y;’s are all 0. By a
random time change ([7], Section 2.11), it can be further assumed that the
diffusion coefficients are all 1. In other words, Proposition 5 has been reduced to
the case where the Y;’s themselves are independent standard Brownian motions.
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Let 7; be the right-continuous modification of the process /; defined in (3.7) with
Z; replaced by the lower envelope of the Brownian motion Y,. The process T,
i=1,...,d, are independent, increasing and have stationary independent incre-
ments (see, for example, [26], Section 64). The process Y; are simultaneously flat
with probability 0 if and only if any two of the processes ; increase at the same
time with probability 0. For i = 1,...,d and ¢ > 0, let

N&(t) = #{u <t:7(u) —1(u-)=¢}.
Then N£, i = 1,..., d, are independent homogeneous Poisson processes implying
that X¢_, N is Poisson as well. In particular, with probability 0, there is a time

in which any two of the Nf increase simultaneously. But the last statement
holds for all & > 0, which establishes Proposition 5. O

4.5. We conclude the section with an explicit example that illustrates the
nature of the “switchings” among diffusion arms. Assume that there are only
two arms (d = 2) characterized by X,, X, independent standard Brownian
motions starting at 0 and r(x,) = x; — 1/(28)*/2. Note that, being unbounded,
linear rewards are formally not covered by our analysis. Nevertheless, as demon-
strated in [17], Theorem 4 still applies. Using (4.8) with

Gi(x;) =e @ =, Ry(x) = %‘(x,» B W)’

the index functions are simply M,(x;) = x;. The optimal strategy I = (I, I,) is
uniquely determined by the requirement that I, increase at ¢ only when
B(t) > 0 and I, increase at ¢t only when B(t) < 0, where

(4.9) B(t) = X,(I,(2)) — Xy(I(2)).

LEMMA 6. Let T = (T,,T,) be any strategy The process X(T') = {X(T(?)),
t > 0}, given by

X(T(t)) = Xl(Tl(t)) - X2(T2(t)):
is a standard Brownian motion starting at 0.
PROOF. The basic idea is that a multiparameter random time change of a

multiparameter martingale is typically a martingale. Specifically, let F = {F(s),
s € R% ) be the two-parameter filtration

(4.10) F(s) =o{X,(2), t<s;; Xy(t), t<s,}, s=(s,s;) €RL

The following six processes are all two-parameter martingales with respect
to F:

{X,(s;),se Ry}, i=1,2,
(X%(s) — s, s€R2), i=1,2,
{Xl(sl)X2(s2)! s € R?,_},

{Xi(s)) — Xy(s5), s € R%}.
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By Propositions 2.3 and 3.2 in [24], the time changed processes

45.A. {X.(T(2)),t=0}, i=1,2,

45.B. {XA(Ty(t)) - T(¢), =0}, i=1,2,
45.C. {X|(Ty(2)) X(Ty(2)), t = 0},

45.D. {(X(T(2)) = X(Ty(¢)) - X,(Ty(2)), t = 0}

are all martingales with respect to the filtration FT = (F(T(t)), t > 0}, where
F(T(t)) is the pre-T(t) o-field obtained from F in (4.10). Consequently, X(T') is
an FT-martingale with continuous sample paths and quadratic variation process

(X(T)), = Ty(2) + Ty(t) = .

By Lévy’s characterization of the Brownian motion, Lemma 6 follows. O

In particular, B defined in (4.9) is a Brownian motion; the set of times when
I, and I, increase simultaneously is a subset of the zero-set of a Brownian
motion (which has a.s. Lebesgue measure 0); the positive (negative) excursions of
B away from 0 are the periods when only arm 1 (arm 2) is pulled. Moreover, note
that for ¢ > 0, the positive and negative parts of B are

(4.11) B*(t) = X,(I(¢)) + LLB(t), t=0,
(4.12) B (t) = X,(I,(t)) + 1LB(¢), t=>0,
where

LB(t) = —2X,(I)(2)) A Xy(I(2)) = —2X,(I,(¢)), i=1,2,

which increases in £. By 4.5.A, the representations (4.11) and (4.12) are actually
the unique Doob—Meyer decompositions of the supermartingales B* and B~.
Finally, Tanaka’s formula identifies L? as the local time of B at 0 and (4.3)
provides an explicit expression for the value of I, namely,

1 o
ER(I)=—§E_/(; e PtLB(t) dt
1 o0 [20)\2
—_ -Bt|
2E‘/(;e (ﬂ) dt
1

28(28)

4.6. The processes 7, and NS used in the proof of Proposition 5 provide
quantitative information about the “number of switches” that take place among
arms. While it is impossible to count the total number of switches, Nf(a), a > 0,
represents the number of times arm i has been pulled individually for time
periods that exceed .&, by the time it reaches level —a. For the example in
Section 4.5, {Nf(a), a > 0}, i = 1,2, are independent Poisson processes with
parameter (2/me)'/2 ([26], page 95). Other quantities of interest could be
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calculated using the excursion theory of Markov processes. In fact, Haya Kaspi
used exits systems [16] to verify (4.4) directly for any nice strong Markov process
X.

i

5. Discrete time bandits.

5.1. Both the deteriorating and diffusion bandits are special cases of the
continuous bandit. To solve this last model, the continuous bandit will be
approximated by a family of discrete bandits in which only one arm may be
pulled at a time. The discrete kandit will now be described in a form suitable for
that approximation. The model is due to [23] and complete proofs can be found
in [18]. The notation used in the current section is similar to that of Section 2.
However, no confusion should arise since Section 5 is the only section where
discrete bandits are dealt with explicitly.

5.2. The primitives for the discrete d-armed bandit model are identical to
those of the continuous one (Section 2.1) except that time is now discrete. Thus
the ith reward process Z; = {Z,(k), k = 0,1,...} is adapted to the ith informa-
tion process F, = {F(k), k=0,1,...} and Fy(), i = 1,..., d, are independent
complete o-fields. Let N be the set of nonnegative integers and endow S = N d
with the partial order of Section 2.3. An allocation strategy T = {T(k), k =
0,1,...} is an S-valued stochastic process with T(0) = 0 such that for all
k=0,1,...,

5.2.A. T(k + 1) is a direct successor of T(%),
5.2.B. T(k) is a stopping point with respect to F' = {F(s), s € S}, and
5.2.C. T(k + 1) is measurable with respect to F(T(k)), the pre-T(k) o-field.

The filtration F in 5.2.B is given by
F(s) =F(s,)V +-- VF,(s;), s=(sy,...,84) € NY,

but 5.2.A-5.2.C are equally applicable for an arbitrary discrete partially ordered
set S.

REMARK 1. Property 5.2.C is a mathematical formulation of the nonantic-
ipative nature of an allocation strategy in discrete time. Property 5.2.B justifies
the use of the pre-T(k) o-field in 5.2.C. The descriptions 5.2.A-5.2.C were
developed in [19] in order to solve the optimal stopping problem over discrete
partial ordered sets. '

REMARK 2. Using induction on k&, one can prove that 5.2.B is actually a
consequence of 5.2.C for any discrete partially ordered S. However, for filtrations
F=F,V --- VF, with independent F;’s (and more generally, F4-filtrations),
5.2.B and 5.2.C are equivalent in the presence of 5.2.A. For more details, see
Section 3 in [17].
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5.3. The present value of an allocation strategy T is the random variable

(5.1) R(T) = ¥ o*2(T(k)) AT(R),
k=0

where

d
Z(T(k)) AT(k) = X Z(T,(k))[T(k + 1) — T(k)]
i=1
and 0 < a < 1. The objective is to maximize over T the value V(T') = ER(T).
Optimal strategies are described in terms of index processes. The index process
M; = {M,(k), k=0,1,...} associated with arm i given by

EFELIiZ,(1)
(52) Mi(k) = esmax gt

where 7 in (5.2) is an F stopping time that is not necessarily finite and
7> k + 1 as. The essmax notation in (5.2) indicates that the essential supre-
mum of the ratios is actually attained.

5.4. The index field M = {M(s), s € N¢} is the multiparameter process
d
(5'3) M(S) = anj(sj)v s = (81)'~~,sd) ENd'
j=1

Let M = {M(s), s € N%} be the lower envelope of M, that is,
M(s) = min M(r), r,s € N

0<r<s

The process M is related to the lower envelopes M; = {M,(k), k = 0,1,...} by
d
(5.4) M(s) = V Ms)).
J=1

The main results in [18] will now be summarized.

5.4.A. For any two strategies T and U over N¢,

(5.5) V(T) < E Y a*M(U(k)).
k=0

DEFINITIONS. A strategy I is an index strategy if it follows the leader
among the index processes M;’s. Formally, for & = 0,1,...,

d
(5.6) I(k+1)=I(k) + e, on M(I(k)) =V M(I(k)),
j=1
where e; is the ith unit vector in N? Let (i,...,i,;) be a permutation of
(1,...,d). A strategy I follows the leader among the M,’s according to the
priority scheme (i, ..., i,) if in addition to (5.6), I pulls arm i,, only when arms
i;, I < m, cannot be pulled. An index strategy is called a priority index strategy
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if it follows the leader among the M;’s according to some fixed priority scheme.
While there may be many index strategies, a priority index strategy is uniquely
determined by its priority scheme (compare with Proposition 3).

5.4.B. If I is an index strategy then

(5.7) V(1) = Eéoam_a(z(k)).

54.C. If I and J are index strategies, then

(5.8) M(I(k)) = M(J(k)) fork=0,1,....

By 5.4.A-5.4.C, index strategies attain highest values. Moreover:

5.4.D. The class of optimal strategies coincides with the class of index strategies.

REMARK. When all reward processes Z; have decreasing sample path (a
deteriorating bandit), the index process M; coincides with Z; for all i. If I is an
index strategy for the deteriorating bandit, then pathwise

0 o0
R(I) = ¥ a*M(I(k)) = La*VM(I(K))
k=0 k J
[compare with (3.2)]. In general, however, only equality of expectations holds
[compare with (4.3)].

5.5. Suppose that the reward processes are given for i = 1,...,d by
Zi(k)=ri(Xi(k))7 k=0,1,...,

where r,(x) is a bounded measurable real-valued function and X;= {X;(k),
k=0,1,...} is a real-valued homogeneous Markov chain with respect to the
filtration F;.

5.5.A. The index processes M; are of the form M;(k) = My(X,(k), where
E.XiZpa'r(Xi(1))

My(x) = max ——p~10

, x € R.

5.5.B. When the function r,(x) is continuous and the transition operator for X;
has the Feller property, the index function M;(x) is lower semicontinuous.

6. Approximating continuous strategies and their values.

6.1. The key to the approximation of continuous bandits by a family of
discrete bandits is the ability to approximate the continuous strategies described
in Section 2, by the discrete strategies of Section 5. Strategies in the discrete
bandit model pull only one arm at a time and the duration of a pull is a fixed
positive number. Strategies that pull several arms simultaneously are limits of
discrete strategies as the duration of pulls converges to 0. We now describe the
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approximation scheme of continuous strategies by discrete ones. The procedure
is of independent interest in the pure context of multiparameter processes. This
section ends with a proof that the value function is a continuous function under
uniform convergence of strategies.

6.2. Let T = {T(t), t > 0} be a continuous allocation strategy. We éay that
T is discrete of order & if over each period of time [ ke, (k + 1)), only one arm is
pulled. Formally, for 2 = 0,1,...,

(6.1) T(t) = T(ke) + (t — ke)e;, ke<t<(k+1)g,

for some i = 1,..., d (i random).

A strategy T that is discrete of order ¢ is determined by its values at times
{ke, k=0,1,...}. Moreover, the right continuity of F in (2.1) together with
(6.1) imply that

(6.2) T((k + 1)e) € F(T(ke)), k=0,1,....

Thus, given a right-continuous filtration F = {F(s), s € R%}, the class of
discrete strategies of order ¢ with respect to F can be identified with the class of
discrete strategies in the sense of 5.2.A-5.2.C, with S =eN? (The discrete
filtration is the restriction of the continuous F to eN.)

6.3. For & > 0, denote by II® the class of strategies that are discrete of
order e.

THEOREM 7. Let T = {T(t), t > 0} be a strategy in the sense of 2.2.A-2.2.C.
There exists a family of strategies {T*®, ¢ > 0} such that T* € I1° and for all
w € Q, T converges to T uniformly in t as & decreases to 0, that is,

(6.3) im sup|T*(¢) — T(¢)| = 0,

€ t>0

where | - | is any norm in R

REMARK 1. Theorem 7 holds for arbitrary optional increasing path T' with
respect to a right-continuous filtration over R%.

REMARK 2. When d = 2, the proof of Theorem 7 is captured by Figure 1.
The strategy T starts at 0 by pulling sequentially both arms for ¢ units of time,
in an arbitrary order. Thus, T%2¢) = (¢, ). Proceed by always pulling an arm
which is known to be “lagging behind 7.” In the picture, T(2¢) < T}(2¢), hence,
1 is pulled. The key observation is that the information available at s = (g, €)
(i.e., time ¢ = 2¢) suffices to determine in which direction to proceed. If at any
point T and T® meet [as in s = (2¢, 2¢), i.e., time ¢ = 4¢], again pull sequentially
both arms for ¢ units of time each.

PROOF OF THEOREM 7. Generalizing to arbitrary d > 2, T is constructed as
follows. Start with 7°%0) = 0 and suppose that T%(ke) has been constructed. To
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Fi1G.1. Approximating a continuous strategy by a discrete strategy of order e.

define T*((k + 1)), let
. = inf{t: T,(t) > Te(ke)}, i=1,...,d,
and define

T= min 7.
1<i<d

Note that 7 is the first exit time of T from the cube
[0, T(ke)] = {s € R%:0 < s < T*(ke)}.
By 2.2.B, 7 < ke. Let H = {i: 7, = 7}. Choose an i in H and pull arm i, that is,
Te(t) = T(ke) + (t — ke)e;, ke<t<(k+1)e.

ReMaRrk. If H = {i,,..., i}, the procedure will “exhaust” arms i,,...,i,
before moving forward. Also, for i € H, T(ke) = T(7) < T(ke), verifying that,
indeed, only arms that are “lagging behind 7' ” are pulled.

To show that T'® is a strategy, it suffices to check that
(6.4) T((k + 1)e) € F(T*(ke)).

The random variable 7 is a stopping time with respect to the right-continuous
filtration {F(T(t)), ¢t > 0}. Consequently, T(7) is an F-stopping point and
F(T(7)) is contained in F(T%(k¢)). By the definition of T'%((k + 1)¢),

T((k + 1)e) — T*(ke) € F(T(7)),
which verifies (6.4). To prove (6.3), observe first that
T(7) < TH((k + 1)e) < T(7) + (e,..., ).
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Hence,
(6.5) |T*((k + 1)e) — T(7)|? < de?,
where | - | is the Euclidean norm. Also, since the vectors [T*((k + 1) — T'%(ke)]
and [T%(ke) — T(7)] are orthogonal in R?,
(6.6) |T*((k + 1)e) — T(7)|% = €2 + |T%(ke) — T(7)|%.
By (6.5) and (6.6), we have
|T*(ke) — T(7))2 < (d — 1)

We conclude that the set of points {T'%(¢), ¢t > 0} is contained in the union
U, oB(T(t), &(d)'/?), where B(c, a) is the Euclidean ball with center ¢ and
radius a. Finally, property 2.2.B guarantees that strategies close in space (R%)
must be close at all times, implying (6.3). O

6.4. Consider the setup of Section 2 (bandits and strategies).

A sequence of strategies T'" is said to converge to T uniformly on compacts
(uo.c.) if for all w €Q, lim,_ T"(¢)=T(t) in R? for all t>0 and the
convergence is uniform on compact ¢-sets. By the right continuity of the
filtrations involved, the limit T' must be a strategy as well.

THEOREM 8. Suppose that T" - T u.o.c. as n = . Then the present
values (2.2) of T™ converge to that of T. Moreover,

(6.7) lim V(T") = V(T).

ProoF. By the boundedness of Z;’s, it suffices to show that
(6.8) [fe#2(Tr(8) dTr(2) > [(e PZ(T(t)) dT(2)
0 0

for all positive x and i = 1,..., d. Now (6.8) is a consequence of the continuity of
Z;, the fact that a.s. Z,(T}(t)) converges to Z;(T,(t)) uniformly on [0, x] and that
the variation of T;” over [0, x] does not exceed x uniformly in n. O

An immediate implication of Theorems 7 and 8 is

COROLLARY 9.

sup V(T) = sup{V(T), Te U Ue},
T’ >0

where T1° is the class of all continuous strategies over RY.
~ 7. Solution to the continuous bandit problem.
7.1. The solution to the discrete d-armed bandit was outlined in 5.4.A-5.4.D.

Our goal now is to establish analogous results for the continuous d-armed bandit
{((Z;, F)), i =1,...,d)} described in Sections 2.1-2.5. To this end, associate with
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arm i the index process M; = {M(t), t > 0} defined by

EF®O[re=BuZ (u) du
: M(t) =
(7.1) i(t) eSS o Py

where the essential supremum is over all F-stopping times 7, not necessarily
finite, with 7 > ¢t as. A strategy I = {I(t), t > 0} is an index strategy if it
follows the leader among the index process, namely,

I,(t) increases at ¢ only when

(7.2) Mi(Ii(t)) = \7]‘41(1!(1"))

The continuous bandit problem of Section 2.4 will be solved if we prove
7.1.A. An index strategy maximizes the value function V(T') over all strategies T.

To prove 7.1.A, the value of an index strategy will be related to the index
processes via the index field M = {M(s), s € S}, which is the multiparameter
process over S = R? defined by

M(s) = \d/ My(s;), s=(s,...,8;) €S.

J=1
7.1.B. The value of an index strategy I satisfies
(7.3) E["ep2(1(2)) dI(t) = E [~ e MM(I(t)) dt.
0 0
Here M = {M(s), s € S} is the lower envelope of M,
d
M(s)= inf M(r)=V M(s;), r,s€S8,
O<r<s j=1

and M; = {M,(¢), t > 0} is the lower envelope of M;, M(¢) = inf,_,_  M(u).

To prove the optimality of an index strategy, we show that for any two
strategies T and U,

(7.4) V(T) < E jo “e~BM(U(t)) dt.

Thus, any strategy that satisfies (7.3) is optimal.

For deteriorating bandits, 7.1.B holds trivially since the index processes will
turn out to coincide with the reward process. In general, we are able to establish
7.1.B only under some additional assumptions, of which the most restrictive is
the uniqueness of the index strategy. We also assume that the index processes
have continuous sample paths in order to be able to apply the results of Section
3. It is clear, however, that 7.1.A and 7.1.B apply in much greater generality.
They do hold for the deteriorating and diffusion bandits. The general solution
will be specialized to these two models in Sections 7.11 and 7.12, completing
details that were left out in Sections 4 and 3, respectively.
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Index strategies always exist (see Theorem 12). We have shown that when the
index strategy is unique,

o0 d =]
supE [ £ 7,(1(0) dre) = supE [ e~ X M (1) a0

and the supremum in both sides is attained by the strategy that follows the
leader among the M;’s. The general d-armed bandit {(Z;, F}), i = 1,..., d} is,
thus, equivalent to the deteriorating d-armed bandit {(M;, F;}, i = 1,..., d}. It
must be the case that the equivalence holds in almost full generality.

79. Recall that I1¢ is the class of strategies that are discrete of order ¢ and
define for ¢ > 0,
1 e
Zi(t) = EF'-'(‘)—/H e P97 (u) du
€
(7.5) !

1 e
= —f e PUEFOZ.(t + u) du.
€ Jo .

PROPOSITION 10. For T € II°,

0 d
V(T) = Ekgoe‘ﬁ‘k g,lzf(fl}(ke))[Tz((k + 1)e) — Ti(ke)].

Proor. By (6.1),
[V puz(T(w)) dT(u)
k

€

(7.6) d e
— o Bek E:l Efoe—ﬁuz,.(a;.(ke) +u) du][Ti((k + 1)e) = Ty(ke)].

Conditioning both sides of (7.6) on the o-field F(T(ke)) and using (6.2), Proposi-
tion 10 will follow if for i = 1,...,d,

1 e
(7.7) Z{(T,) = = [ e PEFTZ(T, + u) du,
€Y

whenever T = (T}, ..., T,) is an F-stopping point that takes on a finite number
of values in R% [just apply (7.7) to T(ke)]. Using the fact that EFM coincides
with EF® on the set {T = s}, it suffices to prove (7.7) for T nonrandom, which
amounts to :

(7.8) EF®Z (s, + u) = EFGEIZ(s; + u).

Now (7.8) holds since Z; is independent of F(s;), j # .0

7.3. Comparing (5.1) with Proposition 10 suggests that the eth d-armed
bandit (e-bandit), which approximates the continuous bandit, be defined by
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((Z2,F?), i = 1,...,d) with
(7.9) Zi (k) = Zi(ke), k=0,1,...,
(7.10) Fe(k) = F(ke), k=0,1,...,
and that a discount factor a(e) = e ¢ be used.

An important remark about notation. The reader is asked to tolerate the
ambiguous notation in (7.9). On the right-hand side, Z} is the continuous time
process defined in (7.5), while on the left, Z{ is a discrete time process. It should
be clear from the context and the argument of Zf (% is an integer while ke need
not be) which interpretation applies. That type of ambiguity will be used in the
sequel without additional comments.

7.4. Strategies for the e-bandit are strategies over S = N¢ in the sense of
52.A-52.C. Let T*= {T%k), k=0,1,...} be such a strategy. By linearly
interpolating the sequence {¢7'%(k), k = 0,1,...} in R, one obtains a strategy
T € II¢ given by
(7.11) T(t) = eT*(k) + (t — ek)[T(k + 1) — T«(k)], ke<t<(k+1)e.

Conversely, for T € II¢, define
1
(7.12) T(k) = —T(ke), k=0,1,....
€
As discussed in Section 6.2, T'® is a strategy for the e-bandit with respect to the
filtration F* = {F¥(s), s € N} given by
Fi(s)=Fi(s,)V -+ VFi(s;), s=(85,...,84) € N9,

with Ff as in (7.10)
Proposition 10 relates the value V(T') of a continuous strategy T € I1¢ with
the value V(T¢) of the strategy T'° for the e-bandit by

(7.13) V(T) = eV(T®).
Here, T and T'¢ are related by (7.11) or (7.12).

7.5. The e-bandit is a discrete bandit as described in Section 5. Its solution
involves the index processes M= {(Mi(k), k=0,1,...} calculated via (5.2)
from (7.9) and (7.10). We now relate M to the continuous bandit in a form
analogous to (7.13). Let 7 be an F/-stopping time. Short calculations lead to the
relations

=1 1 re
(19 BT o(0)'Z(0) = (BR[04, (u) du
=k . e
and
T—1 . B re
(7.15) EF® Y a(e)' = ————EFuko | o=Bugy,
I=k 1 - a(e) ke
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If +1<7< o0 as., the random variable 7¢ is an F stopping time taking
values in {k& + le, [ =1,2,...,0}. For t > 0, define T'f(¢) to be the set of all
F-stopping times with values in {¢ + le, l = 1,2,...,00} and let

efiOf7e=PuZ (u) du
(7'16) Mi(t) = e-,-sgrl‘?(?;{ EFi(‘)f[e‘B“du
Using (7.14) and (7.15), one obtains a relation between the index Mf(k) of the
e-bandit and M(t) defined in (7.11), namely,
— e Be

l1-e
(7.17) Mle(k) = TMie(ke), k = 0, 1,... .

7.6. The optimal strategies for the e-bandit are index strategies with respect
to Mf = {Mi(k), k=0,1,...}. The relations (7.16) and (7.17) suggest that as
€| 0, these index strategies, properly interpolated, converge to an index strategy
that satisfies (7.2). The first step is to verify that the definition (7.1) of the index
processes M, is, indeed, the proper one.

ProPOSITION 11. Let M*(t) = Mi(t) with ¢ = 27 ". Then, for all t > 0,

(7.18) MPMt) < MPHY(t) < M(t) a.s.
and
(7.19) M(t) = h_{n Mrt) a.s.

Proor. The relations (7.18) are obvious. Hence, one can define M(t) =
lim,, _, M) with M(t) < My(t) a.s. For the converse equality, let = > ¢ be

an F stopping time. Then there exists a sequence 7" € I'’(¢) decreasing to 7 as
n 1 oo and

EFO["e=FuZ (u) du
E'Fi(‘)j["e‘ﬁ" du

Applying the dominated convergence theorem to the right side of (7.20) as n 1 o0
yields M (t) = M(t) a.s. O

(7.20) Mr(t) >

Another important remark about notation. The restriction of ¢ to e = 27"
was convenient technically. However, using plain ¢ is convenient notationwise.
Hence, the e-notation will be maintained throughout with the understanding
that whenever ¢ | 0, the convergence is along the sequence ¢ = 27", n 1 c0.

7.7. The following assumption will be enforced from now on: Versions of the
-index process M; defined in (7.1) and the processes M; defined in (7.16) can be
chosen so that for all w € Q:

7.7.A. The sample paths of M; are continuous.
7.7.B. The convergence in (7.19) is uniform on compact ¢-sets.
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7.8. Let I*= {I%(k), k=0,1,...} be an index strategy for the e-bandit.
There is in II¢ a strategy that relates to I° via (7.11). Without loss of clarity,
denote that strategy by I° as well. One would like to conclude, according to the
definition in Section 6.4 and the remark at the end of Section 7.6, that:

7.8.A. As £|0, the sequence I°= {I%(t), t > 0} converges u.o.c. to an index
strategy I = {I(t), t > 0} satisfying (7.2).

Now fix an w € Q. The family of R%valued continuos functions {I%(¢),
a < t < b} is uniformly bounded and equicontinuous in the sup norm, for any
0 < a < b < o0. By the theorem of Arzela—Ascoli, there exists a function I =
(I(t), t >0} and a subsequence {I%(¢), t > 0} converging to I uniformly on
compact sets. Moreover, using 7.7.A and 7.7.B, one can show that I satisfies (7.2).
Unfortunately, the outlined procedure does not establish 7.8.A because the
definition of I depends on the sequence {4}, which, in turn, depends on w € Q.
Specifically, the I(¢), t > 0, that are defined for each w individually, according to
the preceding procedure, need not even be measurable.

REMARK. The proof of an important and widely used result in the optimal
stopping theory of continuous time two-parameter processes (Proposition 2.1 in
[24]) has the flaw of ignoring the w-dependence described earlier. Hence, its
validity without further conditions is questionable.

7.9. The approximation scheme outlined in the previous subsection is valid if
it is guaranteed that (7.2) can be satisfied by at most one I (Corollary 13).
Proposition 2 gives necessary and sufficient conditions for uniqueness when the
arms deteriorate. However, we have

THEOREM 12. If I follows the leader among the index processes M, then I
also follows the leader among their (deteriorating) lower envelopes M;. The
converse holds when I is the unique strategy that follows the leader among
M,,..., M, according to a fixed priority scheme. In particular, a strategy that
follows the leader among continuous processes always exists.

ProoF. The first part follows from the observation that if I satisfies (7.2),
then
(721)  M,(I(t)) > M;(I(t)) impliesthat M;(I,(¢)) = M;(I;(¢)).

The second part is a consequence of the observation that if I follows the
leader among the M;’s according to a fixed priority scheme, then the converse to
(7.21) holds as well. The argument is based on the description of I in the proof of
Proposition 3. In particular, Proposition 3 itself establishes the existence of a
strategy that follows the leader among continuous processes. O

.COROLLARY 13. Suppose that
7.9.A. the lower envelopes M,, ..., M, are simultaneously flat with probability 0.

Then there exists a unique strategy I which follows the leader among the M;’s
and 7.8.A holds.



CONTINUOUS MULTI-ARMED BANDITS . 1553

ProOF. Fix w € ). Consider the sample paths of I¢ as elements in the
R4valued continuous functions metrized by uniform convergence on compact
t-sets. By 7.7.A and 7.7.B, any limit point of the sequence I must satisfy (7.2).
By the arguments in Section 7.8, there is a limit point. Hence, 7.8.A holds. The
uniqueness follows from the first part of Theorem 12. O

In analogy to (3.5), we state

COROLLARY 14. If I and J are index strategies, then
d d
V M(1,t) = V M;(J(t)) forallt>0.
j=1 j=1
ProOF. Immediate from the first part of Theorem 12 and from (3.5). O

7.10. We are now ready to prove the optimality of the index strategy.

THEOREM 15. If 7.7.A, 7.7.B and 7.9.A hold, then there exists a unique
index strategy I which satisfies (1.2), (1.3) and 7.1.A. In other words, I is a
solution to the continuous bandit problem.

Proor. The first step is to verify (7.4). Given any two strategies T, U, let
T, U*® € I1¢ be strategies that approximate them according to Theorem 7. To
T, U* there correspond via (7.12) strategies for the e-bandit which we denote by
T and U*® as well. By (5.5),

V(T*) <E L a(e)" M (U(R)).
k=0
Using (7.12) and (7.17), one obtains

W) < BT oo A

or
l-—eh =
(7.22) V(T?) < ————E Y. ee **M*(U*(ke)).
Be k=0

As £ 0, the left side of (7.22) converges to V(T') by (7.13) and Theorem 8. The
transformation of taking lower envelopes is continuous in the topology of
uniform convergence on compact sets. Using 7.7.A, 7.7.B and (6.3), the functions
M*U*(t)) converge to M(U(?)) for all ¢ > 0, as & | 0. Since all functions involved
are bounded, the right side of (7.22) converges to E[Pe™#'M(U(¢)) dt, which
establishes (7.4). Now, let I¢ be an index strategy for the e-bandit. By (5.7),

V(I%) = Eéoa(e)’m_w(r(k»

and from (7.17),
1-ePe

EY e-*M(I*(ke)),

(7.23) V(I*) = ge L&
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where I¢ in (7.23) are given in 7.8.A. Using (7.8) and repeating the arguments in
the first part of the proof, let € |0 in (7.23) to get (7.3) with I that is the unique
index strategy from Corollary 13. Since I satisfies (7.3) and (7.4) holds, the proof
is complete. O

7.11. Theorem 15 applies to the diffusion bandit. Condition 7.7.A' holds:
M,(t) = M,(X,(¢))is continuous since M;(x) is. For any ¢ > 0 and ¢ > 0, consider
the sequence X!= {X,(t+ ¢k), k=0,1,...}, which is a Markov chain with
respect to the filtration {F(t + ¢k), k = 0,1,...}. According to 5.5.A and 5.5.B,
the random variable M#(¢) in (7.16) has the form

Mf( t) = MiE( Xi(t))
and the function M7(x) is lower semicontinuous. By Dini’s theorem, 7.7.B holds

as well. Finally, 7.9.A was proved in Proposition 5, which completes the verifica-
tion of Theorem 4. '

7.12. We now prove that all index strategies are optimal for the deteriorating
bandit. For deteriorating bandits, the index processes coincide with the reward
processes. Indeed, M;(t) < Z,(¢) by the monotonicity of Z; and the converse will
follow from

EFOf e Pz (u) du
£l0 EiFi(t)ftHee—ﬁu du

(7.24) =2Z/(t) as.

Dividing both numerator and denominator by ¢|0, (7.24) is an immediate
consequence of the right continuity of Z; and the dominated convergence

theorem.
Let I be any index strategy. Assume first that the Z; are deterministic. Then

7.7.A holds trivially. As for 7.7.B,

[te P*Z,(u) du
[tt+ee—ﬁu du

and, by Dini’s theorem, 7.7.B follows. Conditions 7.7.A and 7.7.B are sufficient

for (7.4) to hold. We conclude from (3.2) that when the reward processes are
deterministic,

(7.25) [TeP2(T(2)) aT(t) < [ e Pz(1(2)) di(2)
0 0
for every strategy T and every index strategy I. Now, if Z; are stochastic

deteriorating arms, (7.25) holds for each w € {2, implying that any index strategy
is optimal for the deteriorating bandit.

M,(t) =Z,(¢t) > Mi(¢) > >Z(t+e)

8. Future research.

8.1. The present work is, hopefully, a first step toward a formulation of more
general bandit models. We envision at least three possible directions. The first is
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to work within a Markovian model that will include [11] and be similar to [9].
Excursion theory should play an important role in that direction. A second
direction is to work within semimartingale models. Preliminary results have been
obtained for fwo arms. An interesting related process is the zigzag martingale
introduced in [4], Sections 3 and 4. The third direction is a general model that
will unify the discrete model [18], the continuous model of the present paper, the
Poisson model [22] and the Lévy models [3], [1] and [5]. This direction will
probably require a general theory of multiparameter processes analogous to the
one described in [6] for usual processes. Such a multiparameter theory has been
developed during recent years. However, results are mainly proved for two-
parameter processes and the extension to higher dimensions is not always
immediate (an example of “surprises” that can occur is described in Section 5 of

(19].

8.2. The concepts from multiparameter theory that were most useful for the
present work were developed originally in order to formulate an optimal stop-
ping problem over partially ordered sets. The multiparameter optimal stopping
problem has been thoroughly investigated. Representative papers are [20] and
[21], which can be consulted for further references as well. As far as I know, not
even a single concrete example of an optimal stopping problem has been pro-
posed where nontrivial switching between processes is optimal. In a private
communication, Bob Vanderbei suggested a modification of the boundary value
problem for zigzag martingales [4] that would produce a rather complicated such
example. Joint work of the author with Larry Shepp provides a host of rather
simple such examples. In these examples, which hopefully will be published in
the near future, the local time behavior described in Section 4.5 plays a natural
role in the description of optimal solutions.
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