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ON THE GROWTH OF THE MULTITYPE SUPERCRITICAL
BRANCHING PROCESS IN A RANDOM ENVIRONMENT

By HARRY CoHN

University of Melbourne

Let {Z,} be a multitype branching process in a random environment
(MBPRE) which grows to infinity with positive probability for almost all
environmental sequences. Under some conditions involving the first two
moments of the environmental sequence, it is shown that dividing the {Z,}
components by their environment-conditioned expectations yields a sequence
convergent in L? to a random vector with equal components.

1. Introduction. Let {Z,} = {(Z®,..., Z{")} be a p-type branching pro-
cess where Z{) stands for the nth generation size of type i particles with
j =1,..., p. We shall assume that {Z,} is a branching process in a random
environment of the type introduced by Athreya and Karlin [2]. In this model
each particle of type i of the nth generation yields p-type offspring with
probability distributions {{,(i)}, where {,(i) = L), ..., {{PY(i)). We shall say
that ¢, = {(¢,...,8{P)} is the environment of the nth generation, and { =
(895 - -+ 8- - -) is the environmental sequence of the process. We assume § to be
random, which accounts for the qualifier “random environment” used in MBPRE.
According to the Athreya-Karlin model, when conditioned on §, the {Z,}
becomes a Markov branching process in a varying environment, that is, a
branching process with independent lines of descent and generation-dependent
offspring distributions. An earlier model assuming a random and independent
environment was considered by Smith and Wilkinson [12]. For the axiomatic
setup of the MBPRE see Athreya and Karlin [2] and Tanny [13]. Athreya and
Karlin [2] deals with extinction criteria for single- and multitype settings. Tanny
[13] is concerned with extinction theorems as well as aspects of growth of
MBPRE in the supercritical case. Limit results for suitably normed single-type
supercritical branching processes in random environment are given in Athreya
and Karlin [3] and Tanny [14]. No results of this kind seem to be known in the
multitype case which is attempted in this article. It seems that the approaches
available for the Galton—-Watson process (Harris [7], Athreya and Ney [4] and
Asmussen and Hering [1]) which are crucially dependent on the Perron-Frobenius
theory break down in the random environment setting. It will appear that the
martingale-subsequence approach of Cohn [5] is adaptable to this case. Impor-
tant ingredients in the proof will be provided by the Furstenberg—Kesten a.s.
convergence result [6] and the Coale-Lopez ratio limit theorem [10, 11]. We shall
consider random norming for {Z,} depending on -the environment {. When
conditioned on { the norming is expressed by nonrandom vectors which, unlike
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the Galton—-Watson case, do not appear to have asymptotically proportional
components. Indeed, in general, the ratio of the conditional expectations of Z
and Z{” with i # j does not seem to converge. Surprisingly, the one-dimensional
character of the limit distribution of a Galton-Watson process is preserved for
MBPRE.

We shall make the blanket assumption that § is stationary and ergodic. As in
[2] we write {Z (%)} for the branching process conditioned on the environmental
sequence §. Throughout the article we shall refer to {Z,({)} as well as quantities
derived from it, but to ease the notation we shall hereafter suppress the quali-

fier §.
We recall that
p ZP
(1) z7, =Y Y zZ%(n,r), Jj=1,..,p,

i=1u=1

where Z,(/ X(n, r) is the size of type j offspring at time n + r of the uth type i
particle of the nth generation. The random vectors {(Z8(n, r),..., ZPX(n, r));
u=1,2,...} are iid. given Z,. Consider the matrices {M,} = {m{")}, where
m(") is the expected number of offspring of type i produced by one partlcle of
type J under the environment §,. It is easy to see that if "M = (™m; )=
M, M, _,... M, then Mm, ;= E(Z(’)|Z = e)), where e, is the p- dimensional
vector vnth 1 in the jth place and 0 elsewhere. Let S(’) = (s{"())), where
s j) = E(ZPZP\Z, = e;) and S = (57 j)), where

5m()) = E(202P1Z,_, = &) ~ E(ZP\Z,_, = ¢;)E(ZP|Z,_, = ¢;).
Write @ (s) = (®{(s),..., B{*)(s)) for the probability generating function of §,,
and consider the conditions
0<C<39(1)/ds;< D < oo,

@ 0 < 3%0(P(1)/ds; s, < D < 0
and
(3) E([log(1 — @,(0),1)|) < oo,

where C and D are some constants and (a,b) = L_,a;b; is the scalar product of
a=(a,.. ,a)andb—(bl, b)Weshallwntea<b(a<b)1fa<b,
(a;<b)fori=1,..., p. The vectors 0 and 1 have all their components 0 and 1,
respectively. Further 1, is to denote the indicator of a set A and A 4 B is the
symmetric difference of the sets A and B. Define the norm of the matrix
M = (m,; ;) by |M| = max, _; _,2P_,|m, , and denote its transpose by M". The
matrix I will stand for the identity matrix. We assume that

(4) ' lim n™" log(||"M||) = A > 0.
According to [2], (2), (3) and (4) ensure that P(¢({) < 1) = 1, where g({) is the

extinction probability under the stronger assumption of an independent environ-
mental sequence {. We shall take Z, = e; for an arbitrary fixed j,, but extension
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of our result to arbitrary Z, with finite second moment is straightforward.
2. An L%-convergence result. We shall prove the following theorem.

THEOREM. Assume that (2), (3) and (4) hold and write W, =
(WO, ..., WP, where W® = Z® /E(Z(K)) fori=1,..., p. Then {W,} con-
verges in mean square to a random vector W where W = (W,..., W) with
E(W)=1.

ProoF. Step 1. First we shall prove that from any subsequence of {W,} one
may extract a further subsequence that converges completely to a random vector
whose components are not identically 0. For this it suffices to show that for some
finite constant A,

(5) E(Z,‘L‘)2)/E2(Z,(j)) <A as,i=1,...,p;n=12,....

To prove (5), we shall need the following lemma.

LEMMA. Let "M" =M, M,_,...M, for r=0,1,...,n—1 and "M" =
"M = I. Then

n p
(6) S)ftj) - ;O(nMr)/{ kgl Sr(k)(r_lMej)k} nMr’
where (o), is the kth coordinate of the vector a.

The proof of (6), which will be omitted, is similar to the classical multitype
Galton—-Watson process case (see Harris [7] or Jagers [8], pages 88-89).

It is easy to see that (5) will follow if we shall prove that the diagonal entries
of (6) divided by the squares of the corresponding entries of the vector "Me; are
bounded away from co. Notice that

n p
(7) S$P<DY ("M')'{ ) (’”Me,-)k} M
r=0 k=1
Write 8 = D/C and ®'m{?; for the (i, j) entry of °M" with ¢ < s. According to
Lemma 2 of [6],

2 @) (B A 2
(8) 872 <®m); /m{) , < 8

for any s, ¢, i, iy, j, and j,.

Note that by (5) and (7) we shall need to majorate sums of products of three
factors divided by (“”m; ;)% The first two factors divided by ™m,; ;, and (8)
yield

_ B -1
(ﬂ)m(_r).(" 1)m P (ﬂ)m(i:‘;zm ry(r l)m

) U Ji ig, J2 X LJ . 2v) " la4
9 (n) = X (Mpy(r) =D < (p’C) 8.
m, j k,1=1 b, Jy iz, Ja

We deal next with the third factor of (7) divided by ("’mi, - According to the
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Furstenberg—Kesten theorem [6],

(10) lim n~tlog™m; ;=\ as.fori,j=1,...,n
This implies “”m,; ; = p"8{"), where p = exp(A) and {8{")} are some random

variables with hm,,_,oo ~!log 8{") = 0 a.s. Thus there must exist some numbers
r, and p, with 1 <p, <p such that “'m m; ;> p, as. for r>r, which in
conjunction with (8) yields

r) p () (r)(r)
(11) m,hl1 _ Z m;, my
- : (n)

(n), .
LJ

-1

<p 8%(p;") as.

It is easy to see that (9) and (11) imply (5). The existence of a weakly
convergent subsequence of an arbitrary sequence is a well-known result (see
Loéve [9], page 181). By another well-known property for moments (see Loéve
[9], page 186) the limit distribution function of any weakly convergent subse-
quence must have expectation vector 1 as the limit of the expectation vectors of
{W,}. Thus convergence on subsequences to a nonnull limit is complete as
stated.

Step 2. We show now that from any subsequence of {W,} one can extract a
weakly convergent subsequence {W,, } such that {£,(x)} with

£x) = lim P(W,, <xI2,)

(12) b bz
=Pl Y B Y Wh(n) <x;,..., X B X WR(n) <x,|Z,
i=1 u=1 i=1 u=1
is a martingale for any continuity point x = (x,,..., x,,) of the limit distribution

of {W, }, where (W(’)(n)} are iid. given Z,, E(W;“,)(n)) =1 and {B{"} are
some pos1t1ve constants independent of {n,}. Indeed, extract a subsequence
{n,)} such that {W, } and {Z{/X(n, n, — n)/E(Z(’)(n n,—n); i, j=1,...,p;
n=12...} converge weakly as k — oo. This is achievable by a dlagonal
procedure since the set of variables considered is countable. Thus £,(x) =
lim,_,  P(W, <x|Z,) exist for all n and the martingale property is easily
checkable. Notice further that E(ZU)) =m; . and E(ZY)(n,n, - n)) =
"Om(m. Thus by (1),

) ) p (m) (n) A
(13) Z/E(ZY)) = Z 5 ¥ W9 (n, ny — 1),

i= m;, jo u=1

where E(W’)(n, n, — n)) = 1. Applying the Coale- Lopez theorem (or Theorem
3.3 of [11]) to the backwards products of matrices {(*'M™} yields

’ O (n)
lim L) s .
t> o0 ‘“mg."} 7> 0
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It follows that for any {n,} with lim, _,  n, = oo,

(ng)

(n) -1 - T J, Jo
(B‘ ) kl_ll’l;lo (g (n)
Jyl
(14)
n (nk)m(”l) p
= L S, (n) — (n)(n) )
klll}:o )y O py(m) o X af?Vmy, .
=1 m; =1

Using (14) and (13) in (12) on letting £ — oo yields (12).

Step 3. We shall prove that {W,} converges in distribution to a random vector
with equal components. Indeed, {W,/)(n)} have means 1 and, in view of the
stationarity of { and Step 1, uniformly bounded second moments. In this
situation Chebyshev’s inequality and the conditional mdependence of {(W{)(n))
on Z, lead us to conclude that {(Z{))~1xZ’ X \W,)(n)} converges in probability to
1 as n — oo on the set of nonextinction. Since E(Z ' BPZWDY = 1, it follows that
(xr 1,B‘”}:‘,Z("IWU)(n) Y2 BYZOY converges in probablhty to 0 as n > oo.
But {8{”} does not depend on {n,}. This shows that {£(x) = lim,_, . £,(x) a.s. is
also independent of {rn,}. However E(£(x)) = F(x), where F is the limit distribu-
tion of {W, }, wherefrom we deduce that {W,} converges weakly to F. Finally,
(XA, BPZ1} is obviously independent of j which in conjunction with (12)
proves that F is the distribution function of a random vector with equal
components.

Step 4. We shall show that {W,} converges in probability. Indeed, according
to Steps 2 and 3,
n zZ

=P X 8P Y Wil(n) <x|Z,

i=1 u=1

(15) £,(%)

for any continuity point X = (x,..., x) of F. It is easy to see that (15) implies

n Lx—oEZD)]
(16) &LE =P LAY L Wiln)sx| #W,<(x-e...,x—¢)
i=1 u=1

for any ¢ > 0, where [a] is the integral part of a. Taking into account that
TP BYE(Z?) =1 as well as the weak law of large numbers in (16) yields
P({£((X) = 1}) > F(X). However, E(£(X)) = F(X) which implies P({{(X) = 1}) =
F(X) and P({{(X) = 0}) =1 — F(X). Thus there exists a set A; such that
§(X) = 1,_ and now a word-for-word extension of Theorem 3.1(ii) of [5] to the
multidimensional case yields lim, ,  P({W, < X} 4'A;) = 0, which is tanta-
mount to convergence in probability for {W,}.

. Finally, {W,} is by (5) L? uniformly bounded and L?convergence follows. O
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