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INDEPENDENCE OF ORDER STATISTICS

By M. FALK AND R.-D. REIss
University of Siegen

A sharp bound for the dependence between sets of order statistics is
established which gives precise information about the asymptotic indepen-
dence of order statistics.

1. Introduction and main result. Let X,,..., X, be independent and
identically distributed random variables (= iid rv’s) with common distribution
function F and denote by X;.,,..., X,., the corresponding order statistics.

Starting with the work by Gumbel (1946) on extremes, the asymptotic
independence of order statistics has been investigated in quite a few articles. For
detailed references we refer to page 118 of the book by Galambos (1978) and to
Falk and Kohne (1986).

Let Y),...,Y, and Z,,..., Z, be independent rv’s with common distribution
function F which are independent of X,..., X,. Denote the corresponding
order statistics by Y., and Z,,. Then the dependence between the two sets of
order statistics X, ,,..., X., and X,,_,. . 1.,,--., X,., is measured by

Ap(n,k,n—m+1)

= sup |P{(X1:n" M Xk:n’ Xn—m+1:n’ e Xnn) <€ B}
BeBk+m

- P{(Ylm,'“’ Yk:n, Z

n—m+1l:ns*°*> Znn) € B}l’
where B¢ denotes the Borel o-algebra of R

Now, let U,,...,U,,V,,...,V,,W,,...,W, be independent rv’s which are
uniformly distributed on (0,1) and denote the corresponding order statistics in
each group by U,.,,...,U,.,, Vi.,..., V,., and W, ,..., W,... It is well known

that the distribution of X, coincides with that of F~(U,) and, if F is continu-
ous, F(X,) is uniformly distributed on (0, 1). Consequently,
Ap(n,k,n—m+1)
sup |P{(Ulzn’ et Uk:n’ Un—m+1:n’ e Un:n) € B}
(1 .1) Be Bk+m
- P{Vlzn’ X Vk:n’ I/Vn—m+1:n’ (X I/Vnn) € B}l
= A(n,k,n —m+1),

where equality holds if F is continuous.

Therefore, in order to investigate the dependence between sets of order
statistics, it suffices to consider uniformly on (0,1) distributed rv’s. This fact

including formula (1.1) was already established in Falk and Kohne (1986),
Proposition 2.
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Under the assumption that & + m = O(n?/?) Falk and Kohne (1986) com-
puted exact rates at which A(n, k, n — m + 1) converges to zero. In particular, it
follows from their Theorem 3 and formula (4) that if £ + m = O(n?/?),

(1.2) Aln,k,n—m+ 1) =O({km/(n(n—k—m+1))}1/2).

However, it is well known that not only are the extremes asymptotically
independent from each other but that they are also independent from the central
order statistics [see, for example, Tiago de Oliveira (1961), Rosengard (1962),
Rossberg (1965) and Ikeda and Matsunawa (1970)].

Consequently, define

A(n,k,r,s,n—m+1)
= sup |P{(U1:n"“’ Uk:n’ Ur:n""’ Us:n’Un—m+1:n""’Un:n) € B}

BeBk+s—r+l+m

_P{(Ulzn""’ Uk:n’ Vr:n"“"’s:n’ VVn—m+1:n””’ 1/Vnn) <€ B}l’

which we have to consider if we want to investigate the simultaneous depen-
dence of the extremes and central order statistics. We remark that a relation
analogous to (1.1) also holds for three groups of order statistics.

We will prove in the present paper that the bound given in (1.2) is valid for
any choice of £, m € {1,..., n} and, based on this result, we will establish an
analogous bound for A(n, k, r, s, n — m + 1). These results give precise informa-
tion about the asymptotic independence of order statistics; in particular, they
unify the known results on the asymptotic independence of extremes and central
order statistics.

Our main result is the following one.

THEOREM 1.3. There exists a universal constant C > 0 such that for 1 <
kE<n—-m+1<n,

(i) A(n,k,n—m+1) < C{km/(n(n —k —m + 1))}1/2,
andforl<k<r<s<n—-m+1<n,
(i) A(n, k,r,s,n—m+1) < C[{k(n—r+1)/(n(r-k))}"*

+{sm/(n(n—s—m+ 1))}1/2].
To illustrate Theorem 1.3 we formulate two simple consequences.

COROLLARY 1.4. (i) lim, nA(R, R, r,s,n—m+1)=0if lim,n(k +m) +
n =0 and 0 < liminf, .y7r/n < limsup, cys/n < 1, which entails that the ex-
treme and intermediate order statistics are asymptotically independent from the
central order statistics.
(ii) If lim,.yk/n =1 and lim,_ym/(n — k) = 0, then
lim A(n, k,n—m+ 1) = 0.
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This yields in particular asymptotic independence of intermediate and ex-
treme order statistics.

2. Auxiliary results and proofs. Our results are based on the well-known
fact that the conditional distribution of U,.,,...,U,.,, given U,., = x € (0,1), is
equal to the distribution of Vi, _,,..., V¥ .., x, W}, _,, ..., Wr . ._,, where
Vi Vi, and W, _ ... WZ . _. are the order statistics of r — 1
and n — r independent rv’s which are uniformly distributed on (0, x) and (x, 1),
respectively. Moreover, these two sets are independent. Consequently, we may
choose VZ,_, =2V, i=1,...,r—1, and W¥,_, =1 - xW,.,_,+x, i=
1,...,n—r.

Finally, notice that an analogous result holds for the conditional distribution
of U,.,,...,U,., givenU,.,=x,U,.,=y,r<s,x<y.

The following basic result is immediate from the preceding considerations. In
particular, (i) shows that in Theorem 12 of Falk and Kohne (1986) equality
actually holds.

PROPOSITION 2.1. Letl<k<r<s<n-m+1<n. Then
(1) sup |P{(Ulzn""’ Uk:n’ Ur:n””’ l]s:n) € B}

Beak+s—r+1
- P{(Vlzn""’Vk:n’ W‘:n"”’m:n) € B}l

= sup |P{(Uk:n’ l]r:n) € B} - P{(Vk:n’ W‘:n) = B}l
Bem? .

= A(n, k,r);
(ii) A(n,k,r,s,n—m+1)

= sup |P{(Uk:n’ Ur:n’ Ijs:n’ Un—m+1:n) € B}
BeB*

- P{(Uk:n’ Vr:n’ ‘/s:n’ m—m+1:n) = B}l’
(iii)) A(n,k,r,s,n—m+1) <A(n,k,r)+A(n,s,n—m+ 1).
Another key idea for the derivation of our results will be the comparison of
second-order normal approximations to distributions of order statistics. To this

end we need the following auxiliary results. By N(p, 02) we denote the normal
distribution with mean p € R and variance o2 > 0.

LEMMA 2.2. For any € > 0 there exists C(e) > 0 such that if |u| < e and
o1 — 1| < 1/5,

‘fng(u,oz) - fng(O,l)‘

< sup{lg(x)lexp(—x%/4): x € R}C(e) {0~ = 1] + Iul},
for any measurable function g: R — R such that the above integrals are finite.
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ProOF. Put R(x)= —x% o7 !—-1)— x%~!— 1)2/2. Then, by a Taylor
expansion,

!fng(u,oz) —fng(0,1)l
< sup{lg(x)lexp(~x?/4): x € R}(2m)
Xfexp(—x2/4)|1 - o_lexp{R(x) + (x — P«/z)lio_z}hix

< sup{|g(x)lexp(—x2/4): x € R}C(e){jo™" — 1| + |p|}. i
Putting g = 15 for B € B, we obtain the following estimate from Lemma 2.2.

COROLLARY 2.3. There exists a universal positive constant C such that
59 [N(py, of)(B) = N(po, o ) (B)]
< Cl(m1 = mol/30) + I(0/a1) — 11].
Now, we are ready to prove Theorem 1.3.

Proor oF THEOREM 1.3. By C we denote in the following a generic constant.
The assertion of Theorem 1.3 follows from Proposition 2.1 if we show that for
l1<k<n—-m+1<n,

sup |P{(Uk:n’ Un—m+1:n) € B} - P{(Vk:n’ W/;z—m+1:n) € B}l
(2'4) BeB?
< C{km/(n(n -k —m+ 1))}~
Conditioning with respect to U, _,, 1., = ¥ € (0, 1), we obtain
sup |P{(Uk:n’ Un—m+1:n) € B} - P{(Vk:n’ I/V;z—m+1:n) € B}l

BeB?

JIP{(xViin-ms %) € B} = P{(Viuy, %) € BY(P*U,_pi1:0)(d)

5)= sup
(2 5) BeB?

< [ sup |P(xVy.p_ € B} = P(Vii € BY(P*U,_pys1.0) (),
BeB
where P*X denotes the distribution of a random variable X.
We will prove in the following that

f sup |P{ka:n—m € B} - P{Vk:n € B}l(P*Un—m+1:n)(dx)
BeB
(2:6) <c[{(n-m)/(k(n—k-m+1))

+{n/(k(n—k))} + {km/(n(n —k —m + 1))}1/2].
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This implies (2.4) as can be seen as follows. First, we may assume without loss of
generality that & > m; otherwise we interchange k2 and m in (2.4) by switching
over to 1 — U,,., etc. Moreover, it follows from (1.2) that it is sufficient for the
proof of (2.4) to consider & > n?/3,

Now, if m < k and k > n?/3, then

(n—m)/(k(n—k—m+1)) +n/(k(n—-Fk))
< C{km/(n(n -k —m+ 1))}~

Hence, it suffices to prove (2.6).
Next, we want to apply second-order normal approximations to the distribu-
tions of xV,.,,_,, and V,.,.. To this end, write for x € (0,1) fixed

/nl)(Vk:n—m - M‘l)] + By

Vinem = ol[((n -m+ 1)1/2

and
Vien = 00[((” + 1)1/2/770)(Vk:n - Ho)] + ko>
where
p=kx/(n-m+1), py=k/(n+1),
ol=k(n-m-k+1)x%(n-m+1)°, o2=k(n—k+1)/(n+1)>
w=k(n-m-k+1)/(n—m+1)? n2=k(n—k+1)/(n+1).

Notice that p, and 62 depend on x.

Now, application of a second-order normal approximation as given in Proposi-
tion 2.10 in Reiss (1981) (with slightly different standardizing constants) yields
for x € (0,1),

P{xV,.,_, € B} - /};(1 + Ly((y = 1) /0,))N(ny, 0{")(dy)]

sup
BeB
<C(n—m)/(k(n—k—m+1))
and
sup | PV, € B} = [ (1+ Ly((y = 1) /) N(po, 06")(dy)‘
BeB B

< Cn/(k(n - k)),
where for y € R,
Li(y)
= [(n -m-2k+1)/(k(n—k—-—m+1)(n—m+ 1))1/2]((3'3/2) -)
and

Ly(y) = [(n = 2k + 1) /(k(n — k + 1)(n + 1))*]((5*/2) - »).
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Consequently,
f sup |P{ka:n—m € B} - P{Vk:n € B}l(P*Un—m+1n)(dx)
BeB
< [ sup IN(u, 67)(B) = N(ko, 3 )(BI(P*U,_p1.0)(dlx)
€B

+ [ILA(y = ) /01) = Lo((3 = 1) /1)

XN(py, 07 )(dy)(P*U,_ py1:0)(dlx)
+ ILo((5 = m)/01) = Lo((3 = 1) /35 )

XN(py, 07 )(dy)(P*U,_ p41:0) ()

'/;?Lz((y - #0)/00)N(ﬂ1, of)(dy)

+f s |
= [ La((3 = #0)/00)N(po, 0 )(d9) |(P*U, _ps1.0)(d)
+Cl(n—m)/(k(n—k—m+ 1)) + n/(k(n — &))]

= [ sup IN(u, o7 )(B) = N(ito, 0§ )(B)(P*Up ) ()

(2.7)

+ [IL(5) = Ly( 3N, 1)(dy)(P*U, _p.1.,)(dx)

+ ff|L2(y) = Ly((01/00)x + ((1y — 10)/3p))l
XN(0,1)(dy)(P*U,_ 41.,)(dx)

S AN = 20) /30, (11 /0)7) ()

+f o
= [ LN, 1)(dy)
+C[(n—m)/(k(n—k —m + 1)) + n/(k(n — k))]

= A+ +A,.

We will show in the following that A; < C{km/(n(n — k — m + 1))}'/? for
i=1,..., 4,
First, we deal with A,. Application of Corollary 2.3 yields

Ay = C [ (1 = ol /00) + 1(00/01) = U(P*U, . 1.,) (k).

(P*Un—m+1:n)(dx)

Put
a,={(n-m+1)/(n+ 1)} (n-k+1)/(n—k—m+ 1)}
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and
b, = {k(n+1)/(n—k+1)}"2
Then
[y = Bol/00) + 1(00/01) = L(P*Uy_ 1) (dx)
= b,((n +1)/(r = m + D))E(U,_psrin =~ (R = m + 1)/(n + 1))

+E<|(an/Un—m+1:n) - ll)’
Now, the first integral is bounded by [see formula (3.1.7) of David (1981)]

b((n+1)/(n—m+1))
XE([Uymirin = (n = m + 1) /(n+ D))"
(2.8) <b((n+1)/(n—m+1))(n-m+1)"’m"2/(n+1)"*
< {km/((n-k+1)(n-m+1))}"
< {(km/((n+1)(n-k-m+1))}"%
Moreover [see formula (2.1.6) of David (1981)],
E((an/Up_merin) — 11)
= [n!/((n — m)!(m - 1)!)]/01|an —xx” Y1 - %)™ dx
= (n/(n-m))E(a, - U, _p.n1l)
< (n/(n=m)E((a, = Uy pen-1)’)
< (n/(n- m)){(n -m+ 1)’ m2n"¥2 + |a, — ((n — m)/n)|
< C{km/(n(n -k —m + 1))}'/%.

(2.8) and (2.9) now imply that A, < C{km/(n(n — k — m + 1))}}/%
Next, we deal with A,. Obviously, it suffices to show that

[(n = m =2k +1)/(k(n - k= m+1)(n - m + 1))

(2.9) 2

(2.10) ~[(n 2k + 1)/(k(n— &+ 1)(n + 1)
< C{km/(n(n -k —m+ 1))}
To this end write
[(n -m—2k+1)/(k(n—k—-m+1)(n—m+ 1))1/2]
~[(n = 28+ 1)/(k(n — &+ 1)(n + 1))"]

={(n—-k-m+1)/(k(n-m+1)}"> = {(n—k+1)/(k(n+1))}*

+{k/((n—k+1)(n+1))}"
—{k/((n—k—m+1)(n—m+ 1)}
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Now, it is easy to see that each of the last two terms in the above sum is
bounded by C{km/(n(n — k — m + 1))}*/%
Moreover, elementary computations yield that also

[{(r =k = m+1)/(k(n = m+ 1)}~ ((n~ k+1)/(k(n+1))}"*]

< {km/(n(n -k — m + 1))},

which completes the proof of (2.10).

In analogy to the proof that A, < C{km/(n(n — k — m + 1))}'/? one shows
that this bound is also valid for A;. Thus, it remains to deal with A,.

First, notice that the coefficient of the polynomial L,, ie., (n — 2k + 1)/
(k(n — k + 1)(n + 1))/2, is uniformly bounded. Moreover, application of Prop-
osition 2.2 to g = 13L, with p = (p; — p)/0,, 6 = 06,/0, yields

j;ng dN(p, 0?) — j]‘BL2 dN(0,1)

< ClI(op/01) = 1] + (I = 1ol /0p)],
if [(6p/0;) — 1| < 1/5 and |u, — po|/0y < 1. Otherwise,

’fBL2 dN(p, %) — fBL2 dN(0,1)

< C[ J el + )N (g, 02)(dx) + 1]

< C(e® + |u?).
Now, notice that from the assumption m <k <n - m + 1 we obtain
m < (n+1)/2 and thus, o remains bounded, ie., 0% < C|(0,/0,) — 1|3 if

|(0o/0,) = 1] > 1/5.
Together we obtain

A< Cﬁ(oo/ol) =1 + (uy — pol/0p)

+(lpy - No|/°0)3(P*Un—m+1:n)(dx)-
In analogy to the proof that A, < C{km/(n(n — k — m + 1))}'/2 one shows that

this bound is also valid for the above integral. This completes the proof of
Theorem 1.3. O
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