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CONTINUITY AND SINGULARITY OF THE INTERSECTION
LOCAL TIME OF STABLE PROCESSES IN R?

By JAY ROSEN!

College of Staten Island, CUNY

We show that the planar symmetric stable process X, of index 5 < 8 < 2
has an intersection local time a(x, -) which is weakly continuous in x # 0,
while

a(x,[O,T]2) ~ le—:_ﬁ-, as x — 0.

Let X, be a planar symmetric stable process of index B [see, e.g., Blumenthal
and Getoor (1968), pages 19 and 71]. We say that X, has an intersection local
time a(-, -) if there exists a kernel a(x, B) satisfying

ff(x)a(x, B)dx = fff(X,— X,) dsdt,
B
for all bounded Borel functions f and sets B C R2.

THEOREM. If §< B < 2, then X, has an intersection local time a(x, -) which
is weakly continuous in x + 0, while

1) a(x,[0,TP) - 2;(';3—);
where '

e(B) = gi;r(%ﬁ)/r(ﬁ/m.

has an extension continuous for all x,

It is interesting to note that the condition B > 3 is precisely the condition for
the existence of triple points [Taylor (1966)].

Our proof follows the ideas of Le Gall (1985), who proved a similar result for
Brownian motion, a result which goes back to Varadhan (1969). See also Rosen
(1986b), Yor (1985, 1986) and Dynkin (1985). Some work on intersection local
times for Lévy processes is contained in Shieh (1985).

To prove our assertions, define for ¢ > 0,

oz, B) = [ [i(X(s,t) —x) dsd,

where X(s,t) = X,— X, and f(x) is the transition density function for our
process. a(x, B) is clearly continuous in all parameters as long as ¢ > 0.
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As in the case of Brownian motion, it is easy to show (see below) that
) E.(a(x, B) - a (x', B))” < ¢,(V)I(e, x) = (¢, 27)[,
for all Borel sets B C Al, where
Ar=[(2k-2)27",(2k — 1)27"] X [(2k — 1)27",(2k)27"],

andally <1-1/8.
Because of the scaling X, =, N/2X,, we have f, (x) = 1/ /#)f(x/N/#) and
therefore

(3) a(x, B) = 27"2~2/Bq,, (2"/Bx, 2"B),
so that from (2), for all B c A}*Y,
(4)  E(afx, B) - a,(x', B))" < ey(v)27"PE2EV|(e, x) — (&, x')|".
We now define
(5) vdx, B) = {a(x, B)},
where (Y} = Y — E(Y), and following Le Gall (1985) we write, for
Bc {(s,t))0<s<t<1},

v(x, B) = Y v(x, BN A}),
n,k

and use (4) to establish

2" p
E| X v(x, BnAY) -y, (x', BN A}*Y)
(6) k=1 .

< co(y)2”p/22_”P(2'2/B_7)|(e, x) - (8" x/)lw’
so that
(7) Iv(x, B) = v.(x', B)|l, < cl(e, x) — (¢, )",

aslongas ; —2+2/8+y<0.
It is possible to choose y > 0 small satisfying this condition if } — 2 + 2/8 <
0, i.e., B> 3. (7) was established for B C {(s, t)|0 < s < ¢ < 1}, but by symme-
try it is clearly true (with a different ¢) for any bounded Borel set.
Kolmogorov’s theorem now shows that locally

(8) lv.(x, B) = v.(x', B)| < ¢,|(e,x) — (¢,x)1°, &€ >0.
This assures us of the existence of a continuous limit

y(x, B) = lif(}'ye(x, B).

Let g(x) be any continuous function of compact support away from x = 0. The
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locally uniform convergence of (8) shows

J&(@)1(x, B) dx = lim [g(x){a(x, B)} ax

waf{f*g(X(s t))} dsdt

(9)
= [ [{e(X(s, 0))) dsat
= [ Ja(X(s,0)) dsdt — [e(x)@5(x) dx,
where
(10) y(x) = [ [hus@)dsdt < e[ 1x) ds = o
is easily seen to be continuous in x # 0. Thus
(11) a(x, B)diefy(x, B) + Up(x)

is continuous for x # 0 and satisfies

Je)alz, B)dx = [2(X(s,1)) dsa,
for g supported away from x = 0, and hence for all continuous compactly
supported g [#%g(x) is integrable at x = 0]. (We did not use Le Gall’s Theorem
1.1 since it rests on path continuity.)
We note that for x # 0,

Yyo.rp(x) = [ ["h-o(x) st
- 2/0Tf0‘fs(x) ds dt
= 2T%(x) — 2LT£wfs(x) dsdt,

where

@) = [Ci ) ds = S

is the potential, and

fontwfs(x)aLsdts jOTftwfs(o)oLsdt

7 ro ds T dt
B o(ft sz/ﬁ) t_fo (/81 = %

whenever 1 < 8 < 2.
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Finally, to produce a version of a(x, B) which is a kernel, and which is weakly
continuous in x # 0, we start off in place of (2) with

(12) Ez(ae(x’ B) - ae'(x/’ Bl))p < cl(Y)l(s’ X, B) - (8" x" Bl)lypa

for sufficiently small vy, and all rectangles B, B’ C A}, where we identify B =
[a, b] X [¢, d] with (a, b, ¢, d), and proceed as above. See, e.g., Rosen (1986a).

For the convenience of the reader we sketch the proof of (12). As in Rosen
(1986a) it will be sufficient to establish a uniform bound for all B C Aj,

(13) [E(as(x, B)p) <ec.
To this end we use the Fourier representation
1 .
fx) = eiuze=eul’ gy
(x) (277)2]
to find, using independence, that
1
P\ _ Yixu —Slule iXu;X(sj, t;)
E(a(x, B)") @)™ prfe ; E(e™% )
(14 i
ixu;—e|u;|? ru;X(s ru; ;
- WLpfez el (L4 X(51/D)E (W XA/26))
We write
P
Equ(sj’ %) = Z DjX(rj’ '}'+1)’
j=1
p—1
Zqu(%’ tj) = ZO ij(qj’ qj+1)’
j=
where r,..., r, are the s,’srelabeled sothat r, <r,< -+ <r_ <r,,.,=2 and
1 m i 1 2 m m+1— 2

;=X a=r U in particular, the v,’s span R??. The g;’s and w,’s are defined
analogously. Using (14) and the simple bound
1 C
B, P —
/(; ¢ ST+ |o|#’
we have the uniform bound
E(a(x, B)®) < c[T1

1 1
du
1+ |o)? I 1+ |w?

(15)
1

| 1
1+ o]

|
1+ |w|

< “n 3

| b
2 2

which is finite if 8 > 1.
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