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ON THE RATE OF CONVERGENCE IN THE CENTRAL LIMIT
THEOREM FOR MARTINGALES WITH DISCRETE AND
CONTINUOUS TIME

BY ERicH HAEUSLER
University of Munich

Heyde and Brown (1970) established a bound on the rate of convergence
in the central limit theorem for discrete time martingales having finite
moments of order 2 + 28 with 0 < § < 1. In the present paper a modification
of the methods developed by Bolthausen (1982) is applied to show the
validity of this result for all & > 0. Moreover, an example is constructed
demonstrating that this bound is asymptotically exact for all § > 0. The
result for discrete time martingales is then used to derive the corresponding
bound on the rate of convergence in the central limit theorem for locally
square integrable martingales with continuous time.

1. Introduction and statements of results. For each integer n > 1, let the
real-valued random variables X,,,..., X,,; form a square integrable martingale
difference sequence (mds for short) w.r.t. the o-fields #,,C %, C -+ CH,,
that is, suppose that X,; is measurable wrt. %, with E(X2) < o and
E(X,|%, :-1) =0 as. for all n and i. According to one of the basic results of
martingale central limit theory, the “conditional Lindeberg condition”

kn
(11) Y E(X2I(X,| > e)#, 1) »p0, asn — oo foreache >0,
i=1
and the “conditional normalizing condition”
k,
(1.2) Y E(X2%, 1) »pl, asn— o,
i=1
together imply asymptotic normality of S,, = X¥z, X, ,, that is,
(1'3) Snk,, ) N(O: 1):
or, equivalently,

D, = sup|P(S,, <x)- ®(x)|~0, asn- c.
xX€R

Here N(0,1) denotes a standard normal random variable and ® its distribu-
tion function. Obviously, (1.1) is satisfied in particular if for some § > 0 the
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276 E. HAEUSLER

“conditional Liapounov condition of order 2 + 28” holds, i.e.,

k,
(1.4) Y E(X,I***%, 1) »p0, asn > co.
i=1

For proofs of (1.3) under conditions (1.1) and (1.2) the reader is referred to
Brown (1971), Dvoretzky (1972), Scott (1973) and McLeish (1974), and for
general information about martingale central limit theory to the monograph of
Hall and Heyde (1980).

Under various sets of assumptions, many authors have derived bounds on the
rate at which D,, converges to zero. As is to be expected, to obtain rapid rates
of convergence, one has to impose conditions which often are much more
stringent than (1.1) and (1.2); cf., for example, Ibragimov (1963), Grams (1972),
Nakata (1976), Kato (1979) and Bolthausen (1982). On the other hand, as
explained by Hall and Heyde (1981), it is also desirable to have bounds on D,,
under minimally strengthened versions of conditions (1.2) and (1.4), that 1s,
demanding that these conditions hold in an L -norm instead of in probability.
Clearly then, under such moment assumptlons, one can w.l.o.g. consider bounds
on

n

D, = sup |P(S, < x) — ®(x)|,
x€R

for a fixed square integrable mds Xj,..., X, w.r.t. the o-fields %,c %, c
--- C %, where S, =¥ X, and where the bound is a function of the moment
terms

n
L, = Z E(|Xi|2+28)

i=1

and

n28_E

é: (Xizl-%—l) -1 )

This way of combining the L,-version of the Liapounov condition of order
2 + 28 with the L, y-norm in the normalizing condition (1.2) is quite natural in
view of the results of Hall (1978) on the convergence of moments in the
martingale central limit theorem. For 0 < <1, Heyde and Brown (1970)
showed that there exists a finite constant C; depending only on & such that for
each square integrable mds Xj,..., X

n?
(1.5) D, < C{(L, o5+ N, 28)1/(3+28)

Of course, this inequality is nontrivial only if L, ,; and Nn 95 are finite. In their
proof Heyde and Brown (1970) applied the martmgale version of the Skorokhod
embedding. Erickson, Quine and Weber (1979) obtained an explicit bound for the
constant in (1.5) for 0 <8 < 1/2 using the classical characteristic function
technique. It seems unclear how to use either method to establish the validity of
the bound in (1.5) for § > 1. In Haeusler (1984) it was shown that a version of an
iterative method developed by Bolthausen (1982) can be used to deal with this
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case. The bound obtained was equal to the right-hand side of (1.5) times
llog(Ly, 35 + Ny, 25)|Whenever L, o5 + N, 55 < 1/2. In the present paper this ap-
proach is refined, proving that the additional logarithmic factor is superfluous
for all 8 > 1. Thus we have

THEOREM 1. For any é > 0 there exists a finite constant Cy depending only
on 8 such that (1.5) holds for any square integrable mds X,, ..., X, w.r.t. the
o-fields F,Cc F, C -+ CH,

The proof of Theorem 1 will be given in Section 2. In Section 3 we shall
construct a sequence of mds X,,,..., X,,, n>2, wrt. ofields #,,C %, C
c CF _,n=2 suchthatforall8>0andalln22,

nn?
1/(3+28)
Cs,1( L3, + N;S,nz)s) < D™
1'6 1/(83+2686
(1.6) < Cyo( Ly + NM3) " 50 asn - oo

holds with two constants 0 < C; ; < C; , < oo depending only on 8, where D{™,
L"), and N are defined as D, Ln,28 and N, ,;, respectively, but in terms of
an, y Xon and Foseovs Fon instead of X,,..., X, and %,,..., %, This
example demonstrates that under the assumptions of Theorem 1 inequality (1.5)
is asymptotically the best possible bound on D, for each & > 0.

Let us compare (1.5) briefly with the corresponding result for indepen-

dent random variables X,,..., X, with mean 0 and, for simplicity, with
» JE(X?2) = 1. In this case, for0 <8 < 1/2,
D, < CL, ,,

where C < o0 now is a universal constant; cf. Petrov (1975), Chapter V, Theorem
6. Thus for 0 < § < 1/2 the rate at which the bound on D, in terms of L, ,;
gets small as L, ,; decreases is much better for independent random variables
than it is for mds. Another difference between the two cases is the following one.
In the independent case, bounding D, in terms of L, ,; for § > 1/2 leads to no
improvement over bounding D, in terms of L, ,, because for 8 > 1/2 the
asymptotically best possible bound on D, is CLV %) (consider X,; = n~1/%Y,
i=1,...,n,foraniid. sequence Y;, i > 1, of Bemoulh variables), but we always
have L L < LY/S® from X7 1E(X; 2) = 1 and Hélder’s inequality. For mds in the
dependent case the situation is different. Usually, for § > &’ the term L, ,5 +
N, 25 is asymptotically of a smaller order than L, ,5 + N, 55, so that inequality
1. 5) becomes nontrivial for each § > 0.

The main features of the central limit theory for sequences of mds have been
extended to sequences of continuous time local martingales and semimartingales
through the work of Rebolledo (1979, 1980), Liptser and Shiryayev (1980),
Helland (1982) and many others. An expository review of the basic results is
given in Gaenssler and Haeusler (1986). We shall demonstrate here how Theorem
1 carries over to locally square integrable martingales. Both the formulation of
the result and its proof require some concepts from the “general theory of
stochastic processes” and in particular from the theory of continuous time local
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martingales. For the necessary terminology and for background the reader is
referred to one of the textbooks on the topic, for instance, Dellacherie and Meyer
(1978, 1982), Elliott (1982), Métivier (1982) or Kopp (1984).

To fix our notation and framework, let M = (M(?)), ..., be a locally square
integrable martingale w.r.t. a filtration F = (#(2)) ;< of o-fields. W.l.o.g. we
assume M to be “cadlag,” that is, to have right-continuous paths with left-hand
limits. We also suppose that F satisfies the “usual conditions” in the sense of
Dellacherie; cf. Dellacherie and Meyer (1978), IV.47, 48. Furthermore, we always
assume M(0) =0 as. Since M is locally square integrable, its predictable
quadratic variation (M) exists, which by definition is the unique predictable
increasing process (M) such that M2 — (M) is a local martingale vanishing
almost surely at 0. The jump process AX of a cadlag process X = (X(£))g<;<o
is defined by A X(¢) = X(¢) — X(¢ — ) with X(¢ — ) = lim,,,X(s).

Let us consider for a moment a sequence M,, n > 1, of locally square
integrable martingales. For each n > 1 and & > 0 set :

o'[M1(1) = L (AM(s))'I(AM,(s) > ¢), O<t<co.

O<s<t
Then 6°[M,] is a locally integrable increasing process so that its predictable
compensator ¢°[ M, ] exists. The natural continuous time versions of the condi-
tions (1.1) and (1.2) become

¢ [M,](1) >p0, asn — oo for each e > 0
and
(M,)(1) »>p1, asn - .

These conditions in fact imply
(1.7) M, (1) -, N(0,1), asn — oo.
This result is contained in the aforementioned work of Rebolledo, Liptser and
Shiryayev and Helland, as a consequence of more general weak convergence
results for the whole processes (M,,(¢))g < ;< oo

To establish a bound on the rate of convergence in (1.7) which corresponds to
(1.5) we drop the index n again and consider a fixed locally square integrable

martingale M. Setting
D,= sup |P(M(1) < x) — ®&(x)|,
xX€R

A

Low=E( T |aM(oI™)
0<t<1
and

N5 = E(KM)(1) - 11'*?),
we shall deduce the following result from Theorem 1.
THEOREM 2. For any § > 0 there exists a finite constant C; depending only
on 8 such that
(1'8) Dc < CS(Lc,28 + Nc,28)1/(3+28)
holds for any locally square integrable martingale M.
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The proof of Theorem 2 will be given in Section 4. The usual interpretation of
a discrete time square integrable martingale as a continuous time square integra-
ble martingale and the example given in Section 3 show that asymptotically (1.8)
is the best possible bound on the rate of convergence in (1.7) under the stated
conditions.

The structure of inequality (1.8) is comparable to that of inequality (6) in
Theorem 1 of Liptser and Shiryayev (1982). In this result all time points
0 < t < oo and normal distributions with mean 0 and variance 0 < V, < oo are
considered. If one sets ¢ =1 and V, = 1, then one obtains an estimate of D, in
terms of L., and N,,. Observe also that extensions of (1.8) to arbitrary time
points and centered normal distributions are readily obtained by obvious trans-
formation arguments.

As a final remark we note that the methods used to establish Theorems 1 and
2 also enable one to derive explicit numerical bounds on the constants C;
occurring in these results. This will become apparent from the proofs, but we do
not undertake to determine such bounds here.

Throughout Sections 2 to 4, the following conventions will be used to simplify
the notation. The symbol C always denotes a generic finite absolute constant,
whereas C; is always a generic finite constant depending only on 8. Equations,
inequalities, etc., between random variables and random processes are always
assumed to hold almost surely without explicit mention, especially when condi-
tional expectations are involved.

2. Proof of Theorem 1. The proof is based on a suitable version of the
method developed by Bolthausen (1982) in the proof of his Theorem 2. Its main
part is a refinement of the proof of the Theorem in Haeusler (1984). Since the
arguments in the latter paper are only sketched, and many of the details must be
modified, for the sake of readability a complete proof of Theorem 1 is presented
here.

We begin by summarizing some basic facts about the Lévy-metric. For this, let
L(F,G) denote the Lévy-distance of the two distribution functions F and G, i.e.,

L(F,G) =inf{e > 0: F(x —¢) — & < G(x) < F(x +¢) + eforall x € R}.

The following elementary inequalities are well known and are a standard tool in
deriving rates of convergence in martingale central limit theory; cf. Méri (1977),
Erickson, Quine and Weber (1979) and Liptser and Shiryayev (1982), the last-
mentioned paper containing the proofs. We have

(2.1) L(F,G) < sup |F(x) — G(x)],
x€R
and, assuming G has a bounded density g,
(2.2) sul;zIF(x) - G(x)| < (1 +1&gll) L(F, G).
xe
Furthermore,

(2.3) L(F,G) < E(X - YP°)**®, forall s >0,
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if X and Y are random variables having distribution functions F and G. By a
slight abuse of notation, we shall write L(X, Y) for L(F, G).

In the course of the proof we shall have to extend the given sequence
FyCF C -+ CH, of o-fields to an infinite sequence &, i > 0. For i > 1 and
a square integrable random variable X we shall use the abbreviation oX(X)=

- E(X3%,_)).
First, we shall prove the assertion under the additional assumption that
L7-1062(X;) = 1 holds, and, of course, L, ,, < oo. For fixed 8 > 0 we set

Y= X,I(X) < 8'%/2) - E(XI(X) < BV2/2)#_,), i=1,...,n,
S;= XY, and D;= sup|P(S;<zx)- ®(x)|
i=1 x€R

Then by construction, Y},...,Y, is an mds, and
E(S, - 8;") < ¥ E(X(X)| > B%/2)) < CoB87°L,, 55,
i=1

which together with (2.1), (2.2) and (2.3) implies )

(24) D, < C{L(S,, S;) + L(S;, N(0,1))} < G{B~*°LY3; + D;}.

Let Y,,,,Y,,,,... beindependent random variables with P(Y; = /%) = 1/2 =
P(Y; = —p'/?) for all i, which are independent of %,. For i > n + 1 set &, =

(£, Yyi15---, Y). Then Y,, i > 1, is an mds w.r.t. &, i > 0. Observe that the
random variable

1
T= max{l >1: Y oY) < 1}
i=1

is a stopping time w.r.t. %, i > 0, for which in view of

)y o(Y)< X o(X;) =1
i=1 i=1

and ¢X(Y,)=p for i>n+1 we have n <7 <n+[y], where [-] denotes
the integer part and y = B! for notational convenience. For i =1,..., % =
n+[y]+ 1 weset

1/2

Z;=YI(i<rt)+ {(1 - X o,?(lc-))/ﬁ} YI(i=r1+1),
j=1
thus obtaining an mds w.r.t. #, C #, C --- C %,. Writing from now on

k
0i2 = Oiz(Zi) fori = 1,..., k, and S];, = ZZ,-,
i=1
we have
k
(2.5) Z oiz = 1,
i=1

(2.6) 1Z) < B2,  i=1,...,k,
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and (observe that Z, = Y, fori =1,...,n)
k
(2.7) E(S; - 8¢") = L E(2}) <GB L, 3.
i=n+1
Setting Dy’ = sup, « g|P(S{’ < x) — ®(x)| and applying (2.1), (2.2), (2.3) and (2.7)
we obtain

D; < C{L(S;, S{) + L(Sy, N(0,1))} < C{ B~*/*Ly/35 + Dy},
which in combination with (2.4) yields
(2.8) D, < G{B~/Li3, + Dy}.

To derive a bound for D}’ we now proceed as in the proofs of Theorems 1 and
2 in Bolthausen (1982). For this, let Nj,..., N, be standard normal random
variables and let ¢ be a normal random variable with mean 0 and variance 38
such that %, N,,..., N, and £ are independent. Then Ny’ = X% g;N, is a
standard normal random variable because of (2.5). Two applications of Lemma 1
of Bolthausen (1982) and the triangle inequality yield

(29) Dy< C{ sup |[P(Sy + £ <x) — P(N/ + £ <x)| + 31/2}.
x€R
Let x € R be fixed and set U, =X"'Z, N2, =%% . 067+ 38 and T, =
A x — U If #, contains all P-null sets, which can be assumed w.l.o.g. since
null sets do not affect distributional properties, then A2, is %, _,-measurable
because of (2.5). Together with the mds-property of Z,,..., Z, this fact enables
one to obtain

|P(Sy' + ¢ <x) — P(Ny + £ <x)|

o=

k
< E(l¢"(T, — 0,7,'Z,,)A3Z,.2

E(19”(T, — 6,20, N,,)A,02IN,,|?) = 4T + 1,
1

where 0 < @, 67,,, <1 and ¢ denotes the standard normal density; cf. the

arguments leading from (4.2) to (4.4) in Bolthausen (1982). Observe that A2, > 38
and (2.6) imply
(2.11) 02, <1, m=1,..., k.

The main feature of Bolthausen’s (1982) method for deriving bounds on the
rate of convergence in martingale central limit theorems now is in the treatment

of terms like I and II. Adapting his ideas to the present situation we introduce
stopping times 0 = 7, < 7, < --+ < 7,1 < 7,74+, = k defined by

+3

L

l
'rj=inf{l2 1: Zo,?zﬂi}, i=1,...,[v]
i=1

In view of (2.5) and (2.6) we have for j=1,...,[y]+ 1land m = 1,..., k on the
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event {1,_, <m < 1;}

(2.12) Np<1-(j-1B+3B=XN,
(2.13) AN >1-(j+1)B+38=X=>8>0,
< 2
(2.14) 1<(A,;) <3
and
(2.15) Y o2<28.
m=17_;+1
Now we write
fyl+1 ¥ [yl+1
216 I= Y E| X 19°(T,— 602,002, = X I,
Jj=1 m=1;_,;+1 j=1
and establish a bound for each I. For this, we set R, Z,_, +1Z; and
={|R,| < |x - U,_,+1l/2} and use (2.13) and ||¢"||,, < 1 to obtain
LNUE B (9T — 0uA02,)l 12,°1(4,,)
m=1_;+1
(2.17) 5
+E Y 1Z,/I(AS)
m-fj_1+1

= 8L + I}

We consider I;, first. Let the function y: R — [0, c0) be defined by y(x) =
sup{|¢”(y)|: |yl = (|x|/2) — 1}. By an application of the triangle inequality,
combined with (2.11) and (2.12), we conclude that

|9"(T, = 0.0722,) | < ¥(A7 (= - U, 1))
holds on {7,_, < m < 7} N A,,. Consequently, since U,_,+1 is measurable w.r.t.
the o-field #(7;_,) of all events known at time 7;
(2.18)

max |Z,)| Z Zr?ag"("'j—l))}-
o +1

-1 <M= m=1;_

I, < E{¢(X;l(x - U, .))E

According to the conditional Holder inequality the conditional expectation on
the right-hand side is less than or equal to
1/(2+28)
E( max 12,7%%(5.,))

T <m<m;

2+28)/(1+28) 1+28)/(2+28)

7
xXE Yy z2
m=7_;+1
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Using the c,-inequality and (2.15), the second conditional expectation can be
bounded by

(2+28)/(1+28)

F (1

J—1

Y (22-a2)

m=1_;+1

Cy E )| + perzo/a+asl

Since Z2 — 02, m = 1,..., k, is an mds, we conclude from Burkholder’s square
function inequality, cf. Theorem 2.10 in Hall and Heyde (1980), that the last
conditional expectation is less than or equal to

(1+8)/(1+298)

C,E F (1.0 |

.
X (z2-o2)
oy

1+1

m

which because of (1 + 8)/(1 + 26) < 1 is less than or equal to

¥

Z |Z3L _ 0,"2‘|(2+28)/(l+28)|‘g'(,1..’__1))

m=7_;+1

CE

¥i

) IZmI“z/‘”“’V('rj_l))

m=7_;+1

< CG{E

+E

i
m=1;_

< C,p@+28)/a+28),

where for the last inequality we have used (2.6) and (2.15) to obtain

°£+2/(1+28)|‘g("}'—1)) }

1+1

¥

> |zm|2+2/<1+2w<¢,._1))

m=7;_;+1

E

(2.19) < BY/A+2DF

— Bl/(1+28)E

In summary, we have shown
(2+28)/(1+28) (1+28)/2+28)

Z zZ2 f("'j—l) <GB

m=1_;+1

E

and therefore obtain

— 1/(2+28)
i < CRE((K; (x - U, ) B max 2,07 (50) ),

T-1<ms7
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whence by Hélder’s inequality and y, = /2+28/0+29)

L, < GBE(ws(A; (= - U,j_lﬂ))}(””)/(?‘f%)

xE( max |Z,|2+%8

Ti_1<m<7;

)l/(2+28)

Now we need the following fact: For each integrable function g: R — [0, 0)
which is of bounded variation on R one has

(2200 E{g(A;(x - U,_,..))} < 3max(ligly, llgh)(Dy + X)),

where ||g||y, denotes the total variation of g and ||g|; the L,-norm w.r.t.
Lebesgue measure. Inequality (2.20) follows from Lemmas 1 and 2 in Bolthausen
(1982) combined with

k 2 k .
(2°21) E E Zm W(T]—l) E orft"g-(":j—l) < A_zp
m=m_,+1 m=17_,+1

where (2.21) follows from (2.5) and the definition of 7;_,. The function
obviously satisfies the assumptions of (2.20), hence

1/(2+28)
(222) I, < CB(Dy +1,)" " ‘“”’E( max |z,,,|2+28) .

G-1<ms7;
Next, we consider I; ,. By definition of 4,
(2.23) Apn{r_,<m<z}cBNn{n,<m<1},
for
l
B;={ max Y Z,|>lx-U,_ ,,l/4}.
-1 e 41 ’

[To obtam (2.23) it is enough to define B; with |x — ,+11/2 instead of
|x = U, _ +1l/4; the B; as defined above will be needed later]

SmceA° N {7;_ l<ms'r}€.ﬂf _1, We obtain

Z E(Z, %%, _,)I(AS,)

m=r_;+1

(2.24) )

<E|I(B) ¥ E(|Zm|%_1)),

m=17_;+1

by (2.23). By a repeated application of Holder’s inequality and (2.19) the
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right-hand side of (2.24) can be bounded by

Y E(ZE )

m=7_;+1

)1/(2+28)

E{I(Bj)

X

m

(1+28)/(2+28)
2+2 &
E(z,,?*2/+2 ’%_1)) }

T
=7

1+1

1/(2+28)
< CSBP(Bj)(1+2a)/(2+2s)E )

¥
Z |Z |2+28
m
=7

m=m_,+1

Now, since U, _ ., is #(7;_,)-measurable,
2

L
P(B)) < CE{min|1,|x — U, ,,|”® max Y z,
! G-1<IST | mar_ 41
; 2
< CE(min|1,|x — U, ,,|"°E| max Y Z,||#F ()
G-1<UIST | m=r_ 41

By the conditional form of Doob’s maximal inequality the conditional expecta-
tion on the right-hand side is less than or equal to

2

4E F (7,

1) | < 4N,

k
X Zz,
m=7;_;+1

cf. (2.21); hence P(B;) < CE{ f(i}l(x -U,_+D)) where f is the function
defined by f(x) = min(1, |x|~2). Obviously, f satisfies the assumptions of (2.20)
so that we arrive at

¥

Z |Z |2+28

m=17_;+1

(1+28)/(2+28)

(225) I ,<CB(Dy+1;) E

)1/(2+2s)

Substituting (2.22) and (2.25) into the right-hand side of (2.17) and utilizing the
result in (2.16) leads to

[+ 28)/(2+28) 7 | e
_ < \1+28)/2+
I<CB Y A3(Dy+1,) E| ¥ 1z,2%
Jj=1 m=m_;+1

(2.26)
(1+28)/(2+28)

[v]+1
< CaBL}L/,(zzs”s){ 2 A(j—s—sa)/(uzs)(D,:, + }\j)} ,

J=1
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where the last inequality is a consequence of Holder’s inequality combined with

[y]+1 T k
Y E| XY 1Z,**®|= Y E(Zz,**?)
J=1 m=1;_;+1 m=1

n k
< Z E(|Ym|2+28) + Bs z E(Zr%t) = CSLn,28’
m=1

m=n+1

holding by definition of Y,...,Y,, (2.6) and (2.7). The sum within { - - - } on the
right-hand side of (2.26) is equal to

[vy]+1 . [y]+1 R
-6-6 ) 3 A(—6—68 2
Dy E A 8-6D/429) | Y} N6-68)/+28)
Jj=1 Jj=1
where
[y]+1 [y]+1

z }_\(j—s-ssy(uza) - E (1 _ (j + 1)/3 + 3'3)(—3—38)/(1+28)
Jj=1 Jj=1

[y]+1
< B(-3-38)/+28) Z F3-38/a+28) < C,B(~3-30)/01+28)
Jj=1
and, by (2.14),
[v]+1_ [yl+1
Z )\J.A(J,-6—68)/(1+28) < 312 z }_\(j—5—4s)/(1+2a)
J=1 Jj=1
[yl+1
= gl/2 Z (1 —(+ 1B+ 33)(—5—48)/(2+48)
Jj=1
< CR(-5-10)/@+48),
Thus we obtain from (2.26)
(2.27) I< CsL},/,gzs‘L”){(D,;')(”")/(“”)ﬁ-l/‘l + .3_1/(“4‘”} .

Next we 'need to derive a bound for II on the right-hand side of (2.10). For
this, we write

[yl+1 T . [vl+1
= Y E| Y 19(T.- 0.20,.N,)A%3N,2 | = ¥ II,
j=1  \m=r_+1 J=1

and consider each II; separately. This time we set /fm ={|R,,| <|x — U,J _+11/4}
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and B,, = {0,|N,| < |x — U,_ ,,|/8} and use (2.13) and ||¢"|l,, < 1 to obtain

II; < )_\;3{E > +1|q>"(Tm - A1, N, )Io2IN,*I(4,, N B,)
m=1_,
.
+E[ ¥ oAN,PI(47)
m=7_;+1
¥i
+E[ X a;ilePI(ﬁ:,)}
m=1_,+1

= NI, + 1L, + II; .}

Now we have |¢"(T, — 0,A;'0,N,)| < ¥(Aj'(x — U,_ 1) on {7, <
m < 1} N A, N B, leading to

I, < E{‘P(X;l(x - Uf,~_1+1)) ) °3E(|Nm|3|fk)}
m=7_;+1

< ouly(5(s- v, )5 i),

m 1+1

where we have used independence of %, and N, and o2 < E(|Z,,|%|#,_,)- The
expectation on the right-hand side of this inequality is less than or equal to the
expectation on the right-hand side of (2.18) so that we get the same bound for
IT; | as we previously obtained for I; ;. By definition of A, we have

Aon{r_ <m<r)cBn{r_,<m<7)}

and
A <ms<n) e,
hence
I,=E| Y o3E(N,/I1%)I(4})
m=17_;+1
<CE(I(B) X E(IZ,.,|3L%,,_1))-
m=1_;+1

Up to a constant factor the right-hand side of this inequality is equal to the
right-hand side of (2.24), so that we get the same bound for II;, as we
got for I;,. Finally, taking (2.6), (2.13) and (2.14) into account, we have
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A7t - U,_,+1l <8IN,| on the event BZ N {r,_, < m < 7;}, thus
"

I , < E{ 3 O3 E(INII(8IN, > A ~ U,,._lnn)m)}

m=1_;+1

i

< E{h(x;l(x -U,) X E(|Zm|%_1)},

m= j—l+1

where the function A is defined by A(x) = E(|N,|*I(8|N,| > |x|)). Here indepen-
dence of &%, and N,, is crucial again. The right-hand side of this inequality can
be bounded by the right-hand side of (2.18) except that the function h occurs
instead of . But since h®+29/+29) gatisfies the assumptions of (2.20), the
arguments leading from (2.18) to (2.22) may be copied to obtain the same bound
for II; , as previously obtained for I; ;. Thus we see that we get the same bound
for II as we obtained for I in (2.27). Since the right-hand side of (2.27) is
independent of x, we conclude from (2.9) and (2.10) that

(2.28) Dy < Cs{(Dﬁ')(l+28)/(2+28)ﬁ_I/ZL},/,%”S) + B/ a1/ '31/2}.
Arguments similar to those that established (2.4) and (2.8) can be used to prove
Dy < Cy{ B/ °Lif3s + D,}.

Applying this inequality to the right-hand side of (2.28) and substituting the

resulting bound for D}’ into (2.8) we arrive at
(2.29) D, < C{Dg+20/@+208-1/21/ G20 + Hy(B, Ly,55) }»
where
_ 1+28)/(2+28) ,_
Hy(B, L, 55) = (B~°°Li/35) B~YPLy G5
+/3‘l/“‘+“’L}/§s“”’ + B2+ B_s/aL};ﬁés»

Cs* is a certain finite constant depending only on 8 and B > 0 is arbitrary. Now
we consider two cases. If B satisfies

BALYE < DYO/(2C)),

then (2.29) implies D, < 2C*Hy(B, L, 55). If not, then we have D, <
(2C*)?+2%8=173L, ,,, which means that with a certain finite constant C; de-
pending only on 8 we have for all 8 > 0,

(2.30) D, < Cs’{Hs(B, L, )+ .B_l_sLn,zs} .

Easy computations now verify that for 8 = L2/§;*2% all terms on the right-hand
side of (2.30) are equal to LY/§;"2%. This finishes the proof of Theorem 1 under
the assumption £7 ,6%(X;) = 1. To remove this assumption one can apply the
same reasoning as in the proof of the Main Result in Haeusler (1984), the only
difference being the fact that now the logarithmic factor on the right-hand side

of inequality (2.5) of that note does not appear. O
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3. An example. Our example will demonstrate that (1.6) is satisfied for a
martingale array which differs from an array of row-wise independent normal
variables only by a single summand in each row.

Let n > 2 be a fixed integer. For brevity we write a, = (log n)~'. Let the
function f,: R — [0, o0) be defined by

fo(x) = {x_l’ if a}/2/2 < x < o0,

0, otherwise.
Furthermore, let X,,..., X, ,_; be independent and normally distributed
random variables with mean 0 and variance (n — 1)~'. We write X,_, =
(Xtsvos X me1) Xy = (%3,..., %, ) and 3x,_, = X2, forxy,..., %, €
R. The one-point mass concentrated at x is denoted by e,. Let the random
variable X, be defined such that its conditional distribution given that X,,_, is
known equals

P(Xnn € - |Xn—1 = xn—l) = %E—a,,f,,(zx,,_l)(‘) + %%,,f,,(}:x,,_l)(‘),

whence for the standard normal random variable N,_; = X7° lle. the condi-
tional distribution of X,,, given N,_, is

P(Xnn € '|N -1~ x) = %e—anf,,(x)(°) + %Eanf,,(x)(°)°
Clearly, E(X,,|X,_1) =0, so that X,,..., X, is an mds wrt. #,,C %, C
o C &, for F,=0(X,,..., X)), %, being the trivial o-field. Now we

determine the behavior of L(");, N3y and D{™ of (1.6) for an arbitrary
0 < 8§ < o as n goes to infinity. We have

n—-1

L E(X,***) ~ E(N(0, 1)**)n "

i=1
and

E(X,,**%) = [ [P P(X,, € dyIN,, = £)P(N, , € ds)
_ (2,n.)-1/2a2+28f°° x~220=%/2 g ~ CpaB+20/2,
n /22 n

for some 0 < Cy < oo, hence L{"); ~ C;a®*2%/2 Furthermore, taking into
account that E(XZ\%, ; )=(n—1)"'fori=1,...,n—1and

E(Xr%nl‘a}r'z, n—l) = E(thnlxn—l) = E(Xr%nJNn—l),
we see that
Nrs,n2)8 = E(E(Xr%n'Nn—l)l-HS)

1+6
- [([PRun e N, =) PNy < d)
R\YR

_ (27)_1/2a2+28f°° x—2-28—52/2 g . (C.o3+28)/2
n a},/2/2 n .
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Summarizing, we obtain
(3.1) (L&Y + Nis) 70 ~ Cpals?,
for some 0 < C5 < o0. On the other hand, we get
n
P( Z Xni < 0) = P(Xnn < _Nn—l) = LP(Xnn =< _xlN 1= x)P(Nn—l € dx)
i=1

= (27)”* fa}'ﬂ/‘zso((— 0, —x])e™**/2 dx

+@m) V[T (Ye_q et Feae)((—00, —x])e /2 dx

o5/2/2
- 0 _ 1/2
= (27) 1/2_[ e %2 dx + L(27) V2 f‘:;; e /2 dx
— 00 o, /“/2

=1+ 3@n) 721 + 0(1));

hence in view of (3.1)

n
D = sup P( Y X, < ) - 0(x)| 2 12m) Ve 2(1 + o(1))
i=1

xX€R

~ Cs(L&M, + N,f,ngs)l/w”s):
for some 0 < C; < oo. This establishes the left inequality in (1.6), whereas the
right one follows from Theorem 1 and (3.1).

4. Proof of Theorem 2. The quantities L, ,, and N, ,; are, of course,
assumed to be finite throughout the proof.

First, we shall verify the assertion for a square integrable martingale M =
(M(#))o<t<o Wrt. the filtration F = (F(£))g<;<o> i€, a martingale with
SUD) < ¢ < o E(M?(2)) < 0. We always set F(o0) = o(F(¢): 0 < t < o). Since we
are interested only in the time interval [0, 1], we assume w.l.o.g. that M(t) = M(1)
holds for all 1 < ¢ < o0, which can be attained by stopping the given martingale
at time ¢ = 1. As a consequence, we have M(c0) = M(1) for the random variable
M(o0) closing the square integrable martingale M on [0, c0], and (M )(¢) =
(M)Q1) for all 1 <t < . Doob’s inequality implies that M*(1) =
Sup, ., <1|M(2)| is a square integrable random variable.

Fix € > 0 arbitrarily. Let the random variables T,, j =0, be inductively
defined by T, = 0 and

Ty, = inf{t € [0,00): > T, (M)(t) = (M)(T)) +¢}, j=0,
where inf @ = . Then by construction of T; and right continuity of (M)

(4.1) 0=T,<T)<T,< - <T;< -,
(4.2) T, <T;,,,, on{T;< oo} foreach j>0,
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and
(4.3) supT; = 0.
Jj=0

Since the process (M) is predictable, an induction argument based on Remark
IV.87(d) in Dellacherie and Meyer (1978) shows that the variables T; are
predictable stopping times w.r.t. F.

For any stopping time R, let #(R) denote the o-field of all events occurring
up to time R, whereas &# (R — ) is the o-field of all events strictly prior to time
R. According to elementary results about stopping times we have

(4.4) T; is # (T, — )-measurable for j > 1,
(4.5) F(T,-)c#(T;), forj=1,
and

(4.6) F(T)) c#(Tj,,—), forj=>0,

where (4.6) holds in view of (4.1) and (4.2). Furthermore, we need the following
facts about measurability:

M(R) and (M)(R) are % (R)-measurable for each stopping

47 Yime R,
and

M(R — ) and (M)(R —) are #(R — )-measurable for each

(48) predictable stopping time R > 0.

Statement (4.7) follows from Theorem 1V.64(b) in Dellacherie and Meyer (1978),
and (4.8) by an application of (4.7) to a sequence R,, k > 1, of stopping times
announcing the predictable stopping time R.

For any integer j > 0 we set

Xyjur = (M(Ty,, =) = M(T)))I(T; < 1),
Xpjra = AM(T, ) I(T;,, < 1),
Faj+1 =~97(’-’}+1 —),
and
Frjra = ﬂ'(]}.ﬂ),
Statements (4.5) and (4.6) yield

(4.9) Fo=FO0) CF CFC - CFC -,
and from predictability of T; and (4.4) to (4.8) we conclude that
(4.10) X, is #-measurable for each i > 1.

Square integrability of M*(1) implies E(X?) < oo for each i > 1. Moreover, we
have for each i > 1

(4.11) E(X)%,_,) = 0.
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For i = 2j + 2 with j > 0, (4.11) follows from

E(X)#i-1) = {E(M(T # (Tpiy -)) = M(Tpy =)} (Ty < 1)
and the stopping theorem for predictable stopping times, cf. Dellacherie and
Meyer (1982), Theorem VI1.14, which gives E(M(T;, )|# (T}, —)) = M(T, 1 — )
To verify (4.11) for i =2j + 1 with j> 0, we fix a sequence R,, k > 1, of
stopping times announcing the predictable stopping time T, Taking R, vV T;
instead of R,, if necessary, the R, then satisfy

(4.12) T,<R,, foreachk>1,

(4.13) R, <T,,, on{T;< o} foreachk >1,
and

(4.14) Ry1T;,,, ask—oo.

From (4.13) and (4.14) we obtain

(4.15) M(T,, -)(T;<1) = klin:o M(R,)I(T; < 1).

Since |M(R)I(T; < 1)| < M*(Q1) for all k£ > 1, (4.15) and the dominated conver-
gence theorem for conditional expectations imply

E(M(T,., -)I(T; < D (T)) = lim E(M(R)I(T, < 1)1#(T;)).
Observing (4.12), the stopping theorem yields
E(M(R)I(T; < 1)#(T))) = M(T)I(T; < 1),
for each & > 1, cf. Dellacherie and Meyer (1982), Theorem VI1.10, so that (4.11)
follows from
E(X\F:,) = E(M(T;,, -)I(T; < )1#(T))) - M(T)I(T; < 1).

By construction, we have M(1) = £ , X, hence M(l) = limn_,wS”,, for S, =

Y?m X,. In view of (4.1), (4.2) and (4.3), this convergence is stationary in the sense

that for each w there exists an n, such that M(1)(w) = S(w) for all n> ng.
Consequently, we have for all x € R,

(4.16) |P(M(1) <x) — ®(x)| = lim |P(S, <x) - @(x)|.
According to (4.9), (4.10) and (4.11), for each n > 1 the variables X,,..., X,,

form a square integrable mds w.r.t. the o-fields #,c %, c --- c %,,. There-
fore, Theorem 1 implies for all n > 1,

(4.17) IP(S; < x) - <I>(x)| < Cy(Lygp 08 + Nzn,zs)l/(3+28),
where
2n
L2n,28 = 2 E(|Xi|2+28)
and -
on 1+8
N2n,28 =E iEIE(Xf%—l) -1 )
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First, we shall consider L,, ,;. For this, we write

n-1 n—1
Lonas = L E(X,;00""2) + L E(1X,0""2) = LE) 5 + L, 25
j=0 Jj=0 ‘
Obviously, we have
o0
(4.18) L9205 E| L AM(T)**1(T, <1)).
j=

Next, we deal with L) ,,. For fixed j we apply (4.15) and Fatou’s lemma to
obtain

(419)  E(X,;,.***) < liminf E(1M(R,) — M(T,)***I(T; < 1)).
Fix now £ > 1 and let y > 0 be arbitrary. We define the random variables S,,,,
m > 0, inductively by S, = 7; and

S, =inf{t€[0,0): t > S, | M(t) - M(S,) =y}, m=0,

where inf @ = o0. By construction of S,, and the fact that M is a cadlag process,
we have

(4.20) T,=8<8<85< - <8§,< -,
(4.21) S, <S,.1, on{S, < o} foreach m >0,
and
(4.22) sup S,, = .

m=>0

An induction argument based on Theorem IV.50 in Dellacherie and Meyer (1978)
shows that the variables S, are stopping times. Therefore, the variables S/, =
S,. A R, m > 0, are also stopping times. They satisfy

(4.23) T,=8<8< - <§,< -,

because of (4.20). From (4.20) and (4.22) we see that S/, 1 R, as m — oo, and the

convergence is stationary on {7; <1} since R, < co on this event by (4.13).
Consequently, Fatou’s lemma yields

E(M(R,) — M(T;)***I(T; < 1))

(424) < liminf E(M(S;) — M(T)*2I(T; < 1)).

For fixed m > 1 we introduce the random variables
Y, = (M(S/) - M(S/.))(T;<1), 1=1,...,m,
and the o-fields
F =F(8)), 1=0,...,m,

which are increasing because of (4.23). Clearly, by square integrability of M*(1)
and the stopping theorem, the variables Y;,...,Y, form an mds wrt. % C
F/ C .-+ C%.. Applying a convex function inequality for martingales, cf.
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Theorem 2.11 in Hall and Heyde (1980), we get
2+28

E(M(S;) - M(T,)?**I(T;< 1)) = E

m
LY,
=1

m

Y E(YA%.,)

=1

<GlE

1+8)

+E( max |Y,|2+28)}

1<i<m

(4.25)

= G{I + IT}.

First, we shall consider I. Applying the stopping theorem to the uniformly
integrable martingale M2 — (M) one obtains, cf. Dellacherie and Meyer (1982),
VII. (41.1),

E(YAF.,) = E{(M(S{) - M(S{.,)) 1% (SL.) } I(T; < 1)
(4.26) = E((MY(S7) — (MY(S,_ (S ))(T; < 1)
= E{((M)(S7) — (M)(S/_))I(T; < 1)}F (S1_,) }.

Observe that the variables ((M)(S;) — (M )(S{_,))I(T; < 1) are nonnegative
since (M) is increasing. Therefore, Garsia’s inequality, cf. Hall and Heyde
(1980), Theorem A.8, implies

1+s}
Hence, setting

Z, = ((MY(T,,, —) — (MYT))I(T;<1), j=0,

observing that S/, < R, < T}, , on {T; < 1} by (4.13), and taking the definition of
T;,, into account, we conclude that

J
I < CsssE(Zj+l).
Next, we shall derive a bound for II in (4.25). For this, we set
my=max{m >0: S, < R,}.

Observe that m, is well defined on {7} < 1} because of R, < co on this event by
(4.13), and since (4.22) holds. By construction, S/ = S/_; = R, for I > m, + 1,

|M(S5,01) — M(S5,)| = |M(R,) - M(S,,)| <7,
by definition of S, ,, and S, ., > Ry, and S/ = S, for I < m,. Hence

2+28
max |M(S;) - M(Sl—l)l *
<mAm

1'2::1 ((M)(S7) = (M)(S{-))(T; < 1)

= GE((M)(S,) — (M)(T,)* (T} < 1)).

1< c

max |YI|2+28 <
1<i<m 1

I(T"]< 1) + .Y2+28’
<l
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which by definition of S, is less than or equal to

Ca{ max |AM(S,)|2+28

A + 2+28}
l<l<mAm, I(T; < 1) Y ’
which in view of T; < S, < S, < -+ <§, <R, <T;,, on {T; <1} by (413)
and (4.21) is less than or equal to

C“{T max |AM(t)]**%I(T; < 1) + 72”8}.

]<t<7}+l

Consequently,
< Cs{E( max  |AM(£)* (T, < 1)) + y2+28},
Ti<t<Tjy,

Substituting the above bounds for I and II on the right-hand side of (4.25),
combining the result with (4.24) and (4.19) and observing that y > 0 is arbitrary
leads to ,

E(|X2j+1|2+28) = Cs<88E(Zj+1) + E( oooax

J J

H|AM(t)|2+281(‘Tj < 1))},

from which it is easy to deduce that

LE) 55 < Cs{ E((M)(1)) + E( )y ( P> IAM(t)I“”)I(’-’} < 1)) :
J=0\T;<t<T;,,
Combining this bound with (4.18) and observing that {T; <1} is the disjoint
union of {T;,, <1} and {T;<1<7T;,,}, and AM(¢) =0 for 1 <¢< 0, we
obtain
(4.27) Ly, < Cs{E‘*E(<M>(1)) + Lc,28}'

It remains to establish a bound for

ne1 1+8

n—1
ZOE(X§j+1%,-) + EOE(X3j+2L%j+1) -1
Jj= Jj=

(4.28) N2n,28 = E

Applying (4.15) and the dominated convergence theorem for conditional expecta-
tions, we see that

. 2
E(X}%y) = lim E{(M(R,) - M(T))'I(T, < 1)#(T)}.
For each fixed % > 1 the stopping theorem implies, cf. the proof of (4.26),
2
E{(M(R,) - M(T)))’ I(T; < 1)#(T;))

= E{((M)(R,) — (M)(T)))I(T; < L& (T;) }.
As k — o, these random variables converge to E(Z;,|%#(T})) by the dominated
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convergence theorem for conditional expectations so that

n—1 n—1
(4-29) EOE(X§j+1|‘%j) = ZOE(ZJ’H%J')-
Jj= Jj=

Since T, is a predictable stopping time, we can apply a corollary to the
stopping theorem, cf. formula VIL.(41.2) in Dellacherie and Meyer (1982), to
obtain

n—1 n—1
T E(X3a0) = L MMY(T) Ty < 1).
j=0 j=0
Easy computations show that the last sum equals

n—1

¥ {((MN(T,,) — (MYT))I(T;,, < 1)

Jj=0
n—1
+((MY(Tyi —) — (MY(T))H(T; < 1< Ty, ) - Zoz,-ﬂ
— (MYT)KT, < 1) + (MYOKT, > 1) - T 2,01,
j=0

Combining this result with (4.28) and (4.29), we have

n—1
Nyp,os = E Zo {E(Zj+1|‘9r2j) - Zj+1}
j=
1+8
(4.30) +((MX)T,) - (MYW)I(T, < 1) + (M)(1) - 1 )
- 1+8
< Cs{E > Vi +U(n) + Nc,28}’
j=0
where

Vier = Zjr - E(Zl%,), 20,
and
(4.31) U(n) = E(KM)(T,) = (MYD)|'"*I(T, < 1)) >0, asn— o,

by the dominated convergence theorem, which applies because of (4.3) and
E((M)(1)'*%) < oo, following from N, ,5 < oo. Furthermore, in view of (4.7) and
(4.8), for each j > 0 the variable V;,, is %, ;, ,-measurable. Consequently, V. ,,
J 2 0, is an mds w.r.t. the increasing o-fields %,;,,, j > 0. By definition of T}, ,
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we have |V, ,| < 2e for each j. Hence, by Burkholder’s square function in-

equality,
n-1 1+8)/2
T )

J=0
n—-1 1+8\1/2
( Z IV]+1|) ) ’

Jj=0

1+8

E < GE

n—1
2 Vi
Jj=0

< C8£(1 +8)/2E

which by an application of Garsia’s inequality is less than or equal to

n—1

Y Z;,,

j=0

Thus we obtain from (4.30)

Css(l +8)/2E

1+8\1/2
) < CyeO2E((MY(1)' )",

(4.32) Nyp,zs < C{e O 2E((MY(1)' )" + Un) + N, 35).

Inequality (1.8) is now an obvious consequence of (4.16), (4.17), (4.27), (4.31),
(4.32) and the fact that ¢ > 0 in (4.27) and (4.32) is arbitrary.

Now we consider a locally square integrable martingale M. By defini-
tion, there exists an increasing sequence 7,, n > 1, of stopping times such
that T, > oo as n — oo and the stopped processes M7 defined by MT=(¢t) =
M(T,At) for 0 <t< oo are square integrable martingales. Then M(1) =
lim, _,  MT~(1), and the convergence is stationary. Hence for each x € R,

(4.33) |P(M(1) < x) — ®(x)| = lim |[P(M™(1) < x) — ®(x)|.
By the previous part of the proof we have for each x and n,
|P(M™(1) < x) — ®(x)|

(4_34) 1/(3+28)
<G{B( T man(or) + B a) - 1))
0<t<1
Obviously, |AMT-| < |AM|, so that for all n > 1,
(4.35) E( Y |AMT»(t)|2+28) < L, 4.
0<t<l1

Furthermore, by formula VII.(41.4) in Dellacherie and Meyer (1982), we have
(MT»y = (M) for each n > 1. Thus we see that (MT-)1) » (M)(1) as
n— o and (MT)1) = (M)T, A1) < (M)Q) for all n > 1, whence by the
dominated convergence theorem

(4.36)  E((M™)(1) - 1/"**) > E(KM)(1) — 1'*?), asn > co.
Inequality (1.8) is now an obvious consequence of (4.33) to (4.36). O
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