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KILLING A MARKOV PROCESS UNDER A STATIONARY
MEASURE INVOLVES CREATION!

By R. K. GETOOR

University of California at San Diego

We construct the Kuznetsov measure associated with an excessive mea-
sure, m, and the semigroup of a process killed according to a multiplicative
functional, M, in terms of the Kuznetsov measure corresponding to m and
the original semigroup and certain functionals coming from M. We also
obtain an explicit decomposition of m into its invariant and purely excessive
parts relative to the killed semigroup. This decomposition involves objects
related to the fine structure of M that have been introduced in recent years.

1. Introduction. One of the oldest constructions in the theory of Markov
processes is the killing of a process by means of a multiplicative functional. The
standard methods for this construction go back to Dynkin and Meyer and are
described in Section III-3 of [2]. In recent years there has been considerable
interest in studying a Markov process under a stationary (generally not finite)
measure. See, for example, [4], [5], [13] and [18]. The purpose of this paper is to
study the killing construction in this framework. If M is the multiplicative
functional in question, then it is not surprising that the killing rate is (in some
sense) given by —dM,, nor is it surprising that if stationarity is to be preserved,
then the killing must be balanced by birthing (or creation). What is surprising is
that the creation rate is (in some sense) given by d(1/M,).

To be more precise let X be a Borel right process and m be a o-finite
excessive measure for X. Then there exists a stationary measure @,, on two-sided
paths Y with the same transition mechanism as X. This is described in Section 2.
Let M be a multiplicative functional of X and let K = (K,) be the semigroup of
the process killed according to M; that is, K,f(x) = P*[ f - X,M,]. Then there
exists a stationary measure @* corresponding to m and K, and the purpose of
this paper is to express @* in terms of @,,. It turns out that @* is obtained from
Q,, by killing and birthing. The construction of @* in terms of @, is carried out
in Section 4 and the interpretation as killing at rate —dM and creation at rate
d(1/M) is given in Section 5. Of course, this must be appropriately interpreted
since M may vanish and M is only defined over X (one-sided paths). Roughly
speaking, the Kkilling and creation rates are given by —dM and d(1/M) ap-
propriately shifted in each interval on which the shifted M does not vanish. See
Section 5 for the precise statements.

This investigation was suggested by the following observation of P. J.
Fitzsimmons (oral communication). Let M, = e %, 0 < ¢ < . Let U and V be
“random variables” independent of Y under @, with distribution

Q (Uedu,Vedn)=q?e "1, _, dudv.
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Then if (P,) is the semigroup of X, the stationary measure corresponding to m
and K, = e %P, is obtained from @,, by “birthing Y at U and killing it at V.”
The results in Sections 4 and 5 are the extension of this observation to general
M. See especially the particular case described at the beginning of Section 5.

Section 2 contains the precise assumptions we make on the process X. It also
contains the description of the associated stationary process (Y, @,) and its
relationship to X. In Section 3 we give the definition of a multiplicative
functional and then describe its extension to a functional over (Y, @,,). This
follows Mitro [16], [17] and is more or less known. The main results are in
Sections 4 and 5. Actually, the stationary measure @* described above and in
Sections 4 and 5 corresponds to the semigroup K = (K,) and m* the restriction
of m to the set E,, of permanent points of M rather than K and m. The
measure m* is (K,) excessive and in Section 6 we describe the decomposition of
m* into its (K,) invariant part, m¥, and its (K,) purely excessive part, m}. The
expression for m* in Theorem 6.16 is quite interesting as it involves several
quantities related to the structure of M. Finally, there is an Appendix in which
some of the results in [10] about homogeneous random sets and measures
associated with a multiplicative functional are extended to the stationary pro-
cess (Y, @,,). These results are used in Sections 5 and 6 and should be reviewed
before reading these sections. Logically, the Appendix might come directly after
Section 3 but the results it contains are not needed in Section 4.

Most likely there should be analogous results for the “birthing” construction
associated with a comultiplicative functional as described in [7]. This is currently
being investigated by my student E. Toby.

Our notation is for the most part standard. For example, Q, R, R* denote the
rationals, the reals, the positive (i.e., nonnegative) reals, respectively. If (E, &) is
a measurable space b& (p&) denotes the bounded (positive) &measurable
functions while &* denotes the o-algebra of universally measurable sets over
(E, &). If u is a measure on (E, &) and f € p&, then fu or f- p denotes the
measure f(x)u(dx). If (F, %) is another measurable space and ¢: E — F, we
write ¢ € &/F if ¢ is a measurable mapping (¢~ (F) C &), and in this case
é(p) is the image of p under ¢; that is, the measure on (F, #) defined by
o(p)(A) = u(¢Y(A)) for A € #. If E is a topological space, Z(E) denotes the
o-algebra of Borel subsets in E; that is, the o-algebra generated by the open
subsets of E. The end of a proof is marked by the symbol “0.”

2. Preliminaries. Let E be a Borel subset of a compact metric space and &
the o-algebra of Borel subsets of E. Let a and b be distinct points not in E and
define E¢=E U {a}, E,= E U {b} and Ef = E U {a, b}. Topologize E; so
that E has its original topology and a and b are isolated points in E;. We
regard E¢ and E, as subspaces of EZ and we let ¢, &, and & denote the
Borel o-algebras in these spaces. A function f on E is automatically extended to
EZ by f(a) = f(b) = 0 unless explicitly stated otherwise.

Let © be the set of all right-continuous trajectories w: R*— E, with b as
cemetery. As usual X,(w)= w(t), 60(s)=w(t+s), F°=0(X,t=0) and
F=0(X,, 0<s<t) We assume given a Borel right process X =
(Q, F°, #°, X,,6,, P*) in the sense of [6]. Let (P,),., and (U?), , denote the
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transition semigroup and resolvent of X, respectively. Here P, = I and we write
U= U° Let { = inf{t: X, = b} be the lifetime of X and P® denote unit mass at
[b]—the trajectory that is identically equal to b.

Denote by W the set of all maps w: R — Eg such that there exists a nonvoid
open interval Ja(w), B(w)[ on which w is E-valued and right continuous, with
w(t) = a if t < ae(w) and w(t) = b if ¢t > B(w). In addition, we suppose that W
contains the constant maps [a] and [b]. (Note that [b] is used in two senses:
[b] € Q is the constant map defined for ¢ > 0 while [6] € W is the constant
map defined for — oo < ¢t < c0. This should cause no confusion as the meaning
will be clear from the context.) Let Y,(w) = w(¢) be the coordinate maps on W
and fw(s) = w(t + s). Here Y, and 6, are defined for ¢ € R. Note again that
6, is used for the shift in W and in Q. Let ¥°=0(Y; t€R) and ¥ =
o(Y,, —oo <s <t) Observe that a(w)=sup{t: w(t)=a} and B(w) =
inf{¢: w(t) = b}, where the infinum and the supremum of the empty set are
+ o0 and — oo, respectively. Taking this as the definition of « and 8 when
w = [a] or [b] gives a([a]) = + o0 = B([a]), a([b]) = — o0 = B([&]). In particu-
lar, « and B are (¥°.) stopping times in the sense that {a < ¢} and {B < t} are in
@0 for each t € R. Clearly, ac,=a—t and Bo8,= B —t for ¢t € R. For
typographical convenience we shall sometimes write Y(¢) for Y, and X(¢) for X,.

The spaces 2 and W are related by the mappings y,; W — Q defined for ¢ € R
as

(2.1)

yw(s) =w(t+s), fors>0if a(w) <t¢,

=b, fors > 0if a(w) > ¢.

Clearly, if t€ R, v,=vp°0, If a <t, X,0v,=Y,,,andif a <t <P, {oy,=
B < 0,. Note that v, is 92 ,/%.° measurable for each s > 0 and ¢ € R. One easily
checks the following useful identities:
2.2) (i) v,°0,=7,.s, onWioralls,t€R,
) (i) 6,°v,=7v,,s» on{a<t)fors>0,¢t€R.

If m is an excessive measure for X (that is, m is o-finite and mP, < m for each
t > 0), then it follows from a theorem of Kuznetsov [12], see also [13] or [9], that
there exists a unique measure @,, on (W, ¢°) not charging [a] or [b] such that if
teRand F € pF°, then

(2.3) Qu(Fov)9.) = PYO(F), on{a<t).

Moreover, @, is o-finite. Of crucial importance is the fact that @, is stationary;
that is, 6,(Q,,) = Q,, for each ¢t € R. In addition, Y is strong Markov under Q,,.
To be precise let ™ be the completion of ¥° under @,,, and for ¢t € R let ¥
be the ¢-algebra generated by ¥ and the ideal of all @,, null sets in ¥™. The
filtration (¥,™) is right continuous. A map 7 from WtoR U {— o0, + 0} isa @,
stopping time provided {r < ¢t} € 4" for each ¢ € R, and for such 7 let 4™ be
the associated o¢-algebra (i.e., all sets G € ¥™ such that G N {r < t} € g for
each ¢t € R). Then if F € p#° and G € p%™, one has

T

(2.4) . Q.[FovG; a <] = Q,[P*(F)G; a <],
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and Q,, is o-finite on the trace of 4" on {a < r < B}. This may be proved as in
[15]. See also [13].
We shall call @,, the Kuznetsov measure corresponding to (FP,) and m.

3. Multiplicative functionals. Let M = (M,),. , be a right-continuous ex-
act multiplicative functional of X with 0 < M(w) < 1foreach > 0and w € Q.
In light of Meyer’s master perfection theorem [14], we may suppose that M has
the following properties:

(3.1) t > M,(w) is decreasing, right continuous and
has values in [0, 1] for each w € {;
(3.2) M(w) =0, ift<{(w) and M,([b]) =0, forallg
(3.3) M,, (0) = M(w0)M/(0,w), foreacht, s >0and w € Q;
(3.4) M,e F*= (\%*, foreacht where #* = (£°)*;
s>t
(3.5) lsii'%Mt_s(asw) = M,(w), foreacht>Oand w € Q

In the sequel a functional satisfying (3.1)—(3.4) will be called a multiplicative
functional (MF) and an exact MF is an MF which satisfies (3.5) in addition. It is
immediate from (3.3) and the zero—one law that for each x either P*(M, = 1) =1
or P*(M,=0)=1. The set E, of permanent points of M is defined by
E, = {x € E: PX(M,=1)=1}. Then x is not in E, if and only if almost
surely P*, M, = 0 for all ¢ > 0. Also (3.3) and (3.5) imply that s — M,_(6w)is
increasing and right continuous on [0, ¢[ for each ¢ > 0 and w € .

We are going to define certain functionals on W in terms of M. We suppose
that M is an MF of X, but we do not assume that M is exact for the moment.
Define for a(w) < s < ¢,

(3.6) N(s,t) = N(s, t; w) = M,_,(yw), if a(w) <s<t,
=1, ifa(w) <s=t.

The following lemma collects some elementary properties of N(s, t).
(3.7) LEMMA. (i) s - N(s, t) is increasing on Ja,t[, and N(s,t) =0 if
a<s<fB<t

(i) If « <s <t <u, then N(s,u) = N(s, t)N(t, u).
(iii) Let 9* = (9°)*. Then N(s,t) € 9%.
(iv) If, in addition, M is exact, then s — N(s, t) is right continuous on e, t[.

PrROOF. We leave the straightforward verification of the first three properties
to the reader. For (iv) suppose a < r < s < t. Using (2.2)(ii)
Mt—s °Ys = Mt—r—(s—r)(os—r ° Yr) - Mt—r °Yrs

as s decreases to r since M is exact. Hence s = N(s, t) is right continuous on
le, ¢[, proving (iv). O
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We next define a functional N,(w) for ¢ € R that we regard as the extension
of M from Q to W. For t € R define

N, =inf{N(s, t); a < s < t} = limN(s, t), a<t,
(3.8) sla
=1, t<a.
Thus N, = N(a + , t) if a« < t and we extend the definition of N(s, t) by setting

N(a,t) =N,=N(a+,t), ifa<t,

(3.9)

N(s,t) =0, ifs<a<t.
Note that N, = 0if £ > B because of (3.2). It follows from (3.7)(ii) that
(3.10) N,= N,N(s,t), iffa<s<t.

In particular, ¢ — N, is decreasing, N,=1if t <a, and N,= 0 if £ > B. Since
t = N(s,t) = M,_, oy, is right continuous on [s, oo[, it follows from (3.10) that
t — N, is right continuous on ]a, cof.

(3.11) PROPOSITION. The function t — N, is right continuous and decreasing
on Ja, o[, it equals one on ] — oo, a] and zero on [ B, o[. For each t, N, is
Y,*-measurable. Let N, = lim,, N, =sup,. ,N,. Then N, is either zero or

sla''s

one and if N,,= 0, one has N,= 0 forallt > a. If a < s + ¢,
(312) Nt+s = Ivtoos'

PrOOF. The assertions in the first sentence have already been checked and
the measurability assertion is immediate from (3.7)(iii). Let s decrease to « in
(3.10) to obtain N, = N, N, and letting ¢ decrease to &, N, = (N,,)>? Clearly,
N,=0forall t>aif N,,=0.If «a <t+s,then aof, <t andso

s

Ivtoas= lim Mt—r°Yr°0 = }’iglth+s—(s+r)°Ys+r

rlacb, r
= linlMt+s—u °Yu = Ivt+s‘ O
ula

We next give two examples. Let ¢ > 0 and M, = e” %1}y (((¢). If a < ¢, then
Nt = lim e_q(t_s)l[()’goys[(t - S).

sla
Since a(w) < t, w # [a]. If w =[b], then {oy,[b]=0s0 N(b])=0.If w+
[b], then @ < s < 8 for s close to a and { oy, = B°0,, so

(3.13) N,=e® 01, _p, ifa<t,

in all cases because a([b]) = — oo. Note that N, = 0 on {a = —o0}.

For our second example let R be a perfect terminal time for X. To be precise
we suppose, as we may without loss of generality, that {R < ¢} € #,¥ and
t+ Ro0,=R on {¢t <R} for each t € R*. Note that R([b]) is either zero or
infinity. Clearly, M, = 1;, g A (((?) is an MF of X. Following [5] define

(3.14) R*(w) = inf{t + R(yw): a(w) < t}.
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In [5], Fitzsimmons and Maisonneuve use R in place of R*. One checks easily
that R* > a, t + R*o0,= R* for all ¢t € R, and that R* is a (9,*) stopping
time. The next proposition gives some additional properties of R* and relates it
to N.

(3.15) PROPOSITION. Let R and R* be as above and let M, = 1p, p  ¢((2).
Then:

(i) t > t+ Ry, is increasing on ]a, o[ and so R* = lim,, (¢t + Rovy,).
(i) R*=t+ Rovy,if a <t<R*
(iii) Nt = ].]a’ R*/\B[(t) if a < t.

Proor. Note first that if £ > 0, then ¢ + R° 6, > R. Therefore if a < s < ¢,
one has
t+Rey,=s+(t—s)+Reb,_,oy,>s+Roy,,

which proves (i). Now if a < ¢, it follows from (3.14) that R* <t + Rey, If
a<s<t<R*then0<t—s<R*—s<Rey,and so

t+Roy,=s+ (t—s)+Rof, ,oy,=s+Roy,,

because R is a terminal time. This and (i) establish (ii). For (iii) suppose first
that a < ¢t < R*. Then

Ivt =AMMt—s °Ys = E&l[s,s+(RA§)oys[(t)

sla
= liigl[s,kmﬁ[(t) = 134 rea pr(2),
where the third equality follows from (ii). If « < tand R* < t,then¢> s+ Reoy,
for all s “close to a.” Therefore
Nt = lith_s°'Ys = 1im1[0,(R/\§)°Ys[(t - S) = 0.
sla sla

Hence t > N, and t — 1;, g+, (%) are right continuous and agree on Ja, oof
except possibly at R* by the above. This establishes (iii). O

We now fix an exact MF, M. We recall some basic facts from [2]. Let (K,),. ,
be the semigroup of the process (X, M), that is, X killed according to M. Thus

(3.16) K.f(x) = P*[f° X,M,].

Let (V?) be the resolvent of (X, M) or (K,) so that

(3.17) Vf(x) = fooe“”th(x) dt = Pxf°° e~ o X,M, dt.
0 0

Since M is exact, VIf is nearly Borel and finely continuous on all of E. Hence
E, = {V'1 > 0} is nearly Borel and finely open: Also 1g, (x) = P*(M,). It is
clear that K(x, ) = 0if x & E,,, and it follows that K,f = K,(f - 15, ). Conse-
quently, the measure K ,(x, -) is carried by E,, foreach t > 0and x € E. Let m
be an excessive measure (for X), and let m* = 15 - m. Then m*K, = mK, 1 m*
as ¢ |0 and so m* is excessive for (K,).
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In the next section we shall express the Kuznetsov measure @* corresponding
to (K,) and m* in terms of @,, and M. Strictly speaking, one cannot apply
Kuznetsov’s theorem to construct @* on the space of two-sided paths in E,,
since E;,; need not be Borel. [The remark (1.1) on page 1397 in [13] is incorrect.]
However, one may apply the methods of [9] to construct @* on the space W
defined in Section 2 (two-sided paths in E). Then @* is the unique measure on
(W, 4°) not charging [a] or [b] such that for ¢, < -+ <,

Q*(a<t,Y, €dx,,...,Y, €dx,, t,<p)

(3.18)
= m*(dx1)Kt2—tl(x1s dxy) - - Kt,,—t,,_l(xn—l’ dx,).

Alternatively, one may regard Theorem 4.9 as another method for constructing

Q*.

4. The construction. In this section we fix an exact MF, M, of X and an
excessive measure m. We use the notation in the last two paragraphs of Section
3. As explained there we are going to represent @* in terms of @,, and M. In this
section we give the construction and in Section 5 we investigate the mechanism
underlying the construction.

Recall from (3.7) that s = N(s, ¢) is increasing and right continuous on ]Ja, [
and has the value 1 for s = ¢. Define for each ¢t € R,

(4.1) p(ds) = p(w, ds) =1y, »(s) d,N(s, t).

Thus p, is a measure carried by ]e, t] of total mass p,(1) = 1, 4(1 — N,) since
lim,, ,N(s, t) = N,. Also p, is a kernel from (W, %%) to (R, 4(R)) in light of
(3.7)(iii). Next if a < ¢, u » N(t,u) = M,_,° v, is right continuous and decreas-
ing on )¢, o[ with N(¢, B) = 0 and N(¢,t+ ) = M, ey, For each ¢ € R define a
measure p(du) = p'(w, du) on 1¢t, B] by

(4.2) p(du) = 1{a<t}1]t,ﬁ](u)[_duN(t7 u)].

Thus p’ is carried by ]¢, ] and has total mass M ° 1, <, <p)- Since My ey, is
either zero or one, p’ is either a probability or zero. Note that p‘ may charge + oo
when B = +oo0. If a <t < B, p({B}) = N(t, B — ) =lim,, gM,_,0v,= M;_°7v,,
because B o8, = {°v, in this case. Moreover, p‘ is a kernel from (W, 9*) to
(¢, ], Z(]t, 0])). Here 9* = (¢°)*.

If s<t let R(s,t) = R(s, t, w) =]a, s] X ]¢, B]. Define a measure
0% {(du, dv) = p*Yw, du, dv) on R(s, t) by

(4.3) 0% (du, dv) = 1y <, <pyN(s, t)p,(du)p*(dv).

It sometimes will be convenient to regard p*! as a measure on ] — o0, s] X
1¢, + o] that is carried by R(s, t). Note that if F is a positive Borel function on
R X ] — o0, 0], then p* ¥ F) is ¥* measurable as a function of w.

(44) LEMMA. Lets < tand ¢ < 1. Then p>*= p>" on R(s, t) N R(o, 7).
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ProoF. Since R(s, t) N R(o,7) = R(s A o, t V 1) it suffices to show if a <
s<t<pPand a<o<7<8§,

(1) p*t=p"" on R(o,t)if o <s <t,

(i) p>t=p"" on R(s,7)ifs <t <.
For (i) suppose a < u;, < u, <o and t < v; < vy, and let ' =]u,, u,] X Jo,, 0,].
Then
(4.5) p>T) = N(o,t)[N(up,0) = N(uy,0)] x [N(t,0,) = N(¢, v,)].

But N(o, t) = N(o, s)N(s, t) by (3.7) and so using (3.7) again p”{(T") = p*>4T).
Consequently, by the monotone class theorem p”! = p** on R(o, t). The argu-
ment for (ii) is similar. O

Since (@ denotes the rationals)
H={(wo):a<u<v<p)= U R(s,0),
s<t; s,teQ

it follows that there exists a unique o-finite measure p(du, dv)-on H such that
for any s < ¢, p(du, dv) = p>%(du, dv) on R(s, t). We shall usually regard p as a
measure on | — o0, oo X] — o0, co] that is carried by H.

For each w € W define a measure A(du, dv) = Mw, du, dv) on {(u,v):
—0 <u<v<oo}by
(4-6) }‘(dus dv) = 1(—wsu<vsao}[8a(du)(_dNo) + p(du, dD)] .

Recall that v — N, is right continuous and decreasing on Ja, oo[ and N, = 0 if
v > B. As a result A is carried by {(u, v): @ < u < v < 8}. It will turn out that
Q* is obtained from @, by “birthing and killing Y~ according to A. More
exactly, let W= W X {(u,0): —o0c <u<v=< o0}, and write @ = (w, u, v) for
the generic element in W. Define U(®) = U(w, u,v) = u and V() =
V(w, u, v) = v. For each ¢t € R define
Y (@0)=Y,(w,u,v) =Y(w), ifavu<t<BAo,
=a, ift<aVu<pBAo,
(4.7) =b, favu<pBAaro<t,

=a, ifa >0,

=b, if B<u.

Note that if # < vo,then AV < a V ulfandonlylfelthera > vorf < u Also
that for each @ the function ¢ — Y( w) is in W and if & = sup{t: Y, = a} and
= inf{&: Y, = b}, thend=aVv Uand f=8A VprowdedavU<B/\ V.
Let % denote the Borel c-algebra in {(u,v): -0 <u <v< oo} and let
G = @* X %B. We define a measure @ = Q,, on (W, 9) by

(49) Q) = [{ [Fw,u,0\w, du, d0) @ (d),
for F € p(%). Since Q is carried by (a < U < V < B} one has @ = Uand =V
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a.s. Q. The process (Y;)ten under the measure § is the precise meaning of Y
under @,, birthed and killed according to A. Here is the main result of this

section.

(4.9) THEOREM The processes (Yt, Q) and (Y,, Q%) are equivalent; that is,
ift, < - thenQ(a<t1,Y € dx,,.. Ynedx t, < B) is given by the
right-hand szde of (3.18).

(4.10) REMARK. Perhaps a better way of stating (4.9) is that if &: W > W
by ®uw(t) = Y(ib), then ®(Q) = Q*. This, of course, follows from (4.9) and the
uniqueness of @* subject to (3.18) once one observes that ®(§) does not charge
[a] or [b]. One may also regard ®(Q) as an alternative construction of Q*.

We prepare several lemmas for the proof of Theorem 4.9. The first of them is
the key technical fact that we need.

(4.11) LEMMA. For eacht <€ R, Q(U =)=

ProoF. First QU =t<a) < Q,(a =t)=0. Thus it suffices to show
Q(a<t=U)=0.But

Qa<t=U)=@(a<U=t<V<p)
EQm[j; - f< o 1(,}(u)p(du, dv)§ 01<t<,3]

- Qm[p({t},]t,oo]); a<t<pl
- Qm[}ligltp({t},]u,oo]); a<t<p]

Now if a < t < u < B one has

e({t}, Ju, 00]) = N(¢, u)p,({t})p*(Ju, »])
= N(t’ u)[]- - N(t ) t)]M0°'Yu

= Mu—to YtMO °Yu [1 - E?}Mt—s ° Ys]’

and M,_,oyMyoy,=(M,_,My°0,_,)°y,=M,_,°v, Therefore letting u de-
crease to t we obtam

(4‘12) Q~(a <t= U) = Qm[MOOYt(l - liith—SOYs); a<t< B]y
st

since M,,_,° v, increases to M, c vy, as u decreases to ¢. Next choose f € & with
0<f<1land m(f) < c.Let g = U'f. Then 0 < g < 1, g is finely continuous,
and m(g) = mUY(f) < m(f) < o. Observe that

Q.[g°YM,°v,] = Q,[PYO)(Myg - X,)] = m(1,,g) = m*(g).
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Also s » M,_, o v, is increasing on ]a, {[ and so

[goYM v lmM,_ 078]
= lslﬁr;Qm[gﬂCMow,M,_sWs; a<s]
= lsitTng[g° X, o ¥(Myob,_ M, )ov,; a<s]
= ﬁQO[PY(s)(go X, M, )] = limmK,_sg.

But K, g > g-1g, as s1¢ since g is finely continuous and bounded. Also
sinceg=U',K,g<Pg<eg<egifr <1 Butm(g) < o andsomK, .g—
m(g - 1y,) = m*(g) as s increases to ¢. Combining these facts with (4.12) and
the fact that g > 0 we obtain @(a < t = U) = 0, proving (4.11). O

(4.13) REMARK. One may also show that ~Q~(V = t) = 0. But this will be an
immediate consequence of Theorem 4.9 since 8 = V as. Q.

(4.14) LEmMMA. (i) Almost surely @,, on {a <s <t < B}, A(U.< s, t<V)=
N(s, t). (ii) Almost surely @,, on {a <s < B}, \U <s<V)=M,;cy,.

Proor. Since Q,[AMU = s)] = QU = s) = 0 by (4.11), it suffices to com-
pute for a < s <t <,

AMU<s,t<V)= N+f f p(du, dv)
Ja, s]1V]t, 0]

= N, + N(s, t)p,(1)p"(1) = N, + N(s, 1)(1 = N,)My°v,.

But N(s, t)(1 — N,) = N(s,t) — N,. Letting t decrease to s in (3.10) and then
replacing s by ¢ one finds N, = N,M, ° v,. Consequently,

MU<s,t<V)=N(s,t)Myoy,=M,_,°v,My°6, .,
| M, o7, = N5, ),
proving (i). For (ii)
AMU<s< V)=ltii1;>\(U<s,t< V)=lti}1;M,_soys=M0°ys. a

We are now ready to prove (4.9). If f € pé&,
Q(fY,) =Qu[fYANU<t<V)]
= Qul foY.Myov,] = Q[ f <Y, P™(M)] = m*(1).
Next suppose s < t and f, g € p(&). Then
Q[foYgo¥]=QulfoYgoYsU<s, t<V]
= Qm[ f oy;go Xt—SOYth—s o'ys]
= Qm[fOYsKt—ngYs'] = m( fKt—sg)'
But K,_/(x,:) = 0if x ¢ E;; and so this equals m*( fK,_.g).
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Now suppose as an induction hypothesis that we have established that (3.18)
holds for a fixed n — 1 with @* replaced by @ and Y by Y. Given ¢, < -+ <
t,_1 <t,and f,,..., f,_1, [, EPE,

Q[l'llffi,] =Q, l_[lfj°Ytj; U<t,t,< V]
J= [ -

~

= Qm ].:[ ijYth(tl, tn)]

S
-

= Qm ]._[1 fjoY'th(tl, tn—l)fnoyvt"N(tn—l’ tn)]'
J:

But f,°Y, N(¢,_1,t,) = (o X, _,, M, _, )%, , and the remaining terms
are 9,* -measurable, and so this last expression equals

n—1
Qm[ ]._.[1 fjoyvtht,,—t,,_lfn OY;"_IN(tI’ tn—l)]
j=

= f T fm*(dxl)Ktrtl(xv dxy) - Ktn—tn_l(xn—l’ de,) fi(x1) < folx,),
where the last equality follows from the induction hypothesis. O

(4.15) REMARK. One may easily check that for each ¢ € R, p(du, dv)< 6, =
p(du + t,dv + t) and that A satisfies the same identity. Thus p and A are
examples of what Dynkin in [3] calls homogeneous additive functionals of order
2. (Dynkin requires that his functionals are carried by Ja, B[ X ]a, B[.)

5. The interpretation of \. In order to motivate the main result of this
section we shall consider first a very special case. We fix an exact MF, M, of X as
in Section 4. We suppose first that the associated N does not vanish on Je, BI[.
The example (3.13) shows that this is stronger than assuming that M does not
vanish on [0, {[. Under this assumption N(s,t) = N,/N, on a<s<t{t<§f
according to (3.10). Therefore if a« < s < ¢t < B one has p/(du) =
14,,s7(#)N; d(1/N,) and p'(dv) = 1y, gy(v)(N,) (= dN,). Consequently,
p(du, dv) = 1,y <,<py d(1/N,)(—dN,) and hence

(5.1) Mdu, dv) = 1z y<pep€a(du) + d(N,)')(=dN,).

This says that “particles representing Y are born at « and then killed at rate
—dN, and, in addition, are born in the interval ]a, B[ at rate d(N,) ! and then
killed at rate —dN,,.

We turn now to the general case. Let S = inf{¢: M, = 0}. Then S < {and S'is
a terminal time which need not be exact. Let H and J be the homogeneous
random sets on © and W associated with S as defined in the Appendix. See (A.3)
and (A.1). Let G be the set of left endpoints in ]a, B[ of the contiguous intervals
of J in Ja, B[; that is, the maximal open intervals in ]a, B[\J. If d = inf{u:
u€J} A B as defined in (A5) and if a < d, then ]a, d[ is also a contiguous
interval, but a & G. In any case we may write

(5.2) le,pl =JUla,d[u U Ir,4,L,

reG
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where d, = inf{u > t: u € J} A B is defined in (A.5). Of course, s, ¢[ is empty if
t < s. It will be convenient to define G, =G if a =d and G, = G U {a} if
a < d. Thus G| is the set of all left endpoints of the intervals contiguous to ¢/ in
la, B[. Note that d, = d and that — o0 is in G, when a = —c0 < d. Let A(dt)
be the optional HRM (of X)) carried by ]0, {[\ H such that

. 1
M| 57|, on oL

introduced in the Appendix. See (A.8) and (A.9). Let « be its extension to W as
defined in (A.10). Then « is carried by Ja, B[\J. Moreover, if a < r < d, and
r & J, then on [r, d,[ one has

K(dU) = A(Yr’ du — r) = _(M(u—r)—oyr)_lduMu—royr

(5.3) A(dt) = -

-

(5.4)
= u—royrdu(Mu—ro.Yr)_l’
because u — r < d, —r=Doy,= Soy, by (A.6)(ii). Finally, (5.4) also holds if
r € J provided S is exact so that S = D.
Let us return for a moment to the situation in which N, does not vanish on
]a, B[. Then J is empty and G, = {a}. Using (5.4) we see that if « < r < B, then
d, = B and on [r, B[ one has

k(du) = Nud(Ni), k(dv) = —(N,_)"'dN,.

Recall from (3.9) that N(«,u) = N(a +,u) = N, and note that the mass of
—dN, at B is N,_ since N; = 0. Therefore we may write (5.1) in the form
(5.5) A(du, dv) = [e(du) + k(du)] N(u, v —)[x(dv) + eﬁ(dv)],

on u < v. It is this formula that we shall extend to the general case.

The basic calculations are contained in the proposition. We need the defini-
tion
(5.6) g =sup{u<tuecd}Va,
where the supremum of the empty set is minus infinity. Since ¢/ is closed in
Jo, B[, g,€Jifa<g,<B,anda<g, <t

(5.7) PROPOSITION. Let a <s < B. Then p, is carried by [g,, s] and

(5.8) pu(du) = N(u, 8)[135, o (w)x(du) + e,(du)iy . o]
Let a <t < B. Then p' is carried by 1¢, d,). If t € J, then
(5.9) p'(dv) = N(¢t,v _)[l]t,dt[(v)"(dv) + 1(t<dt}£d,(dv)]'

If S is exact (5.9) also holds for t € J.

PROOF. Suppose u < g,. If g, =a, then N(u,s) =0. If a <u < g,, then
d,<g,<s and so s—u>d,—u=Doy,>Soy, Therefore N(u,s)=0
whenever u < g,. In particular, p, is carried by [g,, s]. We next claim that

(5.10) L., s(w)o,(du) = N(u, s)e(du)ly, (u).



576 R. K. GETOOR

If s € J, g, = s and this is clear. Suppose s & J. If g, <t <s < 3, then s <d,
since J is closed and ¢t € J,andsofort <u <s,u—t<d,—t=Doy,=Se°v,
Therefore N(t,u) # 0 and N(u, s) = N(t, s)[N(¢, u)]"'. Hence on ]¢, s] using
(5.4) we obtain
p,(du) = N(t,s)d,[N(t,u)] " = N(u, s)x(du),

establishing (5.10) since ¢ €]g,, s[ is arbitrary. But p({g,}) = N(g,, s) since
N(u, s) = 0 if u < g,. Combining this with (5.10) we obtain (5.8) because p; is
also carried by ]a, s].

If v>d, then v — t > Doy,> Sey, and hence N(t, v) = 0. Therefore p’ is
carried by ]t, d,]—recall p’ is carried by ]¢, 8]. Suppose ¢ & J. Then by (5.4)

p'(dv) = N(t,v —)k(dv), on]t, d,[,

and this is true for ¢t € J if S is exact. But p*({d,}) = 1(;<q,N(¢, d, — ) since
N(t, d,) = 0 as seen in the first sentence of this paragraph. This proves (5.9). O

We come now to the main result of this section recall that we have set
N(a, u) = N,. It will be convenient to let I, denote the interval ]¢, d,[ and also
to denote the indicator of this interval, so I,(u) = 1y, 4(u). Using this notation
“we have

(5.11) THEOREM. The measure N\ has the following expression:
Mdu, dv) = 1oy L [L(w)x(du) + e(du)][—d,N(u, )]

reqG,

=1y N, 0 =) ¥ [I(u)x(du) + &(du)]

reG,

X [Ir(o)x(dv) + edr(dv)].

ProOF. We shall first show that A is given by the last expression in (5.11).
Suppose first that « <s < ¢ < B and ¢ & J. Then from (3.7)(ii), (4.3) and (5.7)
one has (recall k does not charge /)

o (d, do) = N(t, 0 =)L, (w)s(d) + 1oy du)]

X [It(v)"(d”) + 1(t<d,}€d,(dv)]1(u<o}'
The expression (4.3) for p* ¢ contains the factor N(s, t). Suppose ]s, t] N o is not
empty. Then s <d, < ¢ and so t — s > d, — s > Scv,. Therefore N(s, ) =0.
In other words, p> ¢ # 0 only if there exists a unique r € G, with r < s <t < d,.
But then g, = r and d, = d,. Combining this with (5.12) we obtain

p(du, dv) =1,y N(u,v —)
(5.13) X Y [L(u)(du) + 1gene(du)][L(0)k(do) + eg(dv)].

reG,

(5.12)

We claim next that

(5.14) —dN, = Nu_[lla,d[(o)x(do) + sd(do)] .
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Let T = inf{¢: N, = 0}. From (A.7), T < d and clearly —dN, is carried by Ja, T'].
But from (A.7), T = d if T > a. Thus it suffices to prove (5.14) when N does not
vanish on ]a, d[. Obviously, both sides of (5.14) put the same mass, namely N,_,
at d. If a < ¢t <v <d,then N,> 0and N,_= N,N(¢,v — ). Consequently, (5.4)
implies that on ]¢, d[ one has

N,_x(dv) = —N,d,N(t,v) = —dN,, ‘
which verifies (5.14) on ]¢, d[ and, hence, on ]a, d[. Finally, from (5.13), (5.14)
and the definition (4.6) we see that A is equal to the last expression in (5.11).

For the other, note that if r € G, and r = a, then (5.14) states [recall
N(a,v) = N,]

—d,N(r,v) = dN, = N(r,v —)[k(dv) + e4(dv)],

and a similar argument shows that this holds for each r € G. If r < u < d,, then
observing that —d N(u, v) is carried by {v: N(u, v — ) > 0} the same argument
shows that

—d,N(u,v) = N(u, v —)[x(dv) + edr(dv)],

on ]Ju, d,]. Substituting these observations into the last expression in (5.11)
yields the first equality. O

The first expression for A in (5.11) states that in order to obtain Y from Y,
“particles” are created at the left endpoint of each of the intervals I, =]r, d,[,
r € G,, and in the interior of I, at rate k(du) and then particles created at time
u are killed at rate —d, N(u, v).

We turn now to another interpretation of A. Let r € G, and r < ¢ < d,. Then
ft<u<d,u—-t<d,—t=d,—t=Sov,and thisalsoholdsat ¢ = r if S is
exact. Hence N(¢, u) > 0. Therefore from (5.4)

k(du) = Ay, du — t) = N(¢,u) d,[N(2,u)] ",
on ]¢,d,[ and even on ]Jr,d,[ if S is exact. Thus from (5.11) for r € G, and
r<t<d,,
(615) Iy ()M(du, do) = Ly dy[N(t, )] [d,N(z, v)],

and if S is exact one may put ¢ = r in (5.15). This states that particles are

created at rate d,(N(t, u)) ! and killed at rate —d,N(¢, v) in each such interval

1¢, d,[. Finally, if S is exact substituting (5.15) with ¢ = r into (5.11) gives [recall

N(a,u) = N,]

(516) A(du,dv) =1icpy & [I(u) d[N(r,u)] 7 + e,(du)] [~ d,N(r, v)].
. req,

This formula is the clearest expression of the fact that particles are being born
(or created) according to the reciprocal of M and killed according to M. Finally,
(5.11) and (5.16) should be compared with the special cases (5.5) and (5.1).

6. The decomposition of m*. As in Sections 4 and 5 we fix an exact MF,
M, of X and an excessive measure m. Then m has a unique decomposition
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m = m;+ m,, where m; is invariant (m;P,= m; for each ¢ > 0) and m, is
purely excessive (m,, is excessive and m, P, decreases to zero as t increases to
infinity). In fact, it is shown in [5], that for each ¢ € R,

(6.1) m(f) = QulfeY; a=—oo],
(6.2) my(f) = @ulfoY; a> —co].

In addition, there exists a unique entrance law, n = (n,),. 4, for P, such that
m, = [s°n,dt, and from [5] for each ¢ > 0,

(6.3) "h(f) = Qm[ona+t; 0<ac< 1]-

Recall that m* =15 -m is the restriction of m to E, and that m* is
excessive for the semigroup (K,) generated by M. See (3.16). We are going to
investigate the decomposition of m* into its (K,) invariant, m*, and purely
excessive, m}, parts. First note that it follows from (3.10) that N, = NyM, > v,
on a <0 < B and so

QL fYN,1= @Q,[f°Y,NyPYO(M,)]
= Q[ fo YNy, oY,

Thus the measure f — Q,,[f °Y,N,] is carried by E,,. We now define three
measures,

mi(f) = QulfeYyNy; a = —c0],
(6.4) my(f) = Qulf YNy a> —oo],
my(f) = QulfoYo(l — Ny); Yy € Ey].
Clearly, m* = m, + m, + m, and we shall interpret each of these three pieces.

It is not surprising that m, is the (K,) invariant part, m¥, of m*. To see this
use (6.1), (4.9), (4.14)(i), and N, = lim ,N(s, t) to compute

m¥(f)=Q[f¥; d=—oo]
=Q[feY;-0=U<t<V,a= -]
= Q[ foY,N;a=—00] =m(f).

It is also easy to verify by direction calculation that m K, = m,, if one prefers.
To the entrance law 7 one may associate a unique o-finite measure Q, on
(W, %°) such that @, (e« # 0) =0andif 0 < ¢ < --- <t¢,
Qn(y;, € CbCl,...,Y;n € Cbcn’ tn < B)
(6.5)
= ntl(Cbcl)‘Ptz—tl(xl’ dxy) - Pt,,—tn_l(xn—l’ dx,).

Moreover, checking finite-dimensional distributions it is easy to see that
0

(6.6) Qmp = f ot(Q'q) dt'
— 0

See, for example, [9]. Now define
(6.7) m(f)=@,[fY.N], t>o0.
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(6.8) ProposiTION. WM = (nM),. , is an entrance law for (K,) and m, =
Jent! dt.

Proor. Ift>0,s>0and f € pé&, then
1/ (K, f) = @,[K,f°Y,N]
= Q,[PO[f+X,M,]N]
=Q,[f Y, M ovN,]

= Qn[ f °y;+sNt+s] = n%—s( f )’
where the third equality uses the fact that (Y)),., is Markov under @, with

semigroup (P,) and the fourth equality follows from (3.10). Next for f € pé,
since @,(a # 0) = 0 we have

[Tu(i)de= [Q,[fo¥,N]at

0 0
= [ @.lfevNId= [ 0(Q)/ Y N]at
= Qmp(foyoNO) = mz(f)’

where we have used (6.6) and (6.2) for the last two equalities. Since 7 < 7, it is
o-finite. O

(6.9) REMARK. Since nM = nMK,, it follows that 7 is carried by E,;. One
may also show that

(6.10) ny(f) =Q,[foYNup0<a<1],
but we leave the proof of (6.10) to the interested reader.

In order to discuss m; we need some more machinery. Recall from Section 5
and the Appendix the homogeneous random sets H over @ and J over W
associated with M and the homogeneous random measures A over  and x over
W. Also » = », denotes the characteristic measure of A. See (A.11), (A.12) and
(A.16). We shall also need the exit system (*P*, B) associates with the homoge-
neous random set H. Here *P*(-) is a kernel (of o-finite measures) from (E, &*)
to (2, #*) and B is an (adapted) additive functional of X with a bounded one
potential. Let »Z be the characteristic measure of B, that is, »Z is defined by
(A.11) with A(ds) replaced by dB,. The property of the exit system (*P*, B)
that we need is contained in Theorem 6.8 of [5]. It states that if F' = F(¢, x, w) > 0
is universally measurable over Z(R) X & X %, then

61) @ L F(nY,v) = [[ dev¥do)P[F(t,x ),
re RXE

where G (defined in Section 5) is the set of left endpoints in Ja, B[ of the
contiguous intervals of ¢/ in ]a, B[.
Define

(6.12) q,(x, f) =*P*[ o X,M,], t>0.
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Using the fact that (X,),. , is Markov under *P* with transition semigroup (P,),
it is easy to see that for each x,¢ > 0,and s > 0, q,, (x, :) = [q,(x, dy)K (¥, ).
Therefore defining »2q,(-) = [vB(dx)q(x, -) one has »Zq, . = vBq,K,. [Actu-
ally, g/x,-) and »Zg, are entrance laws for (K,), the required o-finiteness
following from the properties of exit systems. However, we do not need this
general result for Theorem 6.16 below.] We may now describe m.

(6.13) PrOPOSITION. Using the above notation
[ee]
mg = f (VK, + qut) dt.
0

ProOF. Recall the definitions of d and d, in (A.5) and g, in (5.6). Let f € p&
vanish off E,,. Since 1 — N, = py(1) when a < 0 we may write

o 1) = Qu| 10) [ o)

By (5.7), p, is carried by [g,,0]. If d,=0 and ¢ > 0, then g, =0 < g, and so
N(g,, t) = 0 because N(u, s) = 0 whenever u < g,. See the first two sentences of
the proof of (5.7). Hence, by right continuity, N(g,,0) = 0 if d, = 0. Therefore
from (5.8) we have

my(f) = Q,,,[ono I O]N(u,o>~<du>]

+Qm[ f OY;)N(gO’O); a < &, 0< do].
The first term on the right-hand side of (6.14) equals

Q.[fY, f] . 0]M_mux(olu)

(6.14)

= Q[ (o X M) o] e yyn(du)
(6.15) = Q[ P[feX_M_]x(du)
= Q[ K_ufYoe(du)

- /_"va_u( fdu= [ “vK,(f) du,

where the second equality follows from (A.14) and the fourth from (A.16). For
the second term on the right-hand side of (6.14) observe that a < g, and 0 < d,,
if and only if r = g, satisfies r € G and r < 0 < d,. Therefore using (6.11) the
second term of the right-hand side of (6.14) equals

Qm Z 1{rsO<d,}(f°X—rM—r)°Yr
reG

= f_ooodtf”B(d")*Px[f°X—tM—z] - fo‘”vaqt( i) adt.

Combining these results gives (6.13). O
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f ((2.11{6; T:;OREM. Let n¥ =™ + vK, + vBq,. Then n* is an entrance law
or (K,) a

(6.17) m* =m, + foon;" dt.
0

ProoF. The only thing remaining to be proved is that each n} is o-finite
since we know that n*K_ = n¥ , and that (6.17) holds. Since m is o-finite let
f € & be strictly positive with m(f) < co. But then

00>m(f)thwn;?‘(f)ds=f0wn?+s(f)ds

- “nrK () ds = nF(Vi).

But Vf > 0 on E,, and since n} = n}K,, each n} is carried by E,,. Hence n} is
o-finite. O

(6.18) REMARKS. The entrance laws 7™ and »Zg, may be decomposed fur-
ther. Let m, = pU + ¢ be the Riesz decomposition of m, into a potential pU
and a harmonic excessive measure . See (3.7) in [5]. Let § = (£,),., be the
entrance law [for P,)] such that ¢ = [5°¢, d¢. Then n, = pP, + £, and it is readily
verified that n¥ = pK, + ¢M, where ¢ is defined by (6.7) with n replaced by &.
Let F be the set of regular points of H; that is, F = {x: P¥(D = 0) = 1}. It is
known that *P* is a multiple, say A(x), of P* when x ¢ F. See, for example,
(6.6) in [5]. Let p, =1»% and p,=h-1;_p»5 Then it follows that
vBq, = 1,9, + p, K, Combining these observations we may write

(6.19) nf=+p+p)K, + "+ pg,

APPENDIX

In this Appendix we collect some facts about homogeneous random sets in
and their extension to W. Suppose that H is a homogeneous random set (HRS)
contained in 10, {[; that is, for each w, H(w) is a subset of ]0, {(«)[ such that if
s> 0and ¢t > 0, then s + £ € H(w) if and only if s € H(0,»). We shall also use
H = (H/(w)) to denote the indicator of {(¢, w): t € H(w)} €10, o[ X 2. Then the
homogeneity condition becomes H,, , = H,° 8, for ¢ > 0, s > 0. Following Mitro
[17] we extend H to W by

(A1) Jw)= U {t+Hev,).

a<t<p

Formally (A.1) differs from Mitro’s definition but it will become clear that, in
fact, it is the same. The following proposition gives some properties of J. We
leave their straightforward verification to the reader.

(A.2) PropPOSITION. Let H and J be as above.

) Ifa<s<t<pB,thent+ Hoy,=(s+ Hey,) N ]t o0l
(ii) J C]la, BI.
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(iii) Let J(w) denote the indication of {(t,w): t € J(w)} C R X W. Then
Ju=Hu—-t°Ytifa<t<u<B'

iv) J,,, =J,°0, foru,v € R.

(v) If H is closed in 10, [, then o is closed in a, B[. If H is optional, then J
is optional relative to the filtration (9,).

Let M be an exact MF as defined in Section 3. Define S = inf{¢: M, = 0}.
Note that S = inf{¢ > 0: M, = 0} since M, = 0 for ail ¢ if M, = 0. It is easily
checked that S is a perfect terminal time as defined above (3.14) and S < ¢{ since
M, = 0 for t > {. However, S need not be exact. Let S,= ¢+ Sc#6, Then t > S,
is increasing and S, < { if ¢ < {. We are going to recall some results from [10].
First if ¢ < u < S,, then S, = S,. For each w define

(A.3) H(w) = {S(w); t>0} n]0,§(w)[,

where “~ ” denotes closure. It is shown in [10], that H is a closed optional HRS.
For t > 0 define

(A4) D,=inf{fu>t:ue H} A§.

Then ¢ — D, is increasing and right continuous and S,, = D,. Moreover, if £ < S,,
then S, = D,. Let D = D,. Then D is the exact regularization of S and D, = ¢ +
Do, In particular, D =S when S > 0. Let J be defined in terms of H by
(A.1). Then JJ is closed in ]a, B[. The following notation differs from that in [10]
(which deals only with functionals on Q) but will be convenient for us. Define
(the infimum of the empty set in + o0)

d,=inf{u>t:ued} AB,
d=d,=inf{ucdJ)} AB.

Then t < d, < B. Of course, d and d, bear the same relation to </ as D and D,
to H. ’

(A5)

(A.6) PROPOSITION. Let M be an exact MF. Then using the above notation:

1) J= (Ua<t<ﬂ{t+ Sev )N Ja, B[
(i) Ifa<t<p,thend,=t+ Doy, andif t & J, then Doy,= Soy,.
(iii) If a <t<d,thend=t+ Dey,=t+ Sey,.

ProOOF. Let a <t < B and choose s witha <s<¢t<B.Thenr=t—-—s>0
and r<f—s=Bef,={oy,, Now r+ Sof, € H provided r + Sc 8, <¢ or,
equivalently, Sof. < {°6.. Thus r+ Sof.oy,€ Hoy, provided Secf, oy, <
$o8.0v, Since 0.0y, =v,,, this gives (t=s+7r), t+ Scy,€s+ Hoy,CJ
provided Sey,<{eoy,= o8, But Sey, < B0, when ¢+ Sey, <. Thus if
a<t<pfandt+ Sey,<pB, then t+ Sey, €J. Since oJ is closed in Ja, B[ this
yields

( U {t+S°yt})_n]a,,B[ cJ.

a<t<p
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Conversely, let u€J. Then a <u<pB and if a<t<u<pB, u—t€Hey,
From the definition of H, there exist r, > 0 with r, + Sef oy, > u—1¢ or
t+r,+ Sey,,, — u. This establishes (i).
For (ii) suppose a < t < 8. Then
influ>tued}=t+inf{lu>0:u+ted}
=t+inf{u>0:u€ Hovy,},
where the last equality follows from (A.2)(iii) because u + ¢t < Bif u + t € J and
u<g¢oy,=pB—tif u€ Hevy, Therefore d, =t + Doy, Note that if the sets in
braces in the last display are empty, then d,= B and ¢ + Doy,=t+ {ovy,= B.

If ¢t ¢ J, then from (i), Scy,# 0 and so Doy, = Sy, proving (ii). If « < ¢ < d,
then d = d, and t & J, so (iii) follows from (ii). O

REMARK. The same argument as that used to prove (A.6)(i) shows that

J=( U (t+Dew)) nlapl.
a<t<p N

If M, = e~ 91, «((t), then H and J are empty and hence d = 8. If « = — oo,

then from (3.13), N, = 0 on Ja, d[. The next proposition shows that, in general,
N does not vanish on ]a, d[ unless it vanishes identically on Je, cof.

(A.7) PROPOSITION. Let N be the functional defined in (3.8) and let T = inf{¢:
N, = 0}. Then either T = a or T = d.

ProOF. Clearly, T > asince N,=1if t<aIfa<t<d<o,thenv—-t>
d — t = Sovy, by (A6)(iii). Therefore N(¢,v) =0 and so N,=0. Thus T < d.
Suppose a <T<d. Let a<t<T<v<d. Then v—t<d—t=S8cy, so
N(t, v) > 0. But from (3.10), N, = N,N(¢, v), and this contradicts the fact that
N,>0and N,=0.0

It was shown in Sections 3 and 4 of [10] that there exists a unique optional
homogeneous random measure (HRM), A(dt) = A(w, dt) carried by H¢ N ]0, {[
such that
(A.8) A(dt) = —dM,/M,_, on ]0, S[.

In the present situation because (3.3) holds identically, the argument in [10]
shows that

A(6,0, B) = A(w, B+ ¢)
identically in £ > 0, w € © and B € Z(R"). It is well known and an immediate
consequence of the integration by parts formula that (M, )~!'dM, =
—M,d(1/M,), and so (A.8) may be written
(A9) A(dt) = M,d(1/M,), on]o, S[.

There is a standard method of extending A to a homogeneous random
measure, k(dt) = k(w,dt) on W that is carried by Ja, B[ and satisfies for
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B c]t, o[ and a(w) < ¢,

(A.10) k(w, B) = A(yw, B — t).

See, for example, [11] or [16]. In the present situation k(6w, B) = x(w, B + t)
identically in ¢ € R, w € W and B C %#(R). Moreover, k does not charge /. Let
v = », be the characteristic measure of A; that is, for f € p& *

(A.11) v(f) = lti{%t‘lP'"j;O’ t]f o X, A(ds).

It is known (for example, Section 12 of [11]) that
1
(A12) v(f) = Quf f o Yusl(at).

We shall also need a projection result. First of all there exists a (%,%) optional
process Z* = (Z*(w)) that is bounded, strictly positive on ]a, B[, and for which
Q,,/Zxk(dt) < co. To see this let Z(w) =X, 2 "Z;(w), where Z" is defined
at the bottom of page 146 of [10]. Under the present hypotheses on M, each Z™
is (%*) optional. It was shown in [10] that 0 < Z <1, [Z]A(dt) <1 and
U,{Z!> 0} = [0,00[. Consequently, if ¢t>0, 0<Z,<2 and [Z,A(dl) <2.
Choose f € & with 0 <f <1 and m(f) < 1. For each rational g let 0 < ¢(q)
with Xc(g) < . Define for each g,

(A'13) *th = l]q, oo[(t)f °Yth—q°Yq1(u<q)°

Then *Z? is optional over (¢,%) and it follows from (A.10) that @, [*Z7k(dt) <
2m(f) < oo. Finally, Z* =¥ . qc(q) *Z7 has the desired properties. It now
follows that ¢t — [!ZX*k(ds) is (¥,")-optional. Hence by standard projection
results (see, for example, [1]) if F () € p(Z(R) X F*), then

(A14) Qn [Fuv)6(du) = @ [PY(F,)x(du).

Finally, we need an extension of (A.12). Let n be the measure on R X E
defined by

(A.15) 1(F) = @, [F(t,Y,)x(dt), Fep(B(R)x&).
If F(¢t,x) = F(s + t, x), then
0(F,) = @ [F(t +5,Y)x(dt) = @, [F(£, Y, ,)x(dt — 5)

- @, [F(e, Ye(dt) o0, = n(F),

since 0_(Q,,) = Q,,. From (A.12) one has 7([0,1] X A) = »(A) for A € & and
using the process Z* constructed in the previous paragraph it is clear that 7 is a
countable sum of finite measures. Therefore by [8] one has

Q. [F(t, Y)x(dt) = f:odthF(t,x)v(dx)

(A.16) .
= va(dx) f_wF(t, x) dt.
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