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COVERING PROBLEMS FOR MARKOV CHAINS!

BY PETER MATTHEWS
University of Maryland

Upper and lower bounds are given on the moment generating function of
the time taken by a Markov chain to visit at least n of N selected subsets of
its state space. An example considered is the class of random walks on the
symmetric group that are constant on conjugacy classes. Application of the
bounds yields, for example, the asymptotic distribution of the time taken to
see all N! arrangements of N cards as N — oo for certain shuffling schemes.

1. Introduction. In the coupon collector’s problem as considered in Feller
(1968) balls are randomly thrown into N urns. The number of throws T until all
urns are nonempty satisfies

(1.1) Ee(/NXT-NlgN) , T'(1 —s), as N —> oo fors <1.

I'(Q — s) is the moment generating function of the extreme value (Gumbel)
distribution so T, properly normalized, has asymptotically this distribution. Let
U, be the number of empty urns after N(log N + ¢) throws. Then

g
(1.2) U, is>tP0isson(e‘°), as N - .

Kolchin, Sevast’yanov and Chistyakov (1978) give proofs of (1.1) and (1.2) and
generalizations.

Next consider a similar question for an N-state Markov chain. How long until
the Markov chain has covered its state space, i.e., how long until all states are
visited? How many states have not been visited after N(log N + c) steps? Aldous
(1983) first considered this type of problem. For a rapidly mixing random walk
on a finite group, Aldous showed that the expected time taken to visit all group
elements was essentially RN log N, where R is the expected number of returns
to the starting position in the short term.

Here another approach to these problems using auxiliary randomization is
used. Matthews (1988) gives bounds applicable to mean covering times for finite
" Markov chains. Here an extension to bounds on moment generating functions is
given. This will allow more precise statements like (1.1) and (1.2) to be made.
The bounds are applicable in quite general situations, though examples where
they give precise results are thus far limited to nice situations like random walks
on finite groups.

Let X,, k=0,..., be a finite irreducible Markov chain with state space A.
Let A,..., Ay be a collection of subsets of A, not necessarily disjoint. For
n < N let @, be the first time % such that at least n of the intersections
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{Xo)...» X3} NA;, i=1,..., N, are nonempty, the first time the process has
visited n of the selected subsets. For an initial position a, of interest define
A= {ag} U UAj’
J#*i
for i = 1,..., N. Further define T(A;) = min{k: X, € A;}and T(A,,..., A) =
max;_q .. ; T(Aj)'
Let P, and E, denote probability and expectation for the chain started at a.
Define
f7(s) = min min E_e*T4)
1<i<N a€A,
and
f*(s) = max maxE T4y,
1<i<N geA,
f*(s) and f~(s) are the pointwise maximum and minimum of the moment
generating functions of the time taken to hit a set A4, € {A,,..., Ay} from the
initial position or another A; € {A,,..., Ay}, j #i.

In Section 2 the followingj inequality will be derived.

THEOREM 1.3. For all s such that f*(s) < oo,

N-nj—1+1/f*(s) N i
i1 i =1+ 1/f7(8) i=N-n+1i =1+ 1/f(s)
< E, e
N-ni—1+1/f(s) N i

= i1 1—1+ 1/f+(s) i=N—n+11—1+ 1/f+(s) )

This can be rewritten in terms of gamma functions. In the special case n = N,
Qy is the time taken to visit all of {A,,..., Ay}, and the bounds become

(N + 1)r(1/f(s)) I(N + 1)I(1/f*(s))
(1.4) — <E, e’ < "
I(N+1/f(s)) ° I(N +1/f*(s))
If Aj,..., Ay are singletons consisting of all the possible values of X except

a,, then (1.4) gives bounds on the generating function of the time taken by X to
cover its state space. In many situations the bounds will be far enough apart to
be almost useless. However, in many situations the bounds can be quite tight. A
special case of the example considered in Section 4 is the following. Consider a
deck of M cards laid out in a row on a table. Two distinct cards are chosen
randomly and switched. This is repeated independently many times. This
generates a Markov chain, actually a random walk, on the set of all M!
arrangements of the cards. The asymptotic distribution of the time T}, to see all
arrangements can be found using (1.4). The result, a special case of (4.4), is

(1.5) Ee(s/M)Tu-Mlog MY _, (1 — 5), as M — oo fors < 1.
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If arrangements were chosen uniformly at random, the coupon collector’s prob-
lem with N = M! urns would result. By (1.1) and (1.5) the time to see all
arrangements is essentially the same whether arrangements are chosen randomly
or by random transpositions.

In the same random transposition Markov chain, let U, denote the number of
unvisited permutations after M!(log M! + ¢) transpositions. Since, excluding the
initial position, there are N = M!— 1 permutations to visit,

(1.6) P(U, =j) =P(QM!—1—)5k) ‘P(QM!—jSk)-

This can be combined with Theorem 1.3 to yield a result analogous to (1.2),
namely,

N
(1.7) U, Poisson(e ), as M - oo.

Whenever 1/f*(s/N) and 1/f~(s/N) differ by o(log N) the bounds in
Theorem 1.3 will be tight asymptotically, and results like (1.5) and (1.7) will
hold. In some other situations the bounds fail to be tight because hitting times
are stochastically too small for a small number of (initial position, set to be hit)
pairs. In these cases ad hoc improvements to Theorem 1.3 can be given.
Matthews (1985) contains an example of this for a random walk on the cube Z).

Finally, again for random transpositions, consider the spatial distribution of
the unvisited permutations after & transpositions. A first question is, are the
unvisited permutations more or less clumped together than if permutations were
chosen as in the coupon collector’s problem? In a weak sense, neither distribution
is clumpier.

Formally, for two permutations = and ¢ let d(w, ¢) be Cayley’s distance, the
minimum number of transpositions needed to transform # into o. For a set of M
cards let

(1.8) Cy = inf{k: d(m,0) > 1,V 7 # 0, such that T(7) > k and T(a) > k}.

In words C,, is the first time all unvisited permutations differ by more than one
transposition and is, using Cayley’s distance, the time taken until all unvisited
permutations are isolated from each other. Theorem 1.3 can be used to show

(1.9) P(Cy > 1M!(M!+ log?M)) - 0
and
P(Cy < 1M!(M!—10g?M)) > 0, fore> 0as M — co.

Thus the distribution of C,, has a sharp cutoff at ;M!log M! for large M. The
asymptotics in (1.9) hold for independent allocations’'as well, so at this level of
investigation the unvisited permutations are equally clumpy in these cases.

. The outline for the remainder of this article follows. Section 2 gives a proof of
Theorem 1.3. In Section 3 some background material on hitting times for random
walks on finite groups is given. Random walks on the symmetric group that are
constant on conjugacy classes are the examples considered in Section 4. Special-
ization to random transpositions yields the examples stated above.



1218 P. MATTHEWS

2. General results. In this section Theorem 1.3 is proven. The proof can be
generalized to arbitrary time homogeneous strong Markov processes. For simplic-
ity, only finite Markov chains will be considered here.

Consider a Markov chain X with state space A and initial position a, € A.
Consider (A,,..., Ay), a collection of subsets of A of interest. Assume for later
use that these subsets have labels 1,2,..., N. Define T(4,), Q,, P,, E,, f*(s)
and f7(s) as in the Introduction. P and E without subscripts will stand for P,
and E, . Let o be a uniformly distributed random permutation that is indepen-
dent of X under P.

Let F; be the o-field generated by ¢ and {X;, j=0,...,i} for i =0,1,....
For any permutation 7 of order IV let A7 denote the m;th member of (4,,..., Ay).

ProposITION 2.1. T(Af,..., A}) is a stopping time with respect to {F,
J=01,...} fori=1,...,N.

PrROOF. T(A? <k)=UY, {0;=i} N {T(A,) < k}. Each event on the right
isin F,. O

Let F° be the o-field generated by o, and for i = 1,2,..., N let F! be the
o-field generated by o and {X,, 2= 0,...,T(A{,..., A?)}. Further define R, =
T(A?) and for i=2,...,N, R,=T(AS ..., A?) — T(AS,..., A?_,). Thus
T(A,...,Ay)=XN R, For i=1,..., N define a random variable r; as fol-
lows. Let (A{, AY,..., A%) be a listing of (4,,..., Ay) in the order in which
they are visited, with ties broken by the convention that if T(A;) = T(A;), then
A, appears before A; in the list if the label i is less than the label j. Let r; = 1 if
AY is further to the right in (AY,..., A%) than all of (Af,..., A?_,). Otherwise
r; = 0. If ties are impossible, then r; = I{R; # 0}.

ProPoOSITION 2.2. Fori=1,...,N, r,e Fi"L

ProoF. Write {r; =1} = (T(A7) > T(Af, ..., A]_)} U {{T(A]) =
T(AS,..., A7)} NNzt ((T(A9) < T(AS, ..., A7)} U {0, < 6}}}. Each of
these events is in F*~1. O

ProposITION 2.3. Fori=1,...,N, E(r;)= P(r;,=1)=1/i.

ProOF. The random order (A{,..., A%) depends-only on X, and hence is
_ independent of o. Conditional on a particular value of (A{,..., AR), {r;=1}is
just the event that o; appears further to the right in w,,..., wy thanoy,...,0;_;.
By independence and uniformity of o, this has conditional, hence unconditional,
probability 1/i. O

PROPOSITION 24. Fori=1,...,N, r, and T(A§,..., A) are independent.
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Proor. Let {o0,,...,0;} be the unordered set containing o,,...,0;, and let
{m,..., m} be an arbitrary set of ; members of {1,2,..., N}. Write
P(T(AS,...,A?)<knr,=1)
AR o s
=( ) Y P(T(Ag,..., A?)
(Tyyene, ;)

(2.5) <knr,=1{oy,...,0;) = {m,..., 7})
=(N)_1( Y P(T(AT,..., A7)

<knr=1{o,...,0,} = {m,...,m}).
Condition as well on X,,..., X,. Then {T(A7,..., A7) < k} will have condi-
tional probability 0 or 1, hence {T(A7,..., A7) < k} and {r; = 1} will be condi-
tionally independent. As in the proof of Proposition 2.3, P(r; = 1|X,,..., X,,
{64y...,0;} = {m,...,m}) = 1/i. Thus (2.5) can be rewritten

(1;’)_1( Y P(T(AT,..., AT < k){oy,...,0,) = {my, ..., m})L/i

= P(T(AT,..., A7) < k)P(r;=1). o

To prove Theorem 1.3 it will be convenient to prove (1.4) first. To prove (1.4)
first note

! | .
1-1+1/f(s) = f(s) < Ee’T4D
(2.6) |

1-1+1/f"(s)’
by definition of f~(s) and f*(s). Infinite values of f*(s) and f~(s) present no

difficulty if 1/0 is interpreted as co. For brevity let T; denote T(A{,..., A?). For
i > 2 write

(2.7) Ee*T: = E(e*T-1E(e*R|Fi™Y)),

by definition of F*~1, Consider the inner conditional expectation. By Proposition
2.2 and the fact that R, = 0 whenever r; = 0 it can be written

1—r,+ r,E(e*®|Fi1).

On the set {r; = 1}, R, is the time taken to hit A from X, . By the Markov
property the conditional expectation is

<f*(s) =

1-r+nrEy eTAD,

If r, =1, then XT,_, must be in A‘i’, so by the definitions of f7(s) and f*(s),
(2.8) 1 - ri + rif_(s) S E(eSR'IFi_l) S 1 - ri + rif+(s).
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Plugging back into (2.7) yields
Ee™[(1 - r)(1 ~f(s)) + ()]
(2.9) < Ee’T
< Ee™[(1 - )1~ f*(s)) + f*(s)].
Restrict attention to the upper bound of (2.9); the lower bound can be treated in
exactly the same manner. On the set {r, = 0}, R, = 0 and hence 7,_, = T;. Thus
(2.9) is
Ee’" < (1 - f*(s))Ee®T(1 — r;) + f*(s)EesT-1,

By Proposition 2.4 e°" and 1 — r; are independent, and by Proposition 2.3
EQ — r)) =1 — 1/i. The bound can be rearranged to
i
2.10 EeT < - EeT-1,
(2.10) ¢ i—1+1/f"(s) ©
Combining (2.10) for i = 2,..., N with (2.6) yields
N i
Ee*Tv = Ee®On < - ,
¢ = e

which is the upper bound of (1.4). The lower bound follows in the same manner.

Theorem 1.3 can now be proven. Consider @, the time taken to visit at least
n members of {A,,..., Ay}. @, is a stopping time with respect to F, F,....
Let G" be the o-field generated by ¢ and X,,..., Xgq,- Suppose n + m members
of {A,,..., Ay} have been visited at time @,. If ties among T(A,)),...,T(Ay)
are impossible, then m = 0. Let {Af ..., A%_,} be the set of N—n—m
members of {A,,..., Ay} that are unvisited at time R, and the m members of
{A},..., Ay} among the m + 1 members first visited at time R, that have the
largest labels. {Af ..., A%_,} has N —n members, and membership in
(Af,..., A% _ ) is determined by G™.

Write @y = @, + (@y — Q,). (@y — Q,,) is the time taken, starting at X,
to visit all of {AY,..., A% _ ). Write

(2.11) Ee* = E(e*%E(e*@-9|G")).
As in the proof of (1.4),

N
,l_ll i—-1+1/f(s)

—-n i

(2.12)
N-n i

S(@v—-Qn|(An
<E(e lG)SiDli—1+1/f+(s)'

As long as f*(s), and hence f(s), is finite, (2.12) and (1.4) can be inserted into
(2.11) and terms can be rearranged, yielding Theorem 1.3.

3. Finite group hitting times. Here some basic facts about random walks
on finite groups are reviewed. Diaconis (1988) gives a detailed treatment of
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random walks on finite groups. The transition matrix of a random walk on a
finite group has nice properties that make the calculation of the generating
functions f*(s) and f~(s) needed in Theorem 1.3 tractable. The main purpose
of this section is to give conditions sufficient for f*(s) to exist for some s > 0,
which allows asymptotic distributions of covering times to be deduced from
bounds on moment generating functions.

Let G = (&), &, ---, &g} be a finite group with group operation -. A random
walk on G is essentially described by a probability measure p on G. If Y}, Y,,. ..
are independent with distribution p and X, is the initial position of the random
walk, then X, =Y, - X,, X, =Y, X|,... are the successive group elements
visited by the random walk. The random walk is a finite Markov chain with
transition matrix P having entries P,; = u(g,8; ') since to go to g; at step k&
from g;, Y, = 8,87 ! is needed.

Certain properties of the Markov chain follows from properties of p. If the
support of u generates G, then the Markov chain is irreducible. The measure p is
constant on conjugacy classes if u(ghg™') = u(h) for all g, h € G. The measure
p is symmetric if p(g) = p(g!) for all g € G. This implies the transition matrix
P is symmetric. The examples of random walks on symmetric groups considered
in Section 4 will all be constant on conjugacy classes. This simplifies the analysis
considerably and, for the symmetric group, implies symmetry.

Diaconis and Shashahani (1981) showed that the decomposition of P into
eigenvalues and eigenvectors reduces to the same decomposition of the Fourier
transforms of p at the irreducible representations of G. For z € C, |z| < 1, let

0
P(z) = Y 2"P".
n=0

Assume the chain is irreducible. Then from classical Markov chain theory the
generating function of the time taken to hit g; from g; is

Pij(z)

Py(2)

Use of the decomposition of P or an argument of Flatto, Odlyzko and Wales
(1985) yields

F,(2) = B, (") =

TR, dTx(p (g8 ) (1 - 20,(n)) ")
LR dTr(I - 2p,(p)) "
for z < 1, where p,, r = 1,..., R, are the inequivalent irreducible representations

of G and d,, r =1,..., R, their dimensions. Tr denqtes trace, and p,(p) is the
Fourier transform of p at p,,

o) = X o(&)n(8).

g€G

(3.1) Fi(2) =

’

The structure of a random walk on a finite group permits calculation of f*(s)
and f7(s) as the maximal and minimal generating functions of a restricted class
of hitting times. To study the time taken by the random walk to visit every
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group element, in principle F;;(z) must be calculated for all g;, g; ;€ G. How-
ever, the time to hit g; from g; has the same distribution as the time to hit the
identity from g,g;". Let

F(2) = E, 270,

where id is the group identity. In calculating maximal and minimal generating
functions of hitting times of singletons, attention can and will be restricted to
F(e®) for g, # id.

For the bounds in Theorem 1.3 to give the asymptotic distribution of @, as
N — o0, f*(s), and hence f~(s), must exist in an interval containing 0, which
will follow from F)(z) existing in a ball of radius greater than 1 for all i. Let
F;}(z) be the function defined by (3.1) for all z. F;¥(2) is a rational function with
no poles in the ball |z| < 1. An analytic continuation argument shows that the
generating function F,(z) exists and is equal to F;¥(2) for |2| < |z,|, where z, is
the pole of F*(z) of smallest magnitude. The following proposition gives
sufficient condltlons for F,(2) to exist for all 7, j if p is symmetric.

PROPOSITION 3.2. Suppose p is a symmetric measure on G and the support of
p generates G. If —1 <A, <A, < -+ <A, , <A, =1 are the ordered eigen-

values of the transition matrix P with multiplicities m,, ..., m,_,, m, =1, then
for F.i(z) to exit for all g, g; € G it is sufficient that the following hold:
(i) /12| > N,
(i) = 1/l2| <Ay,
(iii) 1+ (1-12|) Z |2|>\ >0,
m;
(iV) —1/|z| <A; or m, + (1 + )\1|Z|) E m > 0.

Proor. Consider an irreducible representation p. of G of dimension d,.
Since p(g™"') = p(g) and p(g~ ') = p*(g) for all g € G, p,(n) is a real symmet-
ric matrix. Thus p,(p) has real eigenvalues and there is a unitary matrix U such
that Up,(u)U* is diagonal. Since UpU* and p, are equivalent irreducible repre-
sentations of G, without loss of generality assume that each p, has been chosen
so that p.(u) is diagonal. Let A(p) be the |G| by |G| diagonal matrix with
diagonal blocks p(u) each appearing d, times. Also. let A(g) be the block
diagonal matrix with diagonal blocks p,(g) appearing with multiplicity d,, in the
same order as A(p). )

For z € C (3.1) can be written

Tr(A(gig; ')(I - zA(w) ")
Tr(I - zA(p)) ™ '

F(2) -
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That is,
M12.,(1 = 2A) T A gig; ') (1 = 2A(w)) 7))
7 :
2,1 - 2A,) I 1m

The denominator is a polynomial in z. The numerator is also, since it is
[T2_,(1 — zX,) times a linear combination of terms of the form (1 — zA;) ™. Thus
for all 7, j, the smallest pole of F;*(z) is no smaller than the smallest zero of

(3.3) ﬁ(l )Z
R (2‘*)

The characteristic polynomial of P is @(x) = I[TP_,(x — A,)™. The derivative
of Q(x), IT2_(x — A)™ XL (m,/(x — X)) has a zero of multiplicity m; — 1 at
A; for i=1,...,p and a zero in each of the p — 1 intervals ()\1, As),
(}\2, S ()\p_l, 1). Thus (3.3), as a function of x = 1/z, has a zero in each of
p — 1lintervals (A, Ay),...,(A,_;, D).

The proof of the proposition is now reduced to the following problem. For
z € C, |z| 2 1, for F;;(z) to exist for all i and j, it is sufficient that the function

H(x) = I—[(x—)\)z—

z=1 z

have no zeros in the intervals [—1, —1/|z|] and [1/|2|,1].

Under condition (i) of Proposition 3.2 the only zero H(x) could have in the
interval [1/]z|, 1] is the zero between A,_, and 1. Call this zero x,. H(x), and
hence

J(x)—(x—l)Z——1+(x—1) Z .
z i=1 l

has only one sign change in (A,_,,1). J(x) clearly does not change sign to the
right of 1 and is positive to the right of 1. Thus if J(x) > 0 and x > A,_,, then
x > x,. Condition (iii) asserts the positivity of J(1/|z|), implying 1/|z| > x,,,
implying H(x) has no zeros in [1/|z|,1). Conditions (ii) and (iv) similarly imply
that H(x) has no zeros in (—1, —1/|2|]. Thus together (i)-(iv) imply F, (2)
exists for all ¢, j. O

4. Examples on the symmetric group. The symmetric group 2, is the
group of all N! permutations of N elements. Naimark and Stern (1982) and
Flatto, Odlyzko and Wales (1985) are good references on analysis on X ,,. We will
only consider covering problems for random walks on Z, that are constant on
conjugacy classes. The first sets to be visited will be all N! singletons. The time
to visit all these singletons and the number unvisited after a large number of
steps will be discussed. Then more complex covering problems will be used to
study the spatial distribution of unvisited permutations. For any fixed N, the
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bounds in Theorem 1.3 are quite messy. As N — oo precise asymptotic results
are available, and only these will be given.
The conjugacy classes of 2, are determined by cycle structure. Let n;(w)

denote the number of i-cycles of a permutation 7 for i = 1,..., N. Then «;, and
@, are conjugate if ny(w) = n,m,) for all i =1,2,..., N. As usual, denote the
conjugacy class with n, 1-cycles,..., ny N-cycles by 12”2 ... N"~, For exam-

ple, the identity permutation is the only member of the class 1V and any
transposition is in the class 1V~22!,

Any permutation can be written as a product of transpositions. Unlike cycle
structure, this decomposition is nonunique. However, any permutation must be
either even (a product of an even number of transpositions) or odd (a product of
an odd number of transpositions). In fact, there is a one-dimensional irreducible
representation of =, denoted Alt, with

Alt(7) =1, if wiseven
and
Alt(7) = -1, if 7 is odd.

Alt(7) = Alt(o~'70) so all members of a conjugacy class are simultaneously even
or odd. Thus conjugacy classes can be called even or odd.

Consider probability measures on X,, of the following form. Let L,,..., L, be
conjugacy classes of =,,. Choose p,,...,p; with p;>0 for j=1,...,J and
Z‘J-Izluj = 1. Let p put mass p,/|L;| on each member of L; for j =1,..., J. To
have the support of p generate X,, it is necessary and sufficient that p puts
positive mass on at least one odd conjugacy class. Suppose p puts total mass
g > 0 on odd conjugacy classes. Also suppose p puts mass p > 0 on the identity.

To give clean asymptotics, a sequence of random walks on Z,, as N — oo
must be defined. The measure p defined on 3,, can be naturally extended to a
measure on 2, for N> M by taking each conjugacy class L; of Z,, and
padding it with N — M one cycles, making it a conjugacy class of Z,. For
example, if p originally defined on Z, puts total mass 1 on the (; transpositions
of =,, then the version of y defined on X; would also put total mass 1 on the (g)
transpositions of .

The analysis of hitting times on X, needed here has been done in Flatto,
Odlyzko and Wales (1985), hereafter abbreviated FOW. The following proposi-
tion is an easy consequence of their work.

PROPOSITION 4.1. For a sequence of random walks on symmetric groups as
described above, the time to hit the identity from a group element g # id has
moment generating function F, defined by

Egexp(-s-(ll\:—!mTi ) - F(exp( S(IN_!p)

4

)) =1 is + O(N7?),

uniformly in g for s < 1.



COVERING PROBLEMS 1225

PrOOF. The proof for s < 0 for a measure concentrated on a single con-
jugacy class is given by FOW in the proof of their Theorem 5.4. As they mention,
the proof extends easily to the types of measures considered here.

The case 0 < s < 1 requires only slightly more care. The eigenvalue of the
transition matrix corresponding to the alternating representation is 1 — 2q. The
eigenvalue corresponding to the trivial representation of p is 1. By (5.4) of FOW
all other eigenvalues of p satisfy 1 — |A| > 6/N? for some 6 > 0 depending on u.
Thus other eigenvalues of the transition matrix approach one in magnitude at a
rate that is at most polynomial in N. The existence of F, at exp(s(1 — p)N!) =
1 + O(N!~') needs to be shown. Requirements (i) and (ii) of Proposition 3.2 are
clearly satisfied. Requirements (iii) and (iv) are implicit in the calculation of
(5.27) in FOW. O

From Proposition 4.1 both f*(s(1 — p)/N!) and f~(s(1 — p)N!) exist and
are (1 — s)~! + O(N~2). Write
1/f*(s(1 —=p)/N!)=1-s+ 0"
and
1/f (s@—-p)/N\)=1-s+ 0",

where O" and O~ are different O(N~2) terms.
Consider the time @, taken by this kind of random walk on =, to visit n of
the N!— 1 permutations excepting the starting point. From Theorem 1.3

N!'-1-n; g4+ Ot N!-1 i
ici 1—8+ 0 ;=Ni—pl—8s+ 0"
<E s(l_p)Qn
<Eexp| —(
N'-1-nj_ g4+ Q- N!-1 i
<

i=1 i—s+0+i=N!_ni—s+O+’
for all s for which f*(s(1 — p)/N!) exists. In terms of gamma functions this is
I(N!'-n—-s+0")T1-s5+0") T(N?)
[(N!-n) r(1—s+0%) I(N!'-s+0")
S(]. _p)Qn
N!
I(N!'-n-s+0)T(1-s+0") T(NY)
< .
- [(N!-n) (1-s+0 ) T(N!'-s+0")
. First let n = N!— 1, so the quantity under consideration is the time taken by
the random walk to visit every member of X ,. Stirling’s formula yields
T(N!)N!~s
-
T(N!- s+ O(N~2))

(4.2) <E exp(

1
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and
rt-s+ 0%
_
rt-s+07)
The bounds in (4.2) become

s(1-p) N!log N!
(4.3) Eexp(_N,—'(Qm—l i E——

1, fors <las N - o0.

)) -0 -8,

for s <1as N — oo. Recognizing I'(1 — s) as the moment generating function of
the extreme value distribution yields

(4.4) P(QN!—I < '

1-p
If p = 0, then the random walk moves nontrivially at every step. A comparison
of (1.1) with (4.3) shows that the time taken by a random walk of this form to
visit every group element is asymptotically the same as if permutations were
selected uniformly and independently.
Next let n = N!— 1 — J for a fixed J. Another calculation with (4.2) gives
E s(1-p) N!log N! T(J+1-5)
v S - | P
T N A P T(J+1) °

for s <1. With U, as in (1.2) the number of unvisited permutations after
N!/(1 — p)(og N! + c) steps, (1.6) gives
1 L dvioN F(J+1—Z) F(J—Z)
4. = — — -
45) PU=J)-—[ ( NI D) e :

27i
for any d € (0,1) and J > 0 where A = e™“. Let y = 1 — J + z. Then (4.5) is

(log N!+ c)) —e*", asN - .

d—ic <

I A7 e
2_77'i 7 ‘/(;_. Ayl‘(l—y)dy,

for any d € (0,1). Except for the term A/~!/J!, (4.6) is the extreme value
density at —log A, which is Ae . Thus

A
(4.7) PU,=J) - j‘e"‘, forall J > 1,

(4.6)

and for J = 0 as well from (4.4).

Therefore U, has a limiting Poisson distribution for any fixed c. Specializing
again to the case p = 0 and comparing (4.7) with (1.2). says that if the random
walk moves nontrivially at each step, then the number of unvisited permutations
after a large number of steps has asymptotically the same distribution as if
permutations has been picked independently and uniformly.

Finally, consider (1.8). Theorem 1.3 can be used by bounding C, above and

below by other random variables. Consider the set A, of all 1N '(’;’ ) pairs of
permutations of Cayley distance one apart. Again T(A ) denotes the first time
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all the members of A have been visited. Let By denote the set of }N!— 1 pairs
of permutations
{(m, 7 (12)): miseven, 7 # ayand 7 - (12) # x,}.
The members of By are disjoint. T(B ~) is the first time all members of B, have
been visited. Then
T(By) < Cy < T(Ay).
Theorem 1.3 with N =2 and n =1 shows that the time to hit a pair of
permutations from any point outside the pair has moment generating function
1
f(s/N!) = 5
2(1-p)
Applymg (1.4) yields a lower bound on T( B,) and an upper bound on T(A,),
giving

+ O(N“").

r(5¥rfr- sy + 0|

r(le— . O(N“"))
2" 2(1-p)
sCy
<E exp( N1 )

o ETE I R,

I‘(-;—N!(sz) +1- ﬁ + O(N—z))

b

1
1-p°
The left-hand side of (4 8) is (AN1)*/21-PX1 + O(1)), and the right-hand side of
4.8) is Q2N '(2’ )) . (1 + O(1)). Markov’s inequality for s positive and nega-
tive applied to exp(sCy/N!) yields

Cy log N!

P(YVT— 2(1 - p)

In the case considered in the Introduction p = 0 and (1.9) follows.

It is interesting to wonder how far the similarity between the coupon collec-
tor’s problem and rapidly mixing random walks holds up. Here it has been shown
that in what Kolchin, Sevast’yanov and Chistyakov (1978) call the right-hand
domain, the distribution of the number of empty cells is asymptotically the
same, at least in this case. Whether the relationship also holds in the central
domain and whether finer aspects of the right-hand domain, such as the relative

for s <

>log2N) -0, as N - .
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locations of unvisited permutations are the same in both problems, are interest-
ing questions.
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