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CHARACTERISTICS OF NORMAL SAMPLES

BY VicTor GOODMAN
Indiana University

A “law of large numbers” for the maximum of ii.d. univariate normal
random variables is extended to a general multivariate case. Let Z, denote
i.i.d. Banach space valued random variables with a centered Gaussian distri-
bution. Let K denote the unit ball of the reproducing kernel Hilbert space.
Then with probability 1, the maximum distance from the sample points
2,2,,...,7, to the set \/2log n K approaches zero. In addition, the sample
forms epsilon nets for this set as n tends to infinity.

0. Introduction. Gnedenko (1943) proved that the maximum £, of the first
n random variables in an i.i.d. standard normal sequence satisfies

P(|¢, - 2logn|<e} > 1

for all ¢ > 0 as n — oo. His general result regarding degeneracy of an arbitrary
maximum §, was termed the “law of large numbers for the maximum of a
random sequence.” We formulate a similar law for multivariate samples. For a
simple multivariate normal case one takes Z,,Z,,... to be isonormally distrib-
uted on R A straightforward calculation shows that the maximum Euclidean
length of the first n sample points also obeys Gnedenko’s law of large numbers.
In addition, there are sufficiently many sample points of nearly this maximum
length so that such points form an epsilon net for the expanding sphere

{x € R* |x| = \2logn }.

One may say that the law of large numbers appears simultaneously for all
directions.

An interesting consequence of this result is that the sample Z,,Z,,...,Z,
appears as a surprisingly regular set. With probability 1, the sample is eventually
contained in the ball of radius & + /2logn. However, the sample is also
eventually dense in the ball of radius y/2logn. As a result, the unnormalized
sample data approximates the Euclidean ball of radius y/2log n quite well. Do
other multivariate samples approximate properly scaled deterministic sets in a
similar manner? We show that this phenomenon appears in a very general
context for normal samples, and we apply it to describe samples of some
Gaussian processes.

1. Gaussian measures. Let » denote a centered Gaussian measure on the
Borel o-algebra of a real separable Banach space B with norm || |. Then for each
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1282 V. GOODMAN

fixed element y in the topological dual B*, the random variable
X = (¥,X)
has a mean zero normal distribution. It is well known that the reproducing

kernel map S: B* — B exists as a compact linear operator and is characterized
by the identity

Cov({y, x)(z,x)) = (y, S(z))

which holds for all y,z € B*. In addition, an inner product ( , ), may be defined
on the range of S by the covariance

(8(v), 8(z)), = (y,S(2)).

The associated seminorm | |, on the range of S is a norm and the completion of
the range in this norm is the reproducing kernel Hilbert space H,. The unit ball
of H, will be denoted by K. It is known that K is a compact subset of B. Details
of the preceding may be found in Lemma 2.1 of Goodman, Kuelbs and Zinn
(1981).

If C is a subset of a Banach space and ¢ > 0, the metric entropy of C is
denoted by H(e, C). This quantity is the logarithm of the minimal cardinality of
coverings of the set C by sets of diameter not exceeding 2¢. A formal definition
may be found in Section 1 of Dudley (1973). A Banach ball with radius r,
centered at x € B, will be denoted by B,(x).

2. Normal samples.

THEOREM 2.1. Suppose that Z,,Z,,... are i.i.d. Banach space valued
random vectors with a centered Gaussian distribution v on a real separable
Banach space B. If K denotes the unit ball of the reproducing kernel Hilbert
space for v, then with probability 1,

(2.1) maxd(Z;, /2log n K) - 0,
i1<n
(2.2) max_ d(y,{Z,,Z,,...,Z,}) > 0
y€,/2logn K

as n — oo. Here d( , ) denotes the Banach norm distance from a point to a set.

ExaMPLE 2.1. Consider a d-dimensional standard Brownian motion process
B,, 0 < t < 1. Then B, has a Gaussian distribution on the Banach space consist-
ing of all continuous R? valued functions with the supremum norm, and it is
well known that

K = {[O‘f(s) ds: f e L*([0,1], R%) and |f]|, < 1}

[see Strassen (1964)]. Strassen observed that for all k € K,
k(z)| <Vt and |k(¢) =o(Vt) astlO.

Theorem 2.1 implies the following result for ii.d. d-dimensional Brownian
motions.
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Almost surely, the initial n sample paths of every sample sequence are
uniformly close to the family

S, = {g:18(¢) < y2tlogn,0 <t <1}.

This strengthens the main result of LePage and Schreiber (1985) where the
preceding approximation was obtained with a uniform error of o(ylogn). In
addition, one may show that if |y| < V¢, there is a function in K whose graph
contains the point (¢,y). It follows from Theorem 2.1 that the union of graphs
for the first n sample paths is asymptotically dense in the union of graphs of
functions in S,.

Therefore, we may paraphrase the summary in LePage and Schreiber (1985).
Eventually, an unnormalized plot of n independent R valued Brownian paths
over [0,1] is almost certain to have the appearance of a shaded region with the

boundary |y| = y/2tlogn.

ExamMpPLE 2.2. Theorem 2.1 should be compared with Theorem 9 of
de Acosta and Kuelbs (1983), where the special case a, =1 applies to the
normalized random sample

{1/ 2logn Z;:i < n}.

Theorem 9 implies that the maximum distance from this sample to the set K
converges to zero and that the sample is asymptotically dense for K. Theorem
2.1 may be viewed as an improvement in the rate for convergence of this set to K
and the rate for its denseness from o(1) to o(1/ ylog n).

3. Proving Theorem 2.1. The theorem is a consequence of three lemmas for
a centered Gaussian measure ».

LEMMA 3.1 [Talagrand (1984)]. For each ¢ > 0, there is a random variable
Y, such that

E[exp(iy,)] < o andforall X >0, »(AK + B,(0)) = P{y, < A?}.

LEMMA 3.2. For any nonnull element h € H, and any ¢ > 0,
»(B(h)) > »(B,5(0)){@(Ih|,[1 + e/2|h||]) — @(Ih|,[1 — &/2|h)|])).
Here ® denotes the standard normal distribution function.

LEMMA 3.3. Let H(¢, K) denote the metric entropy of K. Then

lime2H(e,K) = 0.
el0

PrOOF OF THEOREM 2.1. We apply Lemma 3.1, setting A = \/2log n. Then

»(y2logn K + B,(0)) = P(y, < 2log n}
= P{exp(%xpe) <n}.
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Since each Z, has distribution equal to », the preceding equality gives
Y P{d(Z,,2logn K) > ¢} < 3 P{exp(}y,) > n}

< o0.
Then the Borel-Cantelli lemma implies that for each ¢ > 0, the event

{d(Z,,\2logn K) > ¢,i.0.}

has zero probability. This proves (2.1) of Theorem 2.1.

Next, apply Lemma 3.2 for the choice h = /2log n k, where k € H, satisfies
|k| < 1. As shown in Section 2 of Goodman, Kuelbs and Zinn (1981), there is a
constant ¢ such that | k|| < c|k|, for any k € H,. Hence, | k|| < ¢ and Lemma
3.2 gives

»(B(h)) > d,[®(/2log n |K|, + ¢/2¢) — ®(,/2log n |K|, — £/2¢)].
Here d, denotes the quantity »(B, ,(0)). Since the preceding difference of normal
distribution functions is an integral of the form

(3.1) c’fat:exp( —x%/2) dx,

.
the estimate is minimal for |k|, = 1. A standard estimation for this case is made
by multiplying the integrand by x/(a + 8). The resulting lower bound for (3.1) is

¢'/(a+ 8)exp(—L(a® + 82))[exp(ad) — exp(—ad)],
where a = \/QTgn and & = ¢/2c. We then obtain
(32) »(B,(h) = ¢"/n(y/2logn + 8)[exp(8y2logn ) — exp(—3y2logn)].
Lemma 3.3 allows us to estimate H(e, ‘/m K), the logarithm of the minimal

cardinality of coverings of the set \/2logn K by balls of radius e. A simple
scaling argument shows that

H(e, aK) = H(¢/a,K).
Since ¢/a — 0 as n — o0, Lemma 3.3 implies that
H(e, aK) = o(a?/¢?)
= o(logn).

Next, we consider the probability that a sample of size n misses some &
neighborhood of a point in the set aK:

log P{Z; ¢ B,(h) for1 <i < n}

= nlog(1 — »(B,(h)))
e/ ({ATogm + ) [exp(8y2T0g ) — exp( ~ 821057 )]
e (2Togn + 8)exp(5,2Tog ),

using the estimate (3.2). Since we also have an estimate for the minimal number
of balls B.(h) needed to cover aK, we obtain a bound for the probability that the

IA

0
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sample misses at least one ball in a minimal covering of aK. It follows that

logP{ max  d(y,{Z,,Z,,...,2,}) > 28}
yE€y2logn K

< o(logn) — 1/(y/2logn + &)exp(8y2logn),

which shows that the series

ZP{ max d(y,{Zl,Z2,...,Zn})>Ze}

n ye‘/2lognK

(3.3)

is summable. We apply the Borel-Cantelli lemma and since ¢ is arbitrary,
condition (2.2) of the theorem is proved. O

4. Proofs of Lemmas 3.1-3.3. Lemma 3 in Talagrand (1984) contains an
inequality which is essentially Lemma 3.1 here. We present an alternate proof
which contains more information concerning the exponential moment of ..

DEFINITION 4.1. Let |x| denote the function on the Banach space given by
x| = {|x|,,, ifxeH,
+ 00, otherwise.

For fixed & > 0, let ¥ (y) denote the function on the Banach space given by
= inf |x|%
Vi) x€ Be(y)IXI

Note that by the definition of ¢, for any A > 0, the set AK + B/(0) is equal to
the set {y, < A?}.
For any bounded operator T: B — B, let

Yr,y) = inf |x|*.

x€{y+z:|Tz|<e}

Then by definition, ¢, =y, ..

PrOPOSITION 4.1. Let P: B - B be a continuous projection with finite-
dimensional range #(P) C H, and suppose that P is self-adjoint on H,. Then
for all y € B,

= inf x|%.
4/P, e(y) XEBE(Py)n@(P)I |

In addition, a similar identity holds for P replaced by the projection, @ = I — P.
Proor. By definition,

¢P, e(y) = inf le

x€{y+z: | Pz|<e)

2

= inf x|2.

{x:[|IP(x~-y)lI<e}
Then if x € Z(P) N B(Py), x satisfies the condition ||P(x — y)|| < &. Hence,

< inf x|2.
\IJP, e(y) x€B(Py) ﬁ.@(P)I |
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On the other hand, by the orthogonality of P and @,

vp (y) = inf Px + Qx|?
r.dy) (x: ||P<x—y)||<s}| |

]

inf (I1Px)? + |1@x|?)
{x: || P(x—y)ll<e}

inf  |Px|?
{x: [|[Px—y)|<e}

1\

inf x|2.

{(x€Z(P): ||P(x~y)||<e}

This shows the reverse inequality for the two expressions. Similar arguments
prove the equality for the case of P replaced by @. O

COROLLARY 4.1. If P: B — B is an operator as in the statement of Proposi-
tion 4.1, then forall y € B

Yp, e()’) = \PP, E(PY)-

Moreover, the random functions Yp (y) and yq (y) are independent with
respect to the probability measure v.

ProoF. The preceding equality is immediate from Proposition 4.1 and there-
fore yp (y) is a function of Py. Similarly, from Proposition 4.1, one concludes
that ¢, (y) is a function of Qy, but the random vectors Py and Qy are
stochastically independent. O

COROLLARY 4.2. If P: B — B is an operator as in the statement of Proposi-
tion 4.1, then for any ¢ > 0,

E [exp(%xpp,e)] < 00.

PrOOF. Let »’ denote the projection of the measure » on the finite-dimen-
sional space Z(P) under P. Let i denote the corresponding function of
Definition 4.1 on the space Z(P) where the infimum is again taken with respect
to the Banach space norm. It follows from Corollary 4.1 and Proposition 4.1 that

¥p, (¥) = ¥i(Py).
It suffices to show that

E'[exp(3y;)] < co.
But, since the norms | | and || || are equivalent on %(P), there is a § > 0 such
that for all y € Z(P),

, 2

vi(y) < (vl - 8)".
Furthermore, since the space %#( P) is finite dimensional, it is easy to see that the
expectation

E'[exp(3(y1 - 8)7)].

taken with respect to »’, is finite. O
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PROPOSITION 4.2. Let P: B - B be a continuous projection with finite-
dimensional range #(P) C H, and suppose that P is self-adjoint on H,. Then
for fixed ¢ > 0, s > 0 and ¢t > 0 such that e = s + ¢,

YY) <¥p(y) + ¥g ()
for all y € B. Here, Q denotes the projection I — P.

PRrROOF. Suppose that p € 2(P) satisfies

lp — Pyl <s
and that q € #(Q) satisfies
llg - Qyll <¢.
Then
lp+aq-yll<e

and by the definition of y (y),
v(y) <Ip+q
= [pI” + lq/*.
However, by Proposition 4.1, the infimum of the right-hand expression over such

p is equal to ¥ (y) + |q|*. Again, by Proposition 4.1, the infimum over such q
gives the desired inequality. O

ProOF OoF LEMMA 3.1. Given ¢ > 0, let s = ¢ = ¢/2. Then for any projection
P: B — B as in Proposition 4.1, Proposition 4.2 and Corollary 4.1 imply that the
inequality
(4.1) E[exp(3v.)] < E [exp(3v5,.)| E[exp(3vq,.)]
holds. Furthermore, the first expectation on the right-hand side of (4.1) is finite
by Corollary 4.2 for any choice of P. Let P be chosen so that @ = I — P satisfies

”(SQ) > 3
where
So = {x:1Qx|| < t}.

This is possible by Theorem 4.6 of Dudley (1967). We apply the main result of
Borell (1975), which gives the bound

(4.2) »(AK + Sp) > (A + a).

Here, ® denotes the standard normal distribution function and « is defined by
the equation '

(4.3) ®(a) = »(S,).
By the choice of @, a > 0. Now, by the definition of Vo, (¥),
AK + 8g = {y: ¥, (y) <N},
Therefore, Y, , is dominated in tail distribution by (Z — «)? where Z denotes a
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standard normal random variable. This shows that the latter expectation in (4.1)
is finite and proves Lemma 3.1. O

REMARK. One may optimize the bound for the exponential moment of 1y,
by taking the infimum of the right-hand expression in (4.1) over all finite-dimen-
sional projections P as in Proposition 4.1 with the constraints

v{x: (1= P)x|| <t} > §
and
s+t=c¢e.

Proor oF LEMMA 3.2. Suppose h € H, N #(S). Let A = ak where |k|, = 1.
The Cameron—Martin formula gives

»(B(h)) = fB ((»exp(a(k,x) — la?) dv(x).

€

Let P be any projection as in the statement of Proposition 4.1, satisfying
h € #Z(P). Then :

{x: |Px|| <e/2} N {x: |Qx|| < /2} C B(0),

and we obtain the inequality

»(B,(h)) > f exp(a(k,x) — La?) dv(x)
(4.4) {x: 1Px||<e/2}N{x: [|@x||<e/2}
=p({x: ||Qx| < s/2})f exp(a(k,x) — 1a?) dr(x).
(x: [Pxl|<e/2)

The last equality follows from the independence of Px and @x. Now take P to
be equal to the one-dimensional projection (k, x)k. The region of integration in
(4.4) becomes

{x: Kk, x)| < e/2||k]]}.

Finally, since (k,x) is a standard normal random variable and the integral in
(4.4) is the expression for

v{a — ¢/2|k| < (k,x) < a + ¢/2|k||},

we obtain the difference of the standard normal distribution functions in the
estimate (4.4). In addition, the inequality

v({x: Qx| < e/2}) = v({x: ||Ix|| < e/2})
follows from Theorem 5 of Gross (1962) since the operator norm of the projection
Q@ on H, is equal to 1. This gives the inequality of Lemma 3.2. O

Proor orF LEMMA 3.3. For fixed ¢ > 0, let w;, w,,...,w,, be any subset of
AK such that the sets
Be(wl)’ Be(w2)’ A Be(wm)
are disjoint.
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Here, A > 0 is arbitrary and K denotes the unit ball of the reproducing kernel
Hilbert space for ». An inequality in the derivation of (3.2) gives

r(B(w;)) > d,[®(A + e/2¢) — ®(A — e/2¢)],

where ¢ and d, do not depend on A.
Since these sets are disjoint, the sum of the probabilities does not exceed 1
and we obtain an upper bound on m,

m < {d [®(A +e/2¢c) — ®(A - e/2¢)]}) .

Let m, denote the cardinality of the largest subset of AK which is 2e-discrete.
The preceding inequality shows that

lim A~ %log(m,) < 1.
A— o0

The quantities m, provide bounds for the metric entropy of the set K. If the
points w, w,,...,w,, form a maximal 2¢-discrete subset, then any other point
k € AK has the property that the set B(k) intersects at least one of the sets
By(w;). This shows that the sets B, (w;) form a covering for AK. We_obtain the
bound

limsupA~2H(2e¢, AK) < 1.

A— 00

Now let ¢ = ;. It follows from the identity H(1, AK) = H(1/A, K) that

limsupe®H(e,K) < 1.
el0
This inequality is valid for the unit ball of the reproducing kernel Hilbert space
of an arbitrary Gaussian measure ». However, one may consider the scaled
measure »(A~") whose unit ball is the set AK. It follows from the preceding
inequality that

limsupe®H(e, AK) < 1.
el0

The change of variables ¢ = ¢\ in the preceding limit gives
limsupe’H(e,K) < 1/2M2.
el0

Since A is arbitrary, the lemma follows. O
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