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KOLMOGOROYV: LIFE AND CREATIVE ACTIVITIES

By A. N. SHIRYAEV
Steklov Mathematical Institute

“Kolmogorov occupies a unique place in modern mathematics and in the
scientific world. By the diversity and breadth of his scientific interest he
recalls the classical natural scientists of past centuries.”

Bogolyubov, Gnedenko and Sobolev ([21], page 24)

In 1985, 1986 and 1987 Nauka (Science) publishers issued three volumes of
Andrei Nikolaevich’s selected works (in Russian) with commentaries by him as
well as by his pupils and followers:

Mathematics and Mechanics
Probability Theory and Mathematical Statistics
Information Theory and the Theory of Algorithms

Though these three volumes [MM, PS, IA] contain as many as 60, 53 and 13
papers, respectively (author’s selection), they cover far from all that he accom-
plished in these areas of science (see the list of Andrei Nikolaevich Kolmogorov’s
works on pages 945-964). However, even a brief review of the lists of contents
astonishes the reader with the breadth and profoundness of the material therein.

Topics in the theory of trigonometric series, theory of measure and sets,
studies in the theory of integration, approximation theory, constructive logic,
topology, theory of superposition of functions and Hilbert’s 13th problem, topics
in classical mechanics, ergodic theory, theory of turbulence, diffusion and pat-
terns (models) in the dynamics of populations, papers on the foundations of
probability theory, limit theorems, theory of stochastic (Markov, stationary,
branching, . ..) processes, mathematical statistics, theory of algorithms, informa-
tion theory, ... —even this is hardly a complete list of all the branches of science
in which Andrei Nikolaevich obtained fundamentally important results, which
determined the state of many fields of 20th century mathematics and possible
directions for their development.

Kolmogorov’s papers on the applications of mathematical methods in the
social sciences (including articles on the theory of poetry and the statistics of
text and literature), the history and methodology of mathematics and the
teaching of mathematics in schools, together with popular works for schoolchil-
dren and schoolteachers of mathematics, will supposedly be included in the
forthcoming volumes of his selected works, already scheduled for publication.

The exceptional breadth of Andrei Nikolaevich Kolmogorov’s scientific inter-
ests, and his extraordinary scientific productivity and generosity, are clearly
indicated by the titles of his lectures, delivered at meetings of the Moscow
Mathematical Society over many years.

Received August 1988.
866

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access

The Annals of Probability. RINOIN

www.jstor.org



KOLMOGOROV: LIFE AND CREATIVE ACTIVITIES 867

The list of references at the end of this article consists of papers and books by
other authors that are cited in the present article. These are given as [1], [2], ... .
Citations of items from the general list of principal publications by A. N.
Kolmogorov on pages 945-964 are given as [K1], [K2],... .

Whenever possible the quotations from Kolmogorov’s works are referenced in
two ways: Quotations from original sources and those of [MM, PS, IA] ([K467,
K471, K473], where the articles are given in Russian).

D. Reidel has committed itself to publication of the volumes [MM, PS, IA] in
English translation.

Childhood and school years (1903-1920). Andrei Nikolaevich Kolmogorov
was born on April 25, 1903 in Tambov where his mother Maria Yakovlevna
Kolmogorova had been delayed on the way back from the Crimea. Maria
Yakovlevna died in childbirth and her son of 10 days was taken first to Yaroslavl
and then to his maternal grandfather’s house in the village of Tunoshna (17
miles from Yaroslavl down the Volga), where he was adopted by Maria
Yakovlevna’s sister, Vera Yakovlevna. Andrei Nikolaevich Kolmogorov’s father,
Nikolai Matveevich Kataev, was a qualified agronomist and statistician (what
they called at the time a “learned agronomist”) who was exiled to Yaroslavl.
After the Great October Socialist Revolution he became director of the educa-
tional department in Narkomzem (an agricultural ministry), and later perished
on the southern front during the offensive by Denikin in 1919.

The three Kolmogorov sisters—Maria Yakovlevna, Vera Yakovlevna and
Nadejda Yakovlevna—were independent women with high social ideals. They
aided the revolution underground: A clandestine printing press was located in
their house, and Kolmogorov’s postal address was used for communications from
abroad. Referring to the family chronicles, Andrei Nikolaevich wrote in one of
his letters that, the apartment having been searched on one occasion, forbidden
literature was saved by being hidden under his cradle. Both Vera Yakovlevna
and Maria Yakovlevna were arrested and kept for several months in the house of
preliminary imprisonment in St. Petersburg.

Andrei Nikolaevich spent the first years of his life until 1910 in this house
near Yaroslavl. He wrote as follows in [K315], “How I became a mathematician”
(see also [K476], page 7): ‘

“Very early I experienced the joy of mathematical discovery, having noticed
the following law at the age of 5 or 6:

1=12
1+3=2%
1+3+5=32

1+.3+5+7=42 etc.

“My aunts set up a small school in our house near Yaroslavl where they
taught a dozen children of various ages by the most advanced pedagogical
methods of the time. The magazine Spring Swallows was edited at this school.

W
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It published my discoveries, and also some arithmetical problems that I posed.”
(Kolmogorov recalled the following such problem: “There is a button with four
holes in it. Thread should go through at least two of them to fix the button. In
how many ways can this be done?”)

In 1910 Vera Yakovlevna and her adopted son moved to Moscow where the
boy joined the private E. A. Repman Gymnasium (renamed the Section Grade
School No. 23 after the Great October Socialist Revolution).

Andrei Nikolaevich repeatedly emphasized the auspicious climate of the
gymnasium, founded by a circle of democratically minded intellectuals. It was
also one of the least expensive in terms of tuition.

He recalled that “the gymnasium rooms were small, each holding 15-20
pupils. The teachers were enthusiasts of science, some of them being university
lecturers. Our teacher of geography was involved in interesting expeditions.
Many schoolchildren competed against each other in their private studies,
sometimes even with the intention of shaming the less experienced teachers.

“The school experimented with a new practice of defending final compositions
(similar to diploma papers in institutes of higher education).

“I ranked among the first in mathematics in my class, but at the time my
major scientific interests were biology first and Russian history second.” In this
regard Andrei Nikolaevich remarked in answer to “Rovesnik’s” questionnaire: “I
owe my general goal of a quest for serious and useful activity to the family
tradition, and primarily to my aunt Vera Yakovlevna Kolmogorova, who brought
me up, and also to the very atmosphere of the remarkable Repman Gymnasium
where I studied. My scientific ambitions were inspired by the gymnasium
teachers and were ardently cherished in a circle of friends. (I shall name the
Seliverstov brothers: Gleb was a mathematician and Nikolai a historian.)”

Recollecting his last year at school Andrei Nikolaevich wrote ([K315]; [K476],

page 8):

" “Life was not easy in the Moscow of 1918-1920. Only the most persistent
studied seriously. Together with other senior students I left Moscow for the
construction of the railway from Kazan to Ekaterinburg (now Sverdlovsk). In
addition to this work I continued with my independent studies preparing for the
secondary school examination, and for taking the secondary school degree
externally. Back in Moscow I felt a certain disappointment: They issued a
certificate (the secondary school degree) without taking the trouble of testing my
knowledge.” :

Student years and postgraduate schooling (1920-1925, 1925-1929). Hav-
ing obtained his secondary school degree in 1920, and hesitating in his choice of
subject, Andrei Nikolaevich enrolled in the physics and mathematics faculty at
Moscow University. Anyone could be admitted then without examination. He
wrote in [K470]:

“I arrived at Moscow University with a fair knowledge of mathematics. I
knew in particular the beginnings of set theory from the book New Ideas in
Mathematics. 1 studied many questions in the encyclopedia of Brokhaus and
Efron, filling the gaps resulting from the over-brief coverage of the articles.”
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Concurrently Andrei Nikolaevich enrolled in the Metallurgy Department of
the D. I. Mendeleev Chemical and Technological Institute, having passed the
required examinations in mathematics, and studied there for some time. (“I
never gave up the idea of a career in technology; somehow, I do not know why I
was interested in metallurgy.” “Technology was seen then as something more
essential and necessary than a pure science,” Kolmogorov recalled.) At the same
time he stili continued his studies of history, attending Professor S. V.
Bakhrushin’s seminar on ancient Russian history at the Historical Faculty of the
University. In this seminar he delivered his first report on land relationships in
Novgorod on the basis of his analysis of documents from the 15th and 16th
centuries, where he used certain techniques from mathematics ([K315]; [K476],
page 8), in particular, Bayes’ formula. Very soon Andrei Nikolaevich’s interest in
mathematics prevailed over his reservations about the relevance of the mathe-
matical profession.

“Having passed my first year exams I was then entitled as a second year
student to 16 kg of bread and 1 kg of butter monthly —sufficient for compara-
tively good physical health. Clothing I had already and wooden-soled shoes I
made myself.

“However, in 1922-1925 the need to add other earnings to my rather insub-
stantial scholarship led me back to the secondary school. It is with great pleasure
that I recall now my work at the Potylikhin Experimental School, RSFSR
Narcompros (Ministry of Education of the Russian Soviet Federated Socialist
Republic). I taught mathematics and physics (they were not afraid then to
entrust two subjects to a 19-year-old teacher) and took a very active part in the
school public life (I was the secretary of the school council and the school tutor)”
—Andrei Nikolaevich describing his student years ((K315]; [K476], page 9).

As a university student Kolmogorov used to attend only specialized courses
and seminars. In his first year (1920-1921) he attended lectures on the theory of
analytic functions by N. N. Luzin and on projective geometry by A. K. Vlasov.
In one such lecture devoted to the proof of Cauchy’s theorem Luzin made the
following statement: “Let the square be divided into a finite number of squares.
Then for any constant C there exists C’ such that, for any curve of length not
bigger than C, the sum of perimeters of squares touching the curve will not
exceed C".” Luzin assigned the proof as an exercise. “I managed to show,” Andrei
Nikolaevich recalls ([K476], page 11) that “actually the statement was wrong.
Nikolai Nikolaevich Luzin immediately understood the idea of my counterexam-
ple. It was decided that I would report it at the student mathematical seminar.”

Pavel Samuilovich Uryson undertook the verification of all the constructions
and proofs. Thus resulted a manuscript dated January 4, 1921, “A report on
squaring to the student mathematical seminar”; this was supposed lost but has
been recently rediscovered and included in the third volume [IA] of Andrei
- Nikolaevich’s works, Information Theory and the Theory of Algorithms, as
enclosure No. 1 ([K473], pages 290-294).

In the autumn of 1921 Kolmogorov continued attending lectures by Luzin and
Vlasov, and began to attend lectures by Aleksandrov and Uryson. “By the way,”
Aleksandrov recalled, “Andrei Nikolaevich noticed a mistake in the complicated
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construction in the lecture by Uryson, in his proof of the theorem on the
dimension of three-dimensional space. Uryson corrected the mistake the very
next day, but he was greatly impressed by the sharpness of mathematical vision
displayed by the 18-year-old student Kolmogorov.”

At the invitation of Uryson, Andrei Nikolaevich began calling on him for
mathematical supervision. Later Andrei Nikolaevich recollected: “Moscow
mathematics of that time was rich in vivid and talented personalities. But even
against that background Pavel Samuilovich stood out for the diversity of his
interests combined with the purposefulness of his research studies, and his
intelligibility in posing problems (in particular those he set for me as part of
his responsibility for directing my work), clear assessment of his and others’
achievements combined with benevolence towards even the smallest successes”
(from an article by Kolmogorov in a book by L. Neiman, Happiness of Discov-
ery, Moscow, 1972, dedicated to P. S. Uryson (1848-1923); see [K388]).

While under the influence of P. S. Aleksandrov’s lectures, Andrei Nikolaevich
began his studies in the very géneral area of the descriptive theory of sets and
had the idea of a rather general “theory of operations on sets”, following up and
generalizing the studies by Borel, Baire, Lebesgue, P. S. Aleksandrov and M. Ya.
Suslin. His work on this topic was finished by January 3, 1922, but its first
publication was delayed until 1928 (through no fault of the author) [K15],
[MM-13]. (Kolmogorov himself remarked that “my descriptive works gathered
dust in Luzin’s desk until 1926 as they were believed to be methodologically
incorrect”.) The second part of this manuscript was accessible to a number of
researchers in the descriptive theory of sets, but it first appeared only in 1987 as
an enclosure (No. 2, pages 294-303) in the third volume [IA] of Kolmogorov’s
works.

This work [K15], [MM-13] was the first to introduce the notion of the 8S-
operation X on sets defined in the following way. Let us take the closed subsets
of the interval (0, 1), including the empty set, as a basic class of “elementary”
sets. The X-operation is determined by the following two objects: a certain
collection {UX} of numerical sequences U* = {n,, n,,...} which are subsets of
the sequence of positive integers {1,2,...} and a certain sequence of elementary
sets E,, E,,.... Every UX determines the corresponding sequence of sets
E,,E,,... and the nucleus N,E, . The union of all such nuclei of sequences
corresponding to the given collection {U*} and to the sequence of sets E,, E,, ...
constitutes the result of applying the X-operation to this collection of sets.

Later Kolmogorov defined the notion of a complementary operation X for the
given X-operation and proved the following remarkable result: There exists an
X-set [on (0,1)], whose complement is not an X-set. Experts in the descriptive
theory of sets will appreciate the significance of this result, generalizing in
particular Suslin’s theorem on the existence of A-sets (the analytical sets,
introduced by P. S. Aleksandrov) that are not B-sets (Borel sets).

In the autumn of 1921, as a second-year student Andrei Nikolaevich started to
work in V. V. Stepanov’s seminar on trigonometric series as well. There he solved
the problem of the construction of a Fourier series whose coefficients tend to zero
as slowly as desired, a problem with which Luzin was particularly concerned. In
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the resulting paper, which Kolmogorov described as his “first independent work”
(submitted for printing only in late 1922), he formulated his major result on the
order of values of the Fourier coefficients [K2], [MM-2]:
“It is known that the Fourier coefficients of a summable function tend to zero.
In this article we prove the following proposition concerning the cosine series:
“For any sequence {a,}s_, tending to zero there is a sequence {a}}%_, such
that

L. |a,| < la;,
2. X%_,a/ cos nx is the Fourier series of the summable function.”

Kolmogorov recalled ([K469]; [K476], page 20) that “as soon as Luzin was
told about this he approached me (I remember it happened on the University
staircase) and suggested that I should regularly take classes from him.”

Thus Kolmogorov became the pupil of N. N. Luzin, whose method of teaching
students consisted of weekly scientific discussions on fixed days. Such “intensive
work with students was one of those innovations that were introduced by N. N.
Luzin” ([K469]; [K476], page 21).

In 1922 Andrei Nikolaevich obtained his most celebrated result on trigono-
metric series—he constructed an example of a Fourier—Lebesgue series that
diverges almost everywhere. In his paper dated June 2, 1922 he says of this
result:

“The purpose of this article is to provide an example of a summable (that is,
‘integrable’ with respect to Lebesgue measure) function whose Fourier series
diverges almost everywhere (that is, at every point outside some set of measure
zero). The function constructed in this paper is not square-summable and I know
nothing about the order of its Fourier coefficients.”

He also mentioned here that the methods employed do not allow the construc-
. tion of a Fourier series diverging everywhere. Later, in 1926, Kolmogorov slightly
changed his original method and constructed an example of a summable function
with an everywhere divergent Fourier series [K12], [MM-11].

These two examples really shocked and greatly impressed the mathematical
community. For the rest of his life Andrei Nikolaevich Kolmogorov retained his
interest in the theory of trigonometric functions and orthogonal series, returning
now and then to these problems and posing a number of questions to younger
mathematicians. He published about a dozen papers in this area, each initiating
directions of research which continue to this day. (P. L. Ul’yanov has reviewed
this aspect of Kolmogorov’s work together with more recent progress in [195];
see also Zygmund [216].)

Along with his interest in the theory of trigonometric series and the descrip-
tive theory of sets, Andrei Nikolaevich concurrently did research in classical
analysis, i.e., differentiation, integration, theory of measure and also mathemati-
cal logic.

In numerous works of the 1920s attempts were made to generalize the notion
of “differentiation.” It was hoped to obtain a general definition of the deriva-
tive under which any measurable (or at least continuous) function could be
differentiated in its natural sense. As a rule, however, for any of the definitions
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proposed one could construct as a counterexample a continuous function that
was not differentiable in the proposed sense. Kolmogorov investigated the
problem in its most general form [K7], [MM-7]. He formulated a series of
requirements that the “generalized derivative” f'(x) of the function f(x) should
satisfy, for example, that it should coincide with the ordinary derivative when-
ever the latter exists and that if ¢(x):= af(x), then ¢(x) has a generalized
derivative at the same points as f(x) and ¢'(x) = af’(x). He showed then that if
the function

o) - =

n=1

has a finite or infinite “generalized derivative” on a set of positive measure, then
it is a nonmeasurable function. This example shows that the quest for an
effective definition of derivative for the whole class of continuous functions will
inevitably lead to the same difficulties as arise in attempts to construct nonmea-
surable sets. Similar results concerning the summation of divergent series and
the general definition of integral were also formulated in the same article. In a
later work ([K26], [MM-16]) of 1930, Kolmogorov analyzed in depth certain
established and new constructions of the integral, bringing harmony and clarity
to the whole theory of integration, where previous results had generally been
uncoordinated and disjointed.

In his introduction to this work [K26] Kolmogorov wrote of its goal as
follows:

“...to clarify the logical nature of integration. In combining the various
approaches to the idea of the integral by the notion of a generalized integral, the
real point is that the generalization of a notion may often be useful in appreciat-
ing the essence of its nature. In addition, such generalizations can shed light on
the application of the theory. Besides, I see merit in the more general approach
through the simplicity and clarity introduced by the new ideas.”

The same series of works includes “La définition axiomatique de l'intégrale”
[K5], [MM-5], 1925; “Sur le bornes de la généralisation de I'intégrale” [K6],
[MM-6] (initially published in the first volume of the selected papers, Mathe-
matics and Mechanics, together with proofs of the results obtained in [K5],
[MM-5]), 1925; and also a work of 1928, “Sur un procédé d’intégration de M.
Denjoy” [K17], [MM-14]. For further details see [93] and [164].

In 1925 there appeared Andrei Nikolaevich’s first work in intuitionist logic,
entitled “On the tertium non datur principle” [K9], [MM-9]. (The second work
is [K36], [MM-19].) Kolmogorov described the main idea of these works as
follows (see his commentary in Mathematics and Mechanics, page 393):

“It was intended as an introduction to a wider concept. The construction of
various branches of classical mathematics within the framework of intuitionist
mathematics should have served'as evidence of their consistency. The consis-
tency of intuitionist mathematics was believed to be a consequence of its
intuitive nature. Such a way is surely unwarranted as a justification of the
consistency of the classical logic of statements, but this method may perhaps be
applied to establish the consistency of classical arithmetic (cf. Gédel’s work of
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1933 [71]). I wrote the work [K36] hopeful that the logic of the solution of the
problem would subsequently become a permanent part of the logic curriculum. It
was supposed to establish an integrated logical system for dealing with objects of
two types—statements and problems.”

In their extensive commentary to the papers ((K9] and [K36], in the volume
[MM], pages 394-404), V. A. Uspenskii and V. E. Plisko continued the develop-
ment of Kolmogorov’s ideas.

In his fourth year at the University in 1924 Andrei Nikolaevich developed the
beginnings of his interest in that branch of science where his name was to
become greatest—the theory of probability.

His first article in this branch new to him, “Uber Konvergenz von Reihen,
deren Glieder durch den Zufall bestimmt werden” [K10], [PS-1], dated Decem-
ber 3, 1925, was written in collaboration with A. Ya. Khinchin (also Luzin’s
pupil). “All my joint work in probability with Khinchin,” Andrei Nikolaevich
recalled ([K469]; [K476], pages 19-22), “as well as the whole initial period of my
work in this area, were marked by the application of the methods developed in
the metrical theory of functions. Such topics as conditions for the validity of the
law of the large numbers and conditions for convergence of series of independent
random variables were actually tackled by methods developed by N. N. Luzin
and his pupils in the general theory of trigonometric series.”

The work [K10] is made up of four parts. The first was written by A. Ya.
Khinchin, the other three by Kolmogorov. In modern notation its results can be
written as follows.

Let £, £,,... be a sequence of independent random variables. Then:

(i) The convergence of the two series ¥, E¢, and ¥, D¢, is sufficient for the
" almost sure convergence of the series ¥ ,£,.

(i) If §,,£,,... are uniformly bounded [P(|§,| < C)=1, k>1, C < 0],
then the convergence of the two series £,E¢, and ¥,D{, is not only sufficient
but also necessary for the almost sure convergence of the series £,£,.

(iii) If £° = £I(J€] < c), then for the almost sure convergence of the series L.,
it suffices that for some ¢ > 0 the three series

YE&, YLD&E, YLP(&l=c)
k k k

converge, and if the series ¥,£, converges also surely, then the three given series
necessarily converge for any ¢ > 0.

In [K10] Khinchin (part 1) and Kolmogorov (part 2) proved the result by
different methods. Khinchin applied a generalization of Rademacher’s method
(1922), and the latter treated the case of random variables £, taking the two
values of C, and —C, with probabilities 1,/2 each. Kolmogorov based his proof
on the same ideas as those applied in the proof of the now classical “Kolmogorov’s
inequality”:

If 7y, my,... are independent random variables, En; =0, S, =1, + -+ +9,,
then

Se
(1) P( 1?]?§nlsk| = 8) =2
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This inequality is stated exactly thus in Kolmogorov’s subsequent work,
“Uber die Summen durch den Zufall bestimmter unabhéngiger Grossen” [K18],
[PS-4], written in late 1927, where a second proof of (i) is also given.

The proof of statement (ii), given in the second part of [K10], [PS-1], is largely
based on the estimation of the probability P(max, _, _,|S,| > ¢) from below for

the case of bounded random variables n,, £ = 1,..., n. The present form of this
inequality is contained in [K18], [PS-4]:
If n,,m,,... are independent random variables,

En,=0,P(n <C)=1, k=1,...,n,
then
(C + ¢)?
ES?

Thus this rather brief collaboration between Kolmogorov and Khinchin in
probability theory includes the “Kolmogorov-Khinchin two-series theorem”,
and the “Kolmogorov three-series theorem”, as well as the simply formulated
“Kolmogorov—Khinchin criterion” for the almost sure convergence of a series
X,£, of mutually independent random variables with zero means, nowadays part
of all probability textbooks:

If £,E£2 < oo, then the series ¥ £, converges almost surely.

The subsequent development of probability theory has shown that the impact
of this work ([K10]) goes far beyond providing complete solutions to these
problems, important though they are. It gave birth to new methods which have
been widely employed since and were later applied to study random processes of
more general structure, such as martingale difference sequences.

In 1925 Kolmogorov graduated from Moscow University as a student and
enrolled in the University postgraduate school, where Luzin continued to be his
scientific supervisor. On the subject of postgraduate training, Andrei Nikolaevich
recalled ([K469]; [K476], page 21) that “it did not result then in a thesis paper
as happens nowadays: the present scientific degrees were introduced only in
1934.” (The scientific degree of Doctor of Physics and Mathematics was awarded
to Andrei Nikolaevich Kolmogorov in 1935 for his collection of published work
without his submitting a thesis.)

Kolmogorov’s fundamental works on the conditions for the validity of the law
of large numbers and strong law of large numbers date back to 1927-1929. By
the end of 1927 he had completed his research on the sufficient, and the
necessary and sufficient, conditions for the validity of the weak law of large
numbers, initiated by J. Bernoulli and continued by P. L. Chebyshev and
A. A. Markov.

In his introduction to [K472] Kolmogorov wrote: “The cognitive value of
probability theory lies in the establishment of strict regularities resulting from
the combined effects of mass random phenomena. The very notion of mathemati-
cal probability would have been fruitless if it were not realized as the frequency
of a certain result under repeated experimentation. That is why the works by
Pascal and Fermat can be viewed as only the prehistory of probability, while its

P( max |Sk|28)21—

1<ks<n
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true history begins with J. Bernoulli’s law of large numbers,” formulated as

follows:
If £, &,,... are independent identically distributed (Bernoulli) random vari-

ables taking the two values 1 and 0,
P(¢,=1)=p, P(§,=0)=1-p,
then for every ¢ > 0,

S,
(2) P(;—p >s)—>0, n - o,
where

S, =&+ - +§,.
Poisson generalized Bernoulli’s law of large numbers to the case of nonidenti-
cally distributed Bernoulli variables, as follows:
If &, &,,... are independent (Bernoulli) random variables, assuming the two
values 1 and 0,
P(‘En:l):pn’ P(En=0)=1_pn:

and X%_, p,(1 — p,) = oo, then for any & > 0,
' S, ES,
) o|z-

n
n n
where

>s)—>0, n— oo,

ES,=p,+ - +p,.

In 1867 P. L. Chebyshev investigated the validity of the law of large numbers
in the form (3) for an arbitrary sequence of independent random variables (not
necessarily Bernoulli distributed). Chebyshev’s method is applicable to random
variables with finite expectations and variances, and it implies (3) under the
weak condition

1 n
(4) — 2 D§ -0, n- .
L Y

(This condition is commonly attributed to Markov, who was the first to
clearly emphasize its sufficiency; Chebyshev assumed the E¢; uniformly
bounded.)

In [K18], [PS-4], submitted for printing on December 24, 1927, Kolmogorov
gets necessary and sufficient conditions for the validity of the “generalized” law
of large numbers for the “scheme of series.” Suppose one is given a sequence of
independent random variables ¢" = (§,,..., §,,) for every n > 1. It is said that
the averages
gnl + - +£nn

n

are stable if there exists a sequénce of numbers A,, A,,... such that for any
e>0,
(5) P(S,-A,>¢) -0, n- oo.

2, =
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One also says that the two systems of random variables {* = (£,,..., §,,) and
&n=(&,,..., £,,) are equivalent if

P(En¢§n)—)0, n — oo,
where

Kolmogorov formulated his generalized law of large numbers as follows. It is
necessary and sufficient for the stability of the averages 2,, n > 1, that there
exist random vectors £" = (£,,,..., £,,) of independent random variables, equiv-
alent to the system £ = (£,,,..., §,m), which satisfy

— Y, D¢, >0, n- .
k=1
He deduced the following result which finally settled the problem of finding
natural conditions for the validity of the law of the large numbers [K18], [PS-4]:

Let £, &,,... be a sequence of independent random variables and S, =
£ + -+ +£,. The necessary and sufficient condition for
S, ES,
Pl|— - >¢| =0, n—-o0,e>0,
n n

is the existence for every n > 1 of a sequence of independent random variables
£.0--.,&,, such that

Y P& # &) =0,
k=1

1 2 _
— Y [B& — EE,] >0
. no,_y
and
1 =
_22 nk_’O

as n — .
For independent, identically distributed random variables Kolmogorov ob-
tained a similar result:
For the stability of the averages =, = (§, + - -+ +£,)/n the condition
(6) nP(l‘gll > n) - 0’ n — oo,
is necessary and sufficient.
If E|¢,| < oo, then the condition (6) holds and the well-known (weak) law of
large numbers, earlier obtained by Khinchin, follows from the previous state-
ment:

Let £, £,,... be a sequence of independent identically distributed random
variables with E|§1| < 00. Then the law of the large numbers holds:

(S,,
P
n

>s)—>0, n — .
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Later (in [K24], [PS-8], 1930) Kolmogorov obtained his other famous result
now included in any textbook on probability—the strong law of large numbers:

If £, &,,... is a sequence of independent random variables with finite second
moments and X%_,D¢,/n? < oo, then
S, — ES,
— >0, p-a.s.
n

In 1933 Kolmogorov, by the way, remarked in his classic book [K40] for the
case of identically distributed terms that the following final result is derived
from the previous one:

If §,&,,... is a sequence of independent identically distributed random
variables and E|§;| < oo, then
S,
— - E¢,, p-as.;
n

if E|§,| = oo, then S,/n diverges p-as., or, equivalently, E|§,| < oo, E§; = p
(1/n)Efosky — 1 (p-as).

By contrast, recall that in 1909 Borel [23] was the first to formulate the strong
law of large numbers for the Bernoulli case (using the language of number
theory):

Let £,,&,,... be a sequence of independent Bernoulli random variables,
P(¢,=1)= P(,=0)= 1. Then as n - o,
S, 1
palind p-as.
Later F. Cantelli proved (in 1917) the following:
If £, £,,... is a sequence of independent random variables with finite fourth
moment and E|, — E{,|* < C < o0, n > 1, then
S, — ES,
— -0, p-a.s.,
n
as n — oo.

The very term “strong law of large numbers” was introduced by Khinchin
(1927-1928), who provided certain sufficient conditions for its validity, also
applicable to the dependent case.

Kolmogorov’s results above on the strong law of large numbers for indepen-
dent random variables are distinguished for both completeness of formulation
and clarity of proofs. Many modern probability textbooks highlight these results,
both for their intrinsic importance and as evidence of the power of Kolmogorov’s
inequality (1). For background on the historical emergence of Kolmogorov’s
strong law of large numbers, see Krengel [101].

With regard to the Kolmogorov strong law of large numbers for independent
identically distributed random variables &, &,,... it is appropriate to mention
here its connection with the Birkhoff-Khinchin ergodic theorem. This theorem
states that if (£,) is an ergodic stationary sequence, then

1 n
— Y ¢, - E¢,, p-as.and L.
noj,



878 A. N. SHIRYAEV

For the case of continuous time and ergodic stationary processes (£,), » o, Khinchin
formulated the corresponding analogue

1 .
;fﬁsds - E§,, p-a.s.and L!
0 .

in 1938 in [96]. In the same volume of Uspekhi Matematicheskikh Nauk there
appeared a paper by Kolmogorov, “A simplified proof of the Birkhoff-Khinchin
ergodic theorem” [K99], [MM-39], in which he shows how the case of continuous
time is reduced to discrete time, and explains the form in which Birkhoff
formulated his result in 1931. Thus Kolmogorov writes in [K99] that Birkhoff
formulated his result “as a theorem of mechanics, or, if you like, a theorem
concerning the evolution of an arbitrary system whose state is completely
determined by a finite number of parameters and rate of change by differential
equations admitting an integral invariant.” In the same article Kolmogorov
shows that Birkhoff’s theorem, proved by him under rather more restrictive
conditions, can be reformulated as

% fo “(T%)ds > Et(w), p-as.,

where (T°) is a semigroup of ergodic measure-preserving transformations and
E|¢{(w)| < oo, and explains how this result is linked with the formulation of
Khinchin’s corresponding ergodic theorem for stationary processes.

We should note also that there now exist various proofs of Kolmogorov’s
strong law of large numbers. For example, J. L. Doob’s proof is based on his
observation that (S,/n),., gives a reverse martingale. Etemadi [49] (see also
Grimmett and Stirzaker [72]) gave a proof of Kolmogorov’s strong law of large
numbers [for identically distributed and pairwise independent random variables
(£,)] using only the Borel-Cantelli lemma and the method of fruncation [pas-
‘sage from £, to §, = £,1(|£,| < n)], frequently employed by Kolmogorov, begin-
ning with his first probabilistic work [K10].

In late 1927 Andrei Nikolaevich completed the work [K21] (published in 1929)
on the law of the iterated algorithm—one of the remarkable probability theo-
rems that sharpens the strong law of the large numbers.

Khinchin discovered the law of the iterated logarithm (1924) for the Bernoulli
scheme (and afterwards for the Poisson scheme):

If &,&,,... are independent identically distributed Bernoulli random vari-
ables, P(¢, = 1) = P(§, = —1) = }, then

S,
limsup ——— =1, -a.s.
n p\,/2nlnlnn pas

' This sharpens the strong law of large numbers, since it iinplies that S,/n — 0,
p-as.

Kolmogorov’s law of the iterated logarithm is ([K21], [PS-5]):

Let £, &,, ... be a sequence of independent random variables with zero means,
02 =E§, B,=Y%?_02, n> 1 Let there exist a sequence of constants M,
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B 1/2
(lnln Bn)

€0 <M,, p-as.

n > 1, such that

M,=o0

b

Then
S,

7 limsup ——— =1, p-as.,
™ P BB Inn B, pras

where S, = §, + -+ +§,.

879

Just as Kolmogorov’s inequality, and its proof, is a key technique in obtaining
a.s. convergence of series of random terms, so Kolmogorov’s proof of the law of
the iterated logarithm has become a key part of the arsenal of fundamental

probability tools.

Here is Kolmogorov’s proof (in its general form and with minor modifications):
Statement (7) is equivalent to the validity of the following two statements:

(A) For every e > 0, the function
¢(n) = (1 +¢)y2B,Inln B,
is an upper function for S,, n > 1, that is,
(8) P{S, > ¢*(n)i.0.} = 0.
(B) For any ¢ > 0, the function

¢(n) = (1 - ¢),2B,Inln B,

is a lower function for S,, n > 1, that is,
(9) P{S,> ¢(n)io.} =1.

Let {n,} be a nondecreasing sequence of integers such that n, - o as

k — o0; later we shall choose the sequence explicitly. Then

{S, > ¢(n)io.} { max S, > ¢f(n,_,) i.o.}

N 1<nsn,

c {maxSn > ¢(n,_,) i.b.}.

In establishing (8) by the Borel-Cantelli lemma, it sufﬁces to show for a

spemal choice of the subsequence {n,}, that

o0

(10) Y P( max S, > qbe(nk_l)) < 0.

k=1 n<n,;
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A direct application of the Kolmogorov inequality (1) fails to give (10) and

Kolmogorov took another route:
n
S, >x— 1/2 Y E¢2
k=1

(ii) His second major step was an exponential bound for the probabilities of
large deviations:

(i) He obtained the inequality

(11) P( lgagnsk > x) <2P

i 1 M, 0<xM,<B
exp—2Bn 38, || <xM,<B,,

(12) P(S,=n)<

x2
exp(—4M ), xM, > B,.

The sequence {n,} is chosen so that for a given 7 > 0 we have
B, <(1+n)*<B,;
under this condition,
P(S,,‘b > ¢%(n;)) < [FIn(1 + 7)] ~@+eia-p
follows from (12), for any g > 0. For u small enough, (1 + €)(1 — p) > 1, whence
kio‘,lP(Sn‘b > ¢*(n,)) < 0.

Together with (11), this implies the required inequality (10).
In order to prove that the functions ¢(n) are lower for S,, n > 1, one uses the
second Borel-Cantelli lemma: If the events A,, A,,... are independent and
®_P(A,) = o, then P(A, i.0.) = 1. Kolmogorov showed first that for any
¢ > 0 one may find such a subsequence {n,} and y > 0 such that

(13) P(S, > ¢(n,)i0.) 2 P(S, =8, > (1 —7v)h(n,)io.).
He next proved that for some 7 > 0 one has
P(S,, = 8, , > (1= 7)9o(ns))

2 P(S,, > (1= v/2)9o(ms)) = P(S,, > $1V7do(n,1)).

The last term may be estimated above by (13), and this leaves the task of finding
a good lower bound for P(S,, > (1 — v/2)¢y(n;)). The required bound is ob-

tained as follows: If x > 0, xM,,/B; - 0 and x%/B, - 0, then

1+ u))

(14)

2

x
P(S,=2x) < exp(—- 2B
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for any fixed p > 0 and for all sufficiently large n. Thus
P(S,, > (1 - v/2)4(ny)) > (in B,,) 002"

We now choose p sufficiently small and = sufficiently large to obtain the
following bound (for sufficiently large &):

P(S, =S, _, > (1—v)¢(ns)) = Ck~c,

where C > 0, a < 1. This bound, together with (13), (14) and the second
Borel-Cantelli lemma, implies that

P(Snk > ¢(n,)i0.) =1

for any & > 0. Thus the functions ¢(n) are the lower functions for S,, n > 1, as
required.

Kolmogorov’s law of the iterated logarithm and the methods of its proof
provided resources for many subsequent studies. We note some examples.

In 1937 Marcinkiewicz and Zygmund [121] showed that “o0” could not be
replaced by “O” in the condition

B 1/2
n
( Inln B, )

of Kolmogorov’s formulation of the law of the iterated logarithm.

In 1941 Hartman and Wintner [77] determined the validity of the law of the
iterated logarithm for the case of independent identically distributed variables
£, &5, ..., under the assumptions E¢, = 0, E£2 < oo only.

In 1966 Strassen [189] obtained the “converse” of the law of the iterated
logarithm for independent identically distributed random variables &, &, ..., by
showing the necessity of the assumption of finite second moments. More specifi-
cally, if E§; = 0 and

k

M =o

n

S,
lim sup ————— < o0, -a.8s.,
n P V2nInlnn p

then E£ < oo. Strassen [188] also obtained a functional version of the law of
the iterated logarithm.

Among Feller’s results on the law of the iterated logarithm [53, 54] are
statements for the case of variables with infinite second moment. The function
¢°(t) = (1 + ¢)y2¢In|In¢| is an upper function in both limits ¢ — oo (global
form) and ¢ — O (local form) for the standard Wiener process (or Brownian
. motion) W = (W,),.,, as Khinchin showed in his monograph of 1933 [94].
Similarly, the function ¢(¢) = (1 — €)y/2¢In|In ¢| is a lower function.

The concept of upper and lower functions was introduced by Khinchin, who
worked on the problem of how to characterize them. The paper of 1935 by
Petrovskii [147] was a breakthrough in this direction, as the author applied
methods of the theory of differential equations instead of the probabilistic
techniques employed by Khinchin and Kolmogorov.
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Petrovskii shows in his paper that the nondecreasing function ¢ = ¢(¢) with
¢(0) = 0 and ¢(2)/ Vt 1 o0, t |0, is an upper function (in a neighborhood of 0) for
the Wiener process W = (W,), . , if and only if

[l 2

Using the time-inversion property of the Wiener process (if W, £> 0, is a
Wiener process, then

)dt< 0.

tw, It t>0,

0, t=0,

is also a Wiener process), one derives from this result that the nondecreasing
function ¢ = Y(¢) is an upper function for W,, ¢ > 0, for large ¢, if and only if

2(¢
foox]/(t)t'lexp(— L4 ; ) ) dt < .
1

(Kolmogorov formulated this result in the early 1930s but omitted the proof in
the published paper.)

In modern terms Petrovskii’s method may be summarized as follows. Consider

the process X, = (¢, W,) on the domain
D= {(t,w): |lw| <¢(¢),0<t=<1}.

The point x, = (0,0) is called regular for the process X = (X,), 0 <t <1, if
P, (mp > 0) = 0, where 7, = inf{s > 0: X, € D}. Clearly if x, is regular, then
¢ = ¢(¢t) is a lower function, whereas if x, is irregular, then ¢ is an upper
function. The regularity criterion for the point x, = (0,0) stems from the
construction of barriers (“superharmonic functions for the process X ”) for the
operator

W/={

o 0 1 92
3t "2 dw?’
(In an extensive and detailed paper by Bingham [19], one finds a “survey of the
numerous results of recent years related to the classical law of the iterated
logarithm, with particular reference to developments in the decade or so since
the survey in Chapter 5 of Stout [187].”)

In May 1929 Andrei Nikolaevich finished his four years as a postgraduate
student, with 18 mathematical papers to his credit, dated 1923-1928. There
followed the question of his future employment. Andrei Nikolaevich described
the solution as follows ([K470], page 227):

“There was one vacancy for a senior scientific researcher in the Institute of
- Mathematics and Mechanics, Moscow University. Along with me, one of the
older generation of mathematicians had a claim to the post, and Dmitrii
Fedorovich Egorov, the director, though fully aware of my scientific achieve-
ments, had always been loyal to the criterion of seniority in employment. I was
also attracted by another possibility. The Ukranian Mathematical Institute
had been founded in 1926 in Kharkov and was headed by Sergei Natanovich
Bernshtein, who was then at the peak of his international fame and domestic
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authority. The building was already there, but the staff still had to be appointed.
Sergei Natanovich offered me the post of research fellow, and also suggested a
one-year apprenticeship abroad prior to joining. He proceeded to apply for a
Rockefeller scholarship on my behalf. But P. S. Aleksandrov vigorously rebelled
against the idea, and finally prevailed upon Egorov to give me priority in
employment.”

So in June 1929 Kolmogorov joined the Institute of Mathematics and Me-
chanics at Moscow University which was to be associated with his subsequent
work. (Anticipating the chronological development we note here that in March
1931 Kolmogorov became Professor at Moscow University and on December 1,
1933 he was appointed Director of the Scientific and Research Institute of
Mathematics of Moscow University.)

The summer of 1929 was marked by the beginning of a close friendship
between Andrei Nikolaevich Kolmogorov and Pavel Sergeevich Aleksandrov, a
friendship described thus by Aleksandrov in March 1981 [3]:

“My friendship with Andrei Nikolaevich Kolmogorov has been of unparal-
leled and unprecedented value in my life; this friendship has lasted 50 years, and
in its entire half century has neither suffered a single breach, nor been marred by
a quarrel, nor did we ever experience any mutual misunderstanding in matters of
any significance for our lives and our philosophy; even when our views did not
coincide, each treated the other with fullest understanding and sympathy.”

The beginning of this friendship happened in 1929 when Kolmogorov decided
upon a boat trip down the Volga, as he had once done before.

Recalling the invitations to his companions (including Pavel Sergeevich among
them) Kolmogorov wrote (1986) in [K470]: “My personal contacts with Pavel
Sergeevich were then pretty limited, although we met frequently, for example at
the concerts in the small hall of the conservatory. We would greet each other but

_never enter into conversation. I may have been put off by his stiff collars and a
certain overall impression of primness... . It was never clear to me how I dared
to invite Pavel Sergeevich as a third companion.

“On June 16, 1929 we started from Yaroslavl down the Volga. Pavel
Sergeevich was new to boating, but he immediately appointed himself our
quartermaster and purchased lots of tasty delicacies in Moscow. It is since June
16, our departure day, that I calculate my friendship with Pavel Sergeevich.”

Kolmogorov wrote [K470] that the years of their friendship “were the
reason why my entire life was on the whole full of happiness, and the basis of
that happiness was the unceasing thoughtfulness on the part of Pavel
Sergeevich.” In the same year (1986) Kolmogorov said at the meeting of the
Moscow Mathematical Society (May 27) dedicated to the memory of Aleksan-
drov (who died on November 16, 1982, at the age of 87): “Probably I could have
become a mathematician independently, but my merits as a human being were
greatly shaped under Pavel Sergeevich’s influence. By the wealth and breadth of
his views Aleksandrov was a really extraordinary man.... His knowledge of
music and art and his warm and sympathetic attitude to people were remark-
able.” ‘
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In [K470] Kolmogorov vividly and humorously describes this 21-day trip to
Samara and on to the Caucasuses (Baku, Lake Sevan, Erivan, Tiflis,...). On the
Sevan Pavel Sergeevich was working on some chapters of his monograph Topolo-
gie (written in collaboration with Hopf) [5]. Andrei Nikolaevich was writing an
article on the theory of integration and was busy pondering the analytical
description of Markov processes in continuous time that later on resulted in a
memoir, “Uber die analytischen Methoden in der Wahrscheinlichkeitsrechnung”
[K28], [PS-9].

The thirties (1930-1939). The late 1920s and early 1930s marked a great
expansion in Andrei Nikolaevich Kolmogorov’s creative activity in a number of
branches of mathematics simultaneously.

In 1929 Andrei Nikolaevich published “The general theory of measure and the
calculus of probability” [K19], [PS-7] (generally the work is little known to the
mathematical public), where he gave the first version of his axiomatic construc-
tion of the foundations of probability theory, which subsequently became the
well-known “Kolmogorov’s axioms” described in Grundbegriffe der Wahrschein-
lichkeitsrechnung ([K40], 1933).

Kolmogorov speaks in [K19], [PS-7] of the necessity of constructing probabil-
ity theory as a “rather general and purely mathematical theory,” emphasizes the
urgent need “to distinguish those elements of probability (theory) that will
determine its internal logical structure,” says also that “the axiomatization of
probability should be constructed on the basis of the general theory of measure
and metrical theory of functions—the theory dealing with studies of those
properties of functions which depend exclusively on the measure of the sets
where these functions assume this or that collection of values” (for example,
orthogonality of two functions, or the completeness property of systems of
orthogonal functions). He speaks of “the space of the elementary events of the

“given problem and the probability of the various sets of these events”; notes that
“the strength of probability methods in their application to pure mathematics is
largely based on the employment of the notion of independent random variables”;
focuses attention on the lack of “clear and pure mathematical formulations of
the notion of independence of random variables, though there is hardly any
difficulty to provide such a formulation.”

It was in 1909 that Borel [23] considered the significance of the general theory
of measure for the construction of the foundations of probability theory; some
aspects of this general idea were highlighted by f.omnicki in 1923 ([117]).

At the beginning of this century Bohlmann [22] attempted the axiomatization
of probability theory. The article by Bernshtein [14] on the construction of the
foundations of probability theory was published in 1917. (In the axiomatization

" by Bernshtein the collection of events was considered as a Boolean algebra and
was based on the qualitative comparison of random events by the size of their
probabilities.) von Mises had a different approach to the foundations of probabil-
ity theory [200-203]; his notion of the probability of a random event was
associated with the result of a certain idealized experiment and with the
assumption of the existence of the frequency limit.
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In 1933, four years after the appearance of the article “The general theory of
measure and the calculus of probability” [K19], [PS-7], Kolmogorov published
(Springer-Verlag) the subsequently classic monograph Grundbegriffe der Wahr-
scheinlichkeitsrechnung, where Borel’s initial idea took its final shape. This
monograph became the background for all subsequent developments of probabil-
ity theory, a model for exposition and an introductory probability text for many
mathematicians.

1t6 [86] wrote: “Having read Kolmogorov’s The Foundations of Probability
Theory, 1 became convinced that probability theory could be developed in terms
of measure theory as rigorously as other fields of mathematics.” Kac [89, pages
48-49], describing the beginning of his mathematical life and his collaboration
with Hugo Steinhaus, wrote about 1935-1938:

“Our work began at a time when probability theory was emerging from a
century of neglect and was slowly gaining acceptance as a respectable branch of
pure mathematics. The turnabout came as a result of a book by the great Soviet
mathematician A. N. Kolmogorov on foundations of probability theory, pub-
lished in 1933.”

Lévy [111, pages 67-68] wrote:

“Deés 1924, je m’étais peu a peu habitué a 'idée qu’il ne fallait pas se borner a

ce que j’appelais les vraies lois de probabilité. J’avais cherché & prolonger une
vraie loi. Si arbitraire que ce fiit, j’étais arrivé a 'idée d’une loi définie dans une
certaine famille borelienne. Je ne songeais pas 4 me dire que c’était la la vraie
base du calcul des probabilités; je n’avais pas I'idée de publier cette idée si
simple. Puis, un jour, je recus le mémoire d’A. Kolmogorov sur les fondements du
calcul des probabilités. Je compris quelle occasion j’avais perdue. Mais c’était
trop tard. Quand saurai-je distinguer ce qui, dans mes idées, merite d’étre
publié?”’
. In the introduction to his The Foundations of Probability Theory (the
Russian edition [K63] appeared in 1936, the English edition in 1950 and the
second Russian edition [K403] in 1974) Kolmogorov notes that he would like to
indicate those aspects “which go beyond the limits of the above-mentioned range
of ideas which are rather familiar to experts in their general terms.” These
aspects included the following:

1. The distribution of probability in infinite-dimensional spaces;

2. differentiation and integration of expectation with respect to a parameter;
and especially

3. the theory of conditional expectation.

He also notes here that “all these new notions and problems necessarily arise
. in the consideration of entirely concrete physical problems,” referring to his joint
work with M. A. Leontovich [K42], [PS-14] and Leontovich’s work [105].

The significance of all these new results, and of the successful axiomatization
of probability, is very clear today, more than 55 years after Grundbegriffe der
Wahrscheinlichkeitsrechnung was published.

Thus the basic theorem in [K40], paragraph 4, Chapter 3, on the possibility of
the construction of a probability measure in an infinite-dimensional space
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emanating from a consistent collection of finite-dimensional distributions was
fundamental to the theory of random processes, which subsequently became a
large independent branch of probability with an immense number of applica-
tions.

Supported by the Radon-Nikodym theorem (by the way, its modern form
dates back to Nikodym'’s work [139] of 1930), Kolmogorov defines the notion of
the conditional probability P(A|#) of an event A with respect to a o-subalgebra
¢, the conditional probability P(A|n) of the event A w.r.t. a random element 1,
the conditional expectation E(§|9) of the random variable ¢ w.r.t. a o-subalge-
bra ¢, and the conditional expectation E(¢|n) of the random variable £ w.r.t.
the random element n—these are the concepts which are now in the main
arsenal of contemporary probability.

In the summer of 1930 Andrei Nikolaevich completed one of his most remark-
able probability works, “Uber die analytischen Methoden in der Wahrschein-
lichkeitsrechnung” [K28], [PS-9], where he laid the foundation of the general
theory of Markov random processes and revealed the deep relationship between
both this theory and the whole theory of probability, and the theory of ordinary
and partial differential equations and mathematical physics.

Kolmogorov says in [K28] that the subject of his studies is processes with
continuous time; he specifically emphasizes this aspect and the essential novelty
of the suggested methods deriving from it.

The paper [6] by Aleksandrov and Khinchin dedicated to Kolmogorov’s 50th
birthday says about his work [K28]:

“In the whole of 20th century probability one can hardly find another study
that could be similarly as fundamental to the further development of science and
its applications, as this work by A. N. Kolmogorov. An extensive branch of
probability theory has now developed from it: that is the theory of random
_processes, which competes with the classical parts of probability in its size and
number of applications. Kolmogorov’s “differential equations” describing the
Markov processes included as special cases, with full mathematical rigor, all
those equations (by von Smoluchowski, Chapman, Fokker—Planck, etc.) that had
been so far derived and used by physicists on various occasions without rigorous
proofs; he provided sufficient justification and clear statement of the conditions
needed. An immense number of studies throughout the world have been and still
are based on these Kolmogorov equations; they proved fundamental to the
further development of theory and to the mathematical development of the most
diverse applied problems.”

The main subject of “Analytical methods” (as the work [K28] is often referred
to) is the transition probability P(s, x; ¢, A) that we are in the set A at time ¢
. under the condition that at time s we are in the state x, £ > s. A fundamental
equation, nowadays called the Kolmogorov—-Chapman equation (which expresses
the Markov property),

(15) P(s,x;t, A) = fP(s,x; u,dy)P(u, y;t,A), 0<s<uc<t,

is satisfied by this transition probability, apart from the relevant boundary
conditions. (As far as we know, Chapman pointed at this equation in [29].)



KOLMOGOROV: LIFE AND CREATIVE ACTIVITIES 887

It is known now that under suitable conditions (15) allows one to construct a
Markov process X = (X,),., whose conditional probability P(X, € A|X, = x)
coincides with P(s, x; t, A). In [K28], [PS-9] Kolmogorov does not deal directly
with the realization of X = (X,),. , but derives the differential equations for the
transition probabilities proceeding from (15); thus he creates a new analytical
method in its fullest generality and breadth—a method based on differential
equations, on the studies of the probability properties of random processes in
continuous time, whose evolution obeys the Markov property (15).

In his “Analytical methods” Kolmogorov introduces a notion of “differential
characteristics,” considering first processes with discrete state-space E =
{...,i J,...} and second, continuous diffusion processes with values on the real
line E = R.

In the first case the limits

A(1) = lim pi(t, ¢+ A) 1,
A0 A

pij(t,t'l' A)
Aw A

(16)
Au(t) ’ i ¢j

(assumed to emst), act as these differential characteristics for the p; (s, t) =
P(i, s; ¢, {J}).

In the second case these characteristics for F(s, x; ¢, y) = P(s, x; t,(— 0, ¥]),
assumed to have a density

dF(s, x; ¢, y)
dy

)

f(s, %58, y) =

are the limits

1 (o
A(s,x) = lim— [ (y—x)f(s, x5+ 4, y) dy,
AloAJ_
(17) ,
2 . @ 2
= lim — - ;8 + .
B(s,x) = lim & [ (y=2)"f(s, %55+ 8, y) dy

Kolmogorov determines the conditions for the existence of these limits and
reveals their real essence A(s, x) is the “instantaneous mean” and B%(s, x) the
“instantaneous variance.”
Then Kolmogorov derives his famous dlfferentlal equations in each case, that
is:
The first, or backward, differential equation on s, x,

(19 BRI WO
keE

(19)° - —f(s %t y) = A(s, x) 5= f(s x;t,y)
N B*(s, x) 2%

5 azf(sxty)
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and the second, or direct differential equation on ¢, y,

ap; (s,
(20) % = kZEpik(s’ t)A,;(¢),
daf(s, x; ¢, d
(21) Lat—t—yl = - E[A(t’ ) (s, x5 ¢, y)]

19 .
+ 2 ayz [B (t7 y)f(s’x’ t’ y)]

[Equation (21) was derived by Planck and Fokker in connection with their
work in diffusion theory.]

In [K28] Kolmogorov poses the problem of existence and uniqueness of the
solution of these equations and the differentiability of the transition probabili-
ties.

Papers by Kolmogorov (e.g., [K186]), Feller [52] and many others were
subsequently devoted to these problems.

The differential characteristics introduced by Kolmogorov subsequently found
their realization in the general situation within the framework of the semigroup
approach to the theory of Markov processes.

This theory introduces the infinitesimal operator of the corresponding semi-
group of the Markov process as its differential characteristics. Necessary and
sufficient conditions were obtained for the infinitesimal operator for the unique
determination of the transition function (Feller [55], Dynkin [46]).

As was mentioned above, the Markov process was not considered in “Analyti-
.cal methods” from the point of its trajectory properties. Kolmogorov deals only
with transition probabilities and their differential characteristics. A powerful
method for the construction of Markov processes is the method of stochastic
differential equations of It6 [81-85, 87] (see also [86] and Gikhman [62-64]),
developed in the 1940s and 1950s. (The finite-difference stochastic differential
equations were considered by Bernshtein in 1934 [15].)

The gist of It6’s method is to proceed from the simplest process—that is from
the Wiener process W = (W,),,, with EAW, =0, E(AW,)?> = At and to con-
struct the process X = (X,),., as the solution of the stochastic differential
equation

(22) dX, = A(t, X,) dt + B(t, X,) dW,.

1t6 intuitively believed that starting from the point x at time ¢ such a process
will behave locally like the Wiener process with “drift” A(¢, x) and “diffusion”
B2(t, x); he also proceeds from the essence of the “Kolmogorov differential
characteristics” A(t, x) and B(t,x) and gives a new and original method of
constructing a Markov diffusion process X = (X,),. ¢, whose transition probabil-
ity P(s, x; t, ') = P(X, € T'|X, = x) satisfies the Kolmogorov equations.

To this end Itd first assigned a precise meaning to the notion of “stochastic
differential equation.” He was thus compelled to develop the now commonly
used “stochastic integral of a nonanticipating function w.r.t. the Wiener process.”
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Second, by using successive approximations he showed that Lipschitz conditions
and linear growth on x of the coefficients A(¢,x) and B(t, x) assure the
existence and uniqueness of the solution of (22); third, he established that this
solution is a Markov process; and fourth, he applied his famous “Itd formula”
(change of variables): If f=f(¢ x) belongs to the class C?,
2
df(t, X,) = (t X,) + A(¢, X) (t X)+—B2(t X)ji(t X,)

+B(¢, X) (t X,) dw,,

to show that the backward Kolmogorov equations are satisfied for the transition
density of the Markov process.

Later, in the 1960s and 1970s the so-called martingale approach was launched,
especially after the work by Stroock and Varadhan [190, 191]. It allowed one to
prove existence and uniqueness of the so-called weak solution of the stochastic
differential equation (22) under rather weak assumptions on A(t, x) and B(¢, x),
which provided a considerable advance in the solution of the problem (posed in
“Analytical methods”) on the existence of the diffusion whose “differential
characteristics” A(t, x) and B(¢, x) are subject to almost no substantial restric-
tions (see also [65, 88, 114]).

“Analytical methods,” together with another work of 1931, “Eine Verallge-
meinerung des Laplace-Liapounoffschen Satzes” [K31], [PS-12], showed how to
study the transition probability by using differential equations, but it also
provided a radically new proof of the Laplace-Lyapunov-Lindeberg theorem,
based on the idea that sum S,, n > 1, of independent random variables §;, §,, . ..
(with zero means) constitutes a Markov process which converges to a diffusion

process under suitable normalization.
" By this means Kolmogorov provided a method of constructing an asymptotic
expansion for the probabilities

P(x) = P(S,,/\/D_S,, < x)

He also formulated a problem (in [K31]): “What is the probability that all the
inequalities a(¢,) < S, < b(t,), k=1,..., n, hold?”
Actually this is (in modern terms) a typical boundary problem for the

“invariance principle”:
Let ¢,,,...,&,, be a sequence (for every n > 1) of independent random

variables, Snk zskgm’ Egnt = 0 Zzsanm 1 EL/nE‘Igmls L - 0
n — 0. The problem is when and how fast [for sufficiently smooth boundanes

a(t) and b(¢),0 < t<1] .
=|P(a(DS,;) < S,; < b(DS,y), k= 1,...,n)
—P(a(t) <W,<b(t),0<t<1)| >0, n- oo,

where W = (W,),, is a standard Wiener process. Kolmogorov showed that the
boundary problem of determining the probabilities P = P(a(t) < W, < b(¢),
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0 < t < 1) reduces to and gives an asymptotic expansion for the probabilities
Pn = P(a(DSnk) = Snk = b(DSnk)’ k= 1""’ n)’

the first term of which is P.
Afterwards Prokhorov [157] obtained an estimate

R,=|P,— P =o(LY*InL,)?

for sufficiently smooth functions a(t), b(t), a(0) < 0 < b(0). Skorokhod [182]
obtained an estimate O(In n/ yn) for R, in the case of identically distributed
bounded random variables by the “method of the single probability space” (now
known as “strong approximation”; see, e.g., Csorg6 and Révész [36]), and Nagaev
[137] and Sakhanenko [163] refined the estimate to O(1/ yn ), omitting In r and
removing the assumption of boundedness. (Concerning developments in recent
years of methods of approximation of the probabilities P,, see, e.g., Skorokhod
[182], Borovkov [24, 25], Komlos, Major and Tusnady [99], Stout [187], Csorgd
and Révész [36] and Bingham [19].)

From June 1930 to March 1931 Kolmogorov was on a nine-month business
trip to Germany and France. Together with P. S. Aleksandrov he spent three
days in Berlin and moved to Goéttingen. In “Reminiscences about P. S.
Aleksandrov” [K470], Kolmogorov wrote:

“In those years Gottingen was regarded as the leading mathematical center in
Germany and a competitor to Paris in France and Princeton in the USA. Such a
status was attained despite a very limited permanent staff. There were only four
full professors of mathematics: Hilbert, Courant, Landau and apparently
Bernshtein (Hilbert was already 66 years old and due to retire; Hermann Weyl
had already been invited to fill the vacancy). Many of Courant’s junior staff had
the status of assistants. Even Emmy Noether, already regarded as the leading
figure of modern general algebra, did not have her full professor’s title. Her
pupils van der Waerden and Deuring were also assistants.

“The major part of the Géttingen mathematical community was clustered
around Hilbert, Courant, Landau and Emmy Noether. It was a very friendly
group and Pavel Sergeevich was never viewed as a stranger... . I had extensive
scientific contacts in Géttingen. With Courant and his pupils I spoke on limit
theorems, where the diffusion processes are limits of discrete random processes;
with H. Weyl on intuitionistic logic; and finally with Landau on the theory of
functions.”

After Gottingen Andrei Nikolaevich went to Munich to visit Carathéodory,
who, Kolmogorov recalled [K470], “happened to like my work on measure
theory and insisted on its earliest publication,” though he was rather cool about
the work on the generalization of the notion of integral.

Having been invited by Fréchet, Kolmogorov and Aleksandrov called on him
at the Mediterranean in Sanary-sur-Mer (not far from Toulon) and they worked
together (on probability in Kolmogorov’s case and on set-theoretic topology in
Aleksandrov’s case); after a short trip (the Bavarian Alps, Ulm, Freiburg in
Germany and Lake Annecy and Marseille in France) they finally came to
Sanary-sur-Mer.
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“Fréchet was busy then with Markov chains in discrete time and with the
various types and sets of states. We discussed with him all the Markov problems
in their broadest setting. This rather monotonous life—occasionally disrupted
by small excursions—went on for a month,” Andrei Nikolaevich recalled [K470].
Having turned up in Paris, he proceeds, “... it was natural to enquire about the
evaluation of my work and to be somehow advised by the senior mathematical
savants, Borel and Lebesgue, about the continuation of my work. But unfortu-
nately my contacts with them were reduced to short formal visits. However,
Borel’s intervention proved essential for the extension of my French visa. The
clearance was issued immediately after the submission of a letter signed
Emil Borel, Ancien Ministre de la Marine.

“In mathematical matters I gained much from my contacts with P. Lévy. I
was repeatedly invited to his home, where we had long and substantial scientific
discussions.” (See also Lévy [111], pages 87-88, about this visit by Kolmogorov.)

In March 1931 Andrei Nikolaevich became Professor at Moscow University
and on December 1, 1933 he was appointed Director of the Scientific and
Research Institute of Mathematics of Moscow University, where he remained
until April 15, 1939 (returning for a short period, in 1951-1953).

In 1930 and 1932 Kolmogorov published two works in geometry: “ Zur topolo-
gisch-gruppentheoretischen Begriindung der Geometrie” [K25], [MM-15] and
“Zur Begriindung der projektiven Geometrie” [K37], [MM-20].

The first develops the classical geometries of constant curvature for n-dimen-
sional space, based on topology and the theory of groups. The second gives a new
construction of projective geometry on the basis of L. S. Pontryagin’s theorem,
stating that the only connected locally compact topological (skew) fields with
countable base are the following: the field of real numbers, the field of complex
numbers and the skew field of quaternions. This theorem enables a direct
construction of both real and complex projective geometries.

The later of Kolmogorov’s classical works in topology date back to the
extremely prolific 1930s. Kolmogorov’s main contribution lies in the introduction
(in [K67], [MM-29]; this was simultaneous with and independent of Alexander
[7, 8]) to algebraic topology of the notion of operator and the construction with
its help of the cohomology groups, also referred to as “upper Betti groups” or
“v-groups,” which supplied a powerful and convenient tool for studies of various
topological problems, in particular, those related to continuous mappings. Sec-
ondly, Kolmogorov [K69], [MM-30] and Alexander [7, 8] determined the opera-
tion of multiplication in the cohomology group, thus turning a cohomology into
a ring (cohomology ring) which was vital for subsequent studies. Kolmogorov’s
third outstanding contribution to topology is the “duality law,” which refers to
the closed sets in any locally compact completely regular topological space,
satisfying the condition of acyclicity. (See also the comment by G. S. Chogoshvili,
“On A. N. Kolmogorov’s works in homology theory” [MM], pages 405-411.)

To this list of remarkable topological works by Kolmogorov should be added
“Uber offene Abbildungen” [K79], [MM-36], published in 1937, where he
constructed a masterly example of a continuous open mapping (that is,
mapping open sets to open sets) of the one-dimensional continuum onto the
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two-dimensional. Kolmogorov wrote in his commentary to the work ((MM], page
412): “P. S. Aleksandrov was very keen about the possibility of increasing the
dimension under an open mapping. We were sweating together for a while over
the impossibility of increasing the dimension. Gradually this search revealed the
reason for our failure. It was the analysis of our failure that finally resulted in
the counterexample”; let us add that it also stimulated Soviet topologists to go
on with their research on open mappings (L. V. Keldysh, B. A. Pasynkov,...).

Kolmogorov’s topological works of the 1930s also include the one, “Zur
Normierbarkeit eines allgemeinen topologischen linearen Raumes” (1934) [K49],
[MM-23], where in particular he defines a topological linear space, boundedness
and convexity of sets in such spaces, and necessary and sufficient conditions for
the normability of a topological linear space.

In 1935 and 1936 two more Kolmogorov papers on approximation theory
appeared (“Zur Grossenordnung des restgliedes Fourierschen Reihen differen-
zierbarer Funktionen” [K61], [MM-27] and “Uber die beste Anniherung von
Funktionen einer gegebenen Funktionenklasse” [K62], [MM-28]), bringing about
the emergence—so typical of Kolmogorov’s work—of new directions in approxi-
mation theory.

In the first of these works Kolmogorov considered the class F (P’ of all periodic
functions f = f(x), continuous together with their derivatives of order p — 1,
where the (p — 1)th derivative satisfies the Lipschitz condition |f (?~V(x) —
f®=Y(y)| < |x — y| and sup, |f P(x)| < 1. Writing

R, (f,x)=1f(x)— |ia,+ f (ajcos kx + b, sin kx)
k=1

“for the remainder term of the Fourier series of the function f = f(x),
Kolmogorov considered the problem of finding the value

Ci?' = sup |R,(f,x)].

/eF‘l”

In 1910 Lebesgue showed that C(" has order log n/n. In the article under
consideration Kolmogorov showed that in general

4 logn 1
C,(,p)=‘—2- g +O( )

n? n?

and proved the explicit formula for the case of p odd,
o = ifg,, i sin kx
n 7 Jo

k=n+1 kP
This work inspired generalizations in various directions: partial Fourier sums
were replaced by other approximating expressions; the class F (P’ was replaced by
other functional classes, etc. Considerable results in approximation theory were
obtained in the 1940s by Kolmogorov’s pupil, academician Sergei Mikhailovich
Nikol’skii, and by their pupils and followers (see [MM], pages 382-386). In his
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article [140] Nikol’skii writes of the regular visits by P. S. Aleksandrov and A. N.
Kolmogorov to Dnepropetrovsk, where they delivered lectures and conducted
scientific seminars, which particularly promoted research in the theory of ap-
proximation of functions in this city.

The second Kolmogorov paper, “Uber die beste Annéherung von Funktionen
einer gegebenen Funktionklasse,” was of great and distinctive value; it intro-
duced a new characteristic of approximating properties of classes of functions,
later called “Kolmogorov’s diameter,” which has been attracting wide attention
especially since the 1960s.

Kolmogorov formulates his problem as follows:

Let us suppose that we introduce a certain distance for the functions f, g, ...
under consideration and examine the problem of approximation of the function f
by linear combinations ¢, = ¢,¢, + -+ +c¢,9, with fixed functions ¢,,..., ¢,.
P. L. Chebyshev considered the problem of the choice of such coefficients
¢=(cy...,c,) that the distance p(f,¢,) can be made arbitrarily small.
Kolmogorov now poses a new problem:

Let F = {f} be a certain class of functions and

D(F)= inf sup inf  p(f,0.)-
(B1r-r ) [€F c=(c1,n0r )

It is required, for given n and F, to find D,(F'), and to clarify the existence of
the optimal functions ¢,,..., ¢, and their uniqueness (to within linear transfor-

mations).
For the case of p(f,g) =[/i(f — &)? dx]'/? and the class F, of differentiable
functions f = f(x) with [}( f'(x))?dx < 1, Kolmogorov showed that

1
Dn(F1)=E, n=1,2,...,

and that the optimal functions ¢,,..., ¢, are

1,V2 cos wkx, k=1,...,n—1.

For the class F,*, p > 1, consisting of all p times differentiable functions
f = f(x) satisfying the conditions

fol( fP(x)) dx <1, £0) = F(1), £7(0) = °(1),..., f27(0) = fP70(1)

Kolmogorov found that

1
D2m—-l(F;>*) = D2m(Fp*) = W’ m=1,2,...,

and showed that for n =2m + 1 the functions 1, V2 sin 27kx, V2 cos2wkx,
k =1,..., m, are optimal.

In paragraph 5 of [K62], [MM-28], Kolmogorov gives in his proof a geometric
interpretation, on the basis of which the value D,(F) was called the nth
diameter of the set F.
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The 1930s were very fruitful in Kolmogorov’s scientific activity. The spectrum
of topics was very diverse; the number of articles published in those years can be
seen from the data: 1931—5 papers, 1932—6, 1933—9, 1934—10, 1935—4,
1936—17, 1937—9, 1938—16 and 1939—5.

Doing research in various branches of mathematics, A. N. Kolmogorov (in the
1930s) obtained a series of results in probability theory of fundamental value in
addition to the ones described above.

In the late 1920s and early 1930s there came a number of papers by de Finetti
(e.g., [38]), devoted (in modern terms) to the probability properties of random
processes X = (X,),,, with homogeneous independent increments. In other
terms the point lies in the structure of distributions of the so-called infinitely
divisible laws.

The random variables ¢ = £(w) with infinitely divisible laws are characterized
by the coincidence of their distributions with that of the sum £, + --- +§,, of
independent identically distributed random variables &, ..., &, for every n > 1.
(The importance of this class of infinitely divisible distributions lies in their
acting as limit laws, under general conditions, for normalized sums of indepen-
dent random variables.)

de Finetti [38] suggested a certain rather general formula for the characteris-
tic function f(t) = Ee'* of an infinitely divisible random variable £. It was he
who suggested the following formula for f(t):

(23) f(t) = exp{iat - %2t2 + c/(ei“‘ -1) dF(u)},

where F(u) is the distribution function of sizes of jumps, by combining normal
and compound Poisson types.

This formula (23) failed to include the general case, but described a certain
subclass of the infinitely divisible distributions.

In 1932 Kolmogorov gave an exhaustive reply to de Finetti’s problem for the
case of a random variable ¢ with finite second moment, E£? < oo:

The function f = f(t) is the characteristic function of the infinitely divisible
law of a random variable ¢, E£% < oo, if and only if it may be written as

itx :
(24) f(t) = exp{iat+ foo e——l———-l—tﬁdK(x)},
— 00

where a € R, K = K(x) is a nondecreasing bounded function, and the integrand
is equal to —¢2/2 at the point x = 0.

The general case, which included the possibility of infinite variance, was
investigated by Lévy [108] in 1934. In 1937 Khinchin [95] showed that Lévy’s

result can be obtained by Kolmogorov’s method as well. .
' “The Lévy-Khinchin formula” (to use its now commonly accepted title) for
the characteristic function f = f(x) of an infinitely divisible distribution has the
form ’

(25) f(t) = exp{iat— i‘lg—z + f_m;(e""‘7 -1- e 2) L sz(dx)},

x2

1+x x?
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where a € R, 62> 0 and A is a certain finite measure on (R, #(R)) with
A({0}) = 0. Other formulations are also used, for example,

t2%a? ) .
f(t) = exp{iat -t f (e —1- ith(x))F(dx)},
where F' is a nonnegative measure such that
J” min(1, x?)F(dx) < o

and h = h(x) is a bounded Borel function with compact support, behaving
similarly to x in the neighborhood of zero.

Kolmogorov’s remarkable work “Sulla determinazione empirica di una legge
di distribuzione” [K43], [PS-15] also dates back to 1933; it has become classical
and one of the key points in a whole area of statistics, that of nonparametric
goodness-of-fit tests.

The formulation of its main result is simple and beautiful:

Let &= (£,£,,...) be a sequence of independent identically distributed
random variables with continuous distribution function F(x) = P(§¢; < x) and
let

1 n
F(x;6) =— X I(§, < x)
nop_
be the empirical distribution function. Then
(26) ]imP{\/;sup|F;,(x;$) —F(x)|s}\} =X (N),

where

AN = 3 (=1)te-20#,

k= —o00

It should be recalled for a proper appreciation of this result that Cramér in
1928 [32] and von Mises in 1931 [202] considered the “omega-square” statistic

ai= [ [Fx:8) - F)] ds

for testing the hypothesis F' = F(x) on the basis of the observations §,,..., ,,.
However, no exact statement on the asymptotic behavior was obtained. (See the
" commentary by E. V. Khmaladze in [PS], pages 514-520, on this work of
Kolmogorov.)

It evidently follows from Kolmogorov’s result (26) that

D, = sup|F,(x; §) — F(x)| > 0

in probability. It may be enlightening that this same fourth volume of Giorn.
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Istit. Ital. Attuari of 1933 contained the two famous papers by Glivenko [67]
and Cantelli [27] bearing the same title, “Sulla determinazione empirica delle
legge di probabilita,” which proved the convergence of D, — 0 with probability
1. [Glivenko did it for continuous F(x) and Cantelli considered the general case.]
Later on Smirnov [183], in 1944, and Dvoretzky, Kiefer and Wolfowitz [44] in
1956, showed that the inequality

P(D,>d) <Ce 2, d>0,n>1,

holds for Kolmogorov’s statistic D,. By the Borel-Cantelli lemma one may
deduce from this that D, — 0 with probability 1.

In 1936 and 1937 Kolmogorov launched extensive research [K68, K81] on the
asymptotic behavior of the transition probabilities for Markov chains with
countable state-space. The classification of Markov chains by arithmetic proper-
ties of the transition probabilities p{? from state i to state j in n steps
(essential and inessential states, indecomposable classes, cyclic subclasses,...)
and the classification by the asymptotic properties of the probabilities p(”)
(recurrent states, nonrecurrent states, positive and null states, .. .) still present a
brilliant model of how to resolve the knottiest issues of the possible behavior of
such a complicated stochastic object—even in discrete time—as a Markov chain
with a countable set of states.

The distinctive breadth of A. N. Kolmogorov’s scientific interests is shown in

his “more applied” work where the probabilistic approach is directed to prob-
lems of biology, genetics, physics, geology,.... Thus in his paper, “On the
solution of a biological problem” [K101], [PS-25] dealing with a simple model of
the branching random process, Kolmogorov found the asymptotic behavior of
the extinction probability as the number of generations increases.
_ In discussion on genetics in the autumn of 1939 much attention was given to
~ the validity of Mendel’s laws (its simplest case means a splitting in the ratio
3:1). In this connection Kolmogorov wrote “On a new confirmation of Mendel’s
law” [K115], [ PS-26], where he analyzed the statistical data of N. I. Ermolayeva,
a pupil of T. D. Lysenko [Yarovizatsiya 2(23) (1939) 79-86], and her results,
saying: “These data, controversial in Ermolayeva’s own judgment, provide a
brilliant new confirmation of Mendel’s laws.”

Within certain schematic, but rather general, assumptions Kolmogorov man-
aged to provide, in his work “On the’ statistical theory of crystallization in
metals” [K83], a strict solution of a problem on crystallization rates, and pointed
out the “essential significance for metallurgy of the study of the process of
crystal growth under random formation of crystallization centers” and marked
“certain difficulties in the registration of clashes between the seeds of the
crystallizing substance, which are being developed around the separate crystal-
lization centers.”

Kolmogorov’s formulas on the probability of inclusion of a given point in the
already crystallized mass (see (3) in [K83]) and on the number of crystallization
centers ((6) and (6a) in [K83]), are still fundamental to the general theory of
crystallization in metals.
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In 1933 A. N. Kolmogorov and M. A. Leontovich published an article [K42],
[PS-14] in a physics journal, “ Zur Berechnung der mittleren Brownschen Fliche,”
where they solved a problem, suggested by S. I. Vavilov, on the expectation ES,
of the area S,, covered during the length of time ¢ by a circle of radius p, whose
center moves on the plane as a Brownian particle.

If we reduce ourselves to the main term of the formula for ES,, then

47Dt

P -2
m(l26Dep7) DL

ES, ~

where D is the diffusion coefficient.

It is worth following Kolmogorov’s methods for the solution of this problem,
as they are very tightly linked to those developed in “Analytical methods.” (It
may be interesting to remark that the purely physical part in [K42], [PS-14] was
written by Kolmogorov and its purely mathematical part by Leontovich.)

Namely, let P,(x, y; t) denote the probability of the Brownian particle

located at the point (x, y) at time ¢ = 0 crossing the boundary I' of the domain
G, containing the point (x, y), at least once during the ¢-time, with the first
crossing falling on a given part L of the boundary I'. Then P,(x, y; t) satisfies
the “first Kolmogorov equation” (19) with the conditions: P,(x, y;0) = 0, if
(x, ¥) € G, P(x, y;t) = 1, for every ¢ > 0, when (x, y) tends to a point of the
part L of the boundary I', and P;(x, y;t) = 0, if ¢ > 0 and (x, y) tends to a
point from T'\ L. These conditions uniquely determine the function P,(x, y; t)
and enable its determination. Simultaneously the same method was sug-
gested by Pontryagin, Andronov and Vitt [151]. (The Kolmogorov-Leontovich
problem on S, [K42], [PS-14] is now called the “Wiener sausage” problem; see,
e.g., Donsker and Varadhan [41], Varadhan [197] and Le Gall [103].)
. A brief Kolmogorov note, “Zufsllige Bewegungen” (1934) [K57], [PS-19],
subtitled “Zur Theorie der Brownschen Bewegung,” is devoted to a general
description of Brownian motion with inertia, in which physicists were so vigor-
ously interested. In the theory by Einstein [47] and von Smolukhovskii [206], the
inertia of the Brownian particle was neglected and thus the particle did not have
finite velocity. In 1930 Uhlenbeck and Ornstein [194] were busy developing the
theory of Brownian motion with inertia. In this amended theory the trajectories
of the particle motion were differentiable (but with infinite acceleration).

Kolmogorov considered this package of problems in general, supposing that
the state of the system considered is described by 2n coordinates ¢ = (q,,. .., q,)
and ¢ = (g,,...,4q,), whose probability density G(¢,gq,q;t,q’,q’), t<?t, is
determined. Then he shows (in the spirit and on the basis of “Analytical
. methods”) that this density satisfies the corresponding.forward equation (of
Fokker—Planck type) ((9) in [K57]), a degenerate equation of parabolic type,
which owes the beginning of its theoretical development to Piskunov,
Kolmegorov’s pupil, and others (see Nelson [138]).

Kolmogorov’s article [K85], [PS-24] on the general issue of the reversibility of
the statistical laws of nature (completed in 1936) may be also included in the
series of his works on the theory of Brownian motion.
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The essence of the problem under consideration is as follows.

In the thermodynamic interpretation, Brownian motion is nonreversible in
the sense that if the number of particles is large and time grows, there results a
“levelling” of the probabilities describing the location of the particles. If the time
goes down, then the “heterogeneity” of this distribution conversely increases.
Schrédinger [169] was perhaps the first to notice the fact that the diffusion
process will nevertheless possess certain reversibility, in case the probabilities are
fixed both for initial time ¢, and final time ¢,, the behavior of the process being
considered in the time interval [¢,, ¢].

In his paper [K85], [PS-24] Kolmogorov provided necessary and sufficient
conditions for the statistical reversibility (in the sense of ‘“usual” densities of the
transition probability coinciding with the “reverse” ones) for the very general
situation of an n-dimensional Markov diffusion process.

Kolmogorov’s paper of 1937 (together with I. G. Petrovskii and N. S. Piskunov),
“Studies of the diffusion equation, with the increasing quantity of the substance
and its application to a biological problem” [K82], [MM-38], belongs to his
studies of the 1930s on the theory of Brownian motion and diffusion processes
and is the first work to establish the existence of wave solutions of parabolic
equations and the convergence to them of the solution of the Cauchy problem,
when ¢t - 0.

The diffusion equations considered in [K82], [MM-38] have the form (K > 0)

o7 du K 0%u  9%u P
_— —_— + —_— =

(272) at ax?  dy? ()

and (if u does not depend on y)

- v _ g g

( ) at ax2 - (u)’

where F = F(u) is a sufficiently smooth function which is determined at [0, 1]
and satisfies the conditions F(0) = F(1) =0, F(u) > 0 for 0 <u <1, F'(0) =
a>0, Fl(lu)<a,0<u<l.

One searches for the solution u = u(x, t) of the equation satisfying the initial
condition u(x,0) = f(x), where

) (ORI

It turns out that (27) has a solution of travelling-wave type, that is,
(29) u(x,t) = w(x — ct),

for all ¢ > V2ka . The problem given by (27b) and (28) then has solutions which
converge as ¢t — oo, in form and in velocity, to solutions of travelling-wave type.

The commentary by G. I. Barenblatt ((MM], pages 416-420) gives a rather
detailed description of contemporary studies in mathematical physics (the



KOLMOGOROV: LIFE AND CREATIVE ACTIVITIES 899

theory of combustion in particular), initiated by this work of Kolmogorov,
Petrovskii and Piskunov.

Quite apart from the purely mathematical interest of the paper [K82],
[MM-38], Kolmogorov in his lectures and talks repeatedly saw the need to
emphasize that in its origin and in its formulation of problems this work owed
much to biology. In paragraph 1 of [K82], [MM-38], citing the book by Fisher,
The Genetical Theory of Natural Selection [56], he points to the formulation of
the problem of the study of the evolution of the “concentration” p = p(¢, x, y)
of the biological species under investigation. Under natural assumptions on
p = p(t, x, y) one obtains
32p azp

ap N
ax?  9y?

1
ot 4’

2 + ap(1 — p?),

giving an equation of the type (27), and following that Kolmogorov formulates
mathematical problems of purely “biological” interest, one of which is the
determination of the rate of advance of the boundary of the area populated by
the species under study. It is interesting to note that Fisher published his work
[567] on the very same subject and in the very same year. (Of recent “probabilis-
tic” studies linked with [K82] one may cite, for example, the articles by Bramson
[26] and Géartner [60].)

A very small Kolmogorov paper, “La transformation de Laplace dans les
espaces linéaires” (1935) [K60], [MM-26], was the first to define the characteris-
tic functional of a probability measure in a Banach space, the generalization of
the notion of characteristic function to the infinite-dimensional case. In the same
work he defines the normal distributions and moment forms of the n-order,
mentions the possibility of generalizing the central limit theorem to linear spaces
.and emphasizes the significance of these notions for the construction of nonlinear
quantum theory, saying:

“If we were working towards a nonlinear quantum theory, it would have been
necessary to consider the distributions themselves, or their characteristic func-
tions, or finally the entire set of moments.”

Later L. Le Cam (1947) and E. Mourier (1950, 1953) arrived at the notion of
the characteristic functional. The modern theory of probability distributions in
Banach spaces and detailed references are presented in monographs by
Vakhaniya, Tarieladze and Chobanyan [196], Araujo and Giné [10] and Linde
[113].

In 1938 there appeared Kolmogorov’s work “A simplified proof of the
Birkhoff-Khinchin ergodic theorem” [K99], [MM-39]. In the same year
. Kolmogorov completed his work (together with I. M. Gel’fand) “On rings of
continuous functions on topological spaces” [K107], [MM-41], which showed
that in quite general situations the algebraic structure alone of the ring of
continuous functions, given on the topological space with a sufficiently “good”
topology, might determine this topological space (to within homeomorphism). In
1939 came his paper “On the inequalities between upper bounds of the successive
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derivatives of an arbitrary function on an infinite interval” [K106], [MM-40],
dating back to E. Landau and J. Hadamard. Kolmogorov formulates the prob-
lem and result as follows:

A function f = f(x) is considered on the real line. Let

M,(f) = sup|f®(x)], k=0,1,...,n;

then:
“In order that three positive numbers M,, M,, M,,0 < k < n, should corre-
spond to the function f(x) via

M0=Mo(f)’ Mk=Mk(f)’ Mn=Mn(f)’
it is necessary and sufficient that
My, < G M9/ "M/,

where C,, are the indicated constants” ((MM-40], page 253).

For the history of the matter, discussion of the results and subsequent studies
see the commentaries by V. M. Tikhomirov and G. G. Magaril-II’yaev ((MM],
pages 387-390).

We will return to certain aspects of Kolmogorov’s extremely prolific activity
in the 1930s (in particular, his works on the teaching of mathematics), but for
the present let us remark the following.

In 1930 the State Scientific Council of Narcompros, RSFSR (Educational
Ministry of the Russian Soviet Socialist Republic) approved Kolmogorov’s
academic rank of Professor of Mathematics (PR No. 014075) and in 1935 the
Qualification Committee of Narcompros, RSFSR awarded him the scientific
degree (dispensing with a dissertation defense) of Doctor of Physics and Mathe-
matics (DT No. 000038).

The Second All-Union (National) Mathematical Congress (Leningrad, 1934)
“ decided to launch a new mathematical journal, Uspekhi Matematicheskikh
Nauk. (The English translation, published by the London Mathematical Society
and begun in 1960, is Russian Mathematical Surveys.) From its founding in 1936
to 1944 publication was of separate volumes; in 1946 it started as a periodical.
From 1936 to his death Kolmogorov served on the editorial board, and he was
Editor-in-Chief from 1946 to 1955 and from 1982 to 1987.

From December 1, 1933 to April 15, 1939 Kolmogorov was Director of the
Scientific and Research Institute of Mathematics (Moscow University).

On January 29, 1939 Kolmogorov was elected Full Member (Academician) of
the USSR Academy of Sciences. From 1939 to 1942 he was the Academician-
Secretary of the Physics and Mathematics Department of the USSR Academy of
Sciences and a member of the Presidium of the USSR Academy of Sciences.
From 1938 to 1958 he was Head of the Probability Department in the Steklov
Mathematical Institute, USSR Academy of Sciences.

The forties (1940-1949). The late 1930s and early 1940s are marked by
Kolmogorov’s works in the theory of random processes with stationary incre-
ments and the related theory of isotropic turbulence, works extraordinary for
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their conceptual value, profoundness of ideas and diverse possibilities of applica-
tion.

Kolmogorov noted in [PS], page 473, that his “interests in the spectral theory
of stationary random processes developed in connection with works by Khinchin
and Slutskii,” who had dealt with them in the early 1930s. Kolmogorov referred
to his report, “Statistical theory of oscillation with a continuous spectrum,”
delivered at the General Meeting of the USSR Academy of Sciences in 1947
[K141], [PS-34], where he emphasized the great value of Stieltjes integrals for
the general presentation of stationary oscillating processes, comprising almost
periodic oscillations as well as those with a continuous spectrum.

The works of 1940, “Kurven im Hilbertschen Raum, die gegeniiber einer
einparametrigen Gruppe von Bewegungen invariant sind” [K110], [MM-42] and
“Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen
Raum” [K111], [MM-43], deal with the L2-theory of random processes £ = (£,),
— o0 <t < oo, with stationary increments and their various subclasses (includ-
ing processes stationary in the wide sense, Wiener processes and others) from the
point of view of the structure of the covariance function

Bé('rl’ '7'2) = E[£l+‘rl - gt] [£t+fz - gt]

(Theorem 2 in [K110], [MM-42]) and of the possibility of the spectral representa-
tion of the process £ = (§,), — o0 < ¢ < o0, which Kolmogorov (see Theorem 3 in
[K110], [MM-42]) gives as

(30) g= [ (eM=1)0(dN) + x, + x,t.

If the process £ = (£,), —o0 < ¢ < oo, is itself stationary, as well as having
stationary increments, then x, = [® _®(dA), x; = 0 and the spectral representa-
- tion of the stationary random process £ = (§,), —00 < ¢ < o0, can be derived
from (30) as a Stieltjes integral,

0
(31) &= [ eMe(an),

— o0
with respect to a random measure ®(A) with orthogonal increments
(E®(A)®(A,) =0, A, N A, = @). This was also discovered independently by
Cramér (1942, [33]) and Maruyama (1949, [126]). See also Loéve [116].

The paper [K111], [MM-43] directly adjoins [K110], [MM-42] and deals with
some special cases of processes { = (£,), —o0 < t < co, with stationary indepen-
dent increments. Actually Kolmogorov considers processes ¢ with self-similarity,
which means that for any & # 0 there exists a similarity transformation A, such

that for all ¢,
$re = Arés

As it turns out, the “structural” function B,(r, 7,) of these processes can be
presented as

(32) By(y, 1) = c[In|" + || = |m — n[],
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where ¢ and y are real constants, satisfying the inequalities ¢ > 0, 0 < y < 2.
[The zero mean Gaussian process with covariance function given by (32) is now
called fractional Brownian motion of index §v.]

It is to be noted that in recent years many papers applicable for example to
statistical physics (see Sinai [181] and Taqqu and Levy [192]) have been devoted
to random processes with the property of self-similarity (for background on
self-similarity see, e.g., Vervaat [198]).

These works on processes with stationary increments were followed by
Kolmogorov’s classical works on stationary (in the wide sense) random processes
where (as in [K110, K111]) he extensively employed Hilbert space techniques, as
reflected in the title of his 1941 work, “Stationary sequences in Hilbert space”
[K116], [PS-27]. Here he introduced new concepts (subordination of one station-
ary sequence to another, regularity, singularity and minimality) which gave rise
to many subsequent studies of vector processes with continuous time (see
[161, 162]).

The notion of the stationary sequence n = (7,), n = 0, +£1,..., being subor-
dinate to another stationary sequence ¢ = (£,), n = 0, £1,..., means that they
are stationarily related and the closed linear subspace H(¢) generated by the
elements §,, n =0, £1,..., comprises all the elements n,, n =0, +1,.... The
surprise of Kolmogorov’s result is in the possibility for a subordination to be
expressed in purely spectral terms. Namely, the sequence 7 is subordinate to £ if
and only if there exists a function ¢(A) € LZ(F“) such that the spectral func-
tions F, (A) and F, () in the representations of the covariance functions

B,(n) = [ eMdF,(\),  By(n) = /.ﬂei""dﬁ‘en(}\)

~ satisfy

Fo0) = [ Jo()[ dBe(d),  Fy0) = [* o(w) dBe(M),

where

By(n) = [ e™dFg(N),  By(n) = Et,. i

The property of singularity (in other terms—determinacy) of the sequence
§=(¢,), E(§,=0, n=0,+1,..., means that the space H(¢) coincides with
H__(§)=N,H,/(§), where H () is the closed linear space generated by the
random variables £,, k < n.

The property of regularity (in other terms—pure nondeterminacy) means that
the space H_ (§) is trivial.

Kolmogorov employs the results on boundary properties of functions analytic
in the disc and obtains his well-known result:

For the nondegenerate stationary sequence ¢ to be regular, it is necessary and
sufficient that the spectral function F,;(A) possess a density f;,(A) such that

(33) fjﬂln fe(A) > — oo
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Kolmogorov defines the minimality of the sequence £ to mean that the space
H(¢), which is the minimal closed subspace generated by all £, n# 0, does not
coincide with the minimal linear closed subspace H({) generated by all £,
n=20,+1,....

A. N. Kolmogorov states:

The stationary sequence ¢ is minimal if and only if there exists a spectral
density f..(A) such that f,(A) > 0 almost everywhere w.r.t. Lebesgue measure
and

_ﬂfes(x)
Besides, if these conditions are fulfilled, then
-1
35 d, = 1nf E|¢ - &, = (2 .
(35) ¢=, inf E[&- ] = ( )[[ f“m]

This work is closely adjoined and followed by Kolmogorov’s “Interpolation
and extrapolation of stationary random sequences” [K117], [PS-28], where he
says in the Introduction that the paper “sets the spectral conditions for the
possibility of extrapolating, to within any given accuracy, a stationary random
sequence, with a sufficiently large number of observations.”

In this work Kolmogorov gives the first results on the value of the error in
problems of extrapolation and interpolation, as well as providing a precise
formulation of such problems.

These results by A. N. Kolmogorov and the results by Wiener [210] (see also
Doob [43], Chapter XII) created an entirely new branch in the theory of random
processes, with wide application in science and technology.

Kolmogorov writes

. = 2
6E2'(n’ m) = (ahl.l.l.f’ a,,)E [£t+m - g[t—l ..... t—n]]
for the minimal possible error of prediction of £, ,,, m > 0, by values g“[t_ Lo t=n]
of the type a,¢,_, + -+ +a,¢,_,, n> 0,and thus via oZ(m) = lim, , ,0Z(n, m)
he obtains the explicit formula for 02(m), which is expressed in spectral terms.
He also shows here that, if the integral [J log f,.(A\) dA = — o, then the error of
prediction o2(m) vanishes for all m > 0. In the case of regular sequences, when
the mteg'ral /¢ log f;e(A\) dA is finite, Kolmogorov gives an explicit formula for
the error o2(m) (Theorem 2 in [K117], [PS-28]).
In the interpolation problems Kolmogorov introduces the value

. o 2
af(n) = melgt = §(t—n, t+n]]

of the minimal possible error of the interpolation of £, by values

n

f[t—n,t+n]= Z i

k=—n



904 A.N. SHIRYAEV

and finds for o? = lim, _,  o}(n) that if the integral

B "f fggm

is equal to + oo, then 0 = 0, and if R < oo, then ¢/ = R~! (Theorem 3, [K117],
[PS-28]).

Kolmogorov’s report [K141], [PS-34] to the General Meeting of the USSR
Academy of Sciences, 1947, mentioned above, was described by A. M. Yaglom
(see his commentary in [PS], pages 491-496) as “the first popular review of the
spectral theory of stationary random processes, which is one of the most
important branches of the mathematical theory of random functions, and has
been developed only recently (with active participation by Kolmogorov himself)
and was hardly known to anyone outside a narrow circle of experts.” (In this
commentary by Yaglom the reader will find detailed historical and bibliographi-
cal data relating to the spectral theory of stationary processes; see also [161, 162,
212, 43, 35].)

One can hardly overestimate the importance of Kolmogorov’s work of the
early 1940s in the theory of turbulence, which promoted further development of
the concept and the theory and applications of the local structure of turbulent
motions.

Kolmogorov said, commenting on his works on turbulence ((MM], page 421):

“My interest in turbulent processes in liquids and gases developed in the late
1930s. Immediately I became aware that the newly emerging theory of random
functions of many variables (random fields) was to become the major mathemati-
cal tool of research in turbulence. Besides, it soon became clear that one could
hardly rely upon the creation of a pure theory closed in itself. The lack of such
theory will mean reliance on hypotheses derived from the processing of experi-
mental data. It was also essential to employ talented staff, who could manage

“work in such a mixed field combining theory with experimentation.

“I was lucky with the latter: A. M. Obukhov, who had been posted in Moscow
University from Saratov University, wrote his diploma (1939) and postgraduate
thesis papers under my scientific supervision. Almost simultaneously M. D.
Millionshchikov became my postgraduate student in the Moscow Aviation Insti-
tute. Later A. S. Monin and A. M. Yaglom also became my postgraduate
students.

“In 1946 O. Yu. Shmidt suggested that I should head the Turbulence Labora-
tory in the Institute of Theoretical Geophysics, USSR Academy of Sciences. In
1949 this post was passed to Obukhov. I was not engaged in experimentation
myself, but I worked extensively with other researchers on computation and
graphical processing of the data.”

The presence of chaotic pulsations of velocity U(x, ¢) and pressure P(x, t) and
of other hydrodynamical characteristics in the flow of liquids and gases (called
turbulence) makes the study of individuals fields of turbulent motion hardly
feasible at all. This very aspect gave value and interest to the statistical
description of flows by O. Reynolds, the founder of the theory, who had been
aware of it even at the end of the 19th century. However, his suggested averaging
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over a given interval of space or time proved rather inconvenient, because of the
difficulties in obtaining sufficiently simple and reliable equations for the average
(mean) field.

Kolmogorov took the averaging in a probabilistic sense, that is, averaging over
ensembles (package averaging). Thus he suggested viewing the fields of hydrody-
namic characteristics as random functions of spatial and time coordinates, as is
now commonly accepted.

His in-depth intuition in physics helped Kolmogorov to distinguish the
general qualitative and quantitative laws which determine the stochastic nature
of the small-scale pulsation for developed turbulence with sufficiently large
Reynolds number on the basis of two hypotheses of similarity, formulated in
Kolmogorov’s famous paper, “The local structure of turbulence in incompress-
ible viscous liquid for very large Reynolds’ numbers,” written in 1940 ([K119],
[MM-45]).

These hypotheses enabled one to state the fundamental quantitative rela-
tions, including first of all Kolmogorov’s famous “law of two thirds,” saying that
the average (mean) square of the difference of the velocities at two points,
located at distance r (neither too big nor too small), is proportional to r2/3,

Kolmogorov’s so-called longitudinal and transverse structural functions B, (1)
and B, (r) of the fields of velocities have been extensively tested experimentally,
and the “law of two thirds” (B,,(r) ~ r?/?) as well as the formula B, (r) ~
3B,4(r) were verified for considerable ranges of values of r. (For more details see
[K119], [MM-45]; [MM], pages 421-433.)

Kolmogorov’s works [K119], [MM-45] and [K121], [MM-46] on turbulence
were further developed in his report to the International Colloquium on the
Mechanics of Turbulence, Marseille, 1961 [K306], [MM-58], and in [K307],
adjacent tc the paper by A. M. Obukhov [141]. Kolmogorov suggests replace-
ment of his two hypotheses of similarity (from [K119]) by two more detailed
ones, referring to the normalized velocity difference, and also supplements them
by a third one postulating the logarithmic normality of the probability distribu-
tions of the dissipation of energy ¢, (obtained as a result of averaging on the
sphere of radius r) and the linearity of the variance log e, from log(L/r), where
L is the characteristic scale of length for the flow considered.

These three hypotheses led to the refinement of the “law of two thirds,” that
is, to the new formula B, (r) ~ r?/3(L/r)~*, which already takes into account
an early remark of L. D. Landau on Kolmogorov’s paper [K119], on the
impossibility of neglecting the variation of energy dissipation with the growth of
L/r. (For more details see [MM], pages 349 and 428.)

Summarizing Kolmogorov’s contribution to the theory of turbulence, one may
quote the final lines from “Kolmogorov flow and laboratory simulation of it” by
A. M. Obukhov [142]:

“The personal contribution of Kolmogorov to the study of turbulence and his
ideas relating to the general theory of dynamical systems are fundamental
reference points in the development of investigations of the most complex
phenomenon in nature, namely, turbulence, in connection with diverse areas of
knowledge.”
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Kolmogorov was very responsive both as a universal mathematician and as an
applied researcher; he had an extraordinary gift of penetrating into the very
essence of a given problem, of selecting its basic and vital aspects and bringing
clarity to contentious issues.

This is vividly illustrated by Kolmogorov’s works in ballistic theory, which
date back to the Great Patriotic War (1941-1945). Kolmogorov’s paper, “The
determination of the center of dispersion and the measure of accuracy resulting
from a limited number of observations” (handed to the printer on September 15,
1941) [K126], says, in particular, that the author “was requested to settle an
artillery dispute on how to estimate the measure of accuracy from experimental
data.” Kolmogorov modestly remarks that the article does not claim anything
more than a certain methodological value and then proceeds to a critical
comparison of the different approaches.

In collaboration with the Steklov Mathematical Institute of USSR Academy
of Sciences, the Mathematics and Mechanics Faculty of Moscow University, the
Artillery, Scientific and Research Marine Institute and others Kolmogorov
undertook a profound theoretical and computational investigation of the effi-
ciency of firing systems. One may appreciate the nature of these extensive
studies from Kolmogorov’s two papers, “ Number of hits in several shots and the
general principles of estimating the efficiency of firing systems” [K129] and “The
artificial dispersion of single-shot hitting and one-dimensional dispersion” [K130].

The work [K129] considers the number g of hits in a group of n shots,
p=0,1,..., n. Kolmogorov writes P, = P(u = m), R,, = P(u > m) and Ep for
the expectation of the hitting numbers and suggests a definition of the “ef-
ficiency characteristics of the firing system.” He says that the usual reasoning
about the comparative advantages and disadvantages of “estimation by the
expectation” and “estimation by the probability” often lacks sufficient sharp-
ness. He also poses the problem of whether a set of probabilities P, P,,..., P,,

“characterizing the firing system through the probability distribution of the
number of hits, can be “replaced by a reliable single value W = f(R,, P,..., P,),
which could be called an efficiency characteristic.”

After his analysis of the subject (paragraph 1, [K129]), Kolmogorov obtains a
series of explicit formulae for the probabilities P, and supplies practically
convenient approximations and tables of their accuracy.

The other group of problems in the paper is to select the best firing system by
classifying the factors which affect the fire results and to resolve the problem of
“artificial dispersion.”

Let us denote by p; = p,(a;, B;) the probability of a hit in the ith shot
depending on the azimuth «; and the aim B, Let («; B;) be a combination
(usually unique) of values a; and B; which maximizes the, probability of a hit,

max p;(a;, B8;) = Pi(&w Ez)»
and let '
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The question is whether
max W = W(a, B),

i.e., the maximum fire efficiency is sufficiently ensured by maximizing the
probability of a hit in every shot.
The article says that in two special cases, when

W= Eu
and when W is presented as
W=c¢P + - +c,P, c; >0,

and the events B;, i = 1,..., n (hitting the target in the ith shot), are indepen-
dent, then the property max W= W{(a, 8) will hold and, consequently, the
optimal firing system in these two cases is to maximize the probability of a hit in
every separate (single) shot.

However, generally speaking this is not correct for other fire efficiency criteria
W. Therefore “in order to achieve the maximum overall fire efficiency one should
deliberately deviate now and then from the maximum probability of every shot
hitting.” This is firing with artificial dispersion and it will prove useful in such a
typical situation as:

“It is most essential to achieve at least a small number of hits, considerably
less than the total number of shots n.”

In his second work [K130], Kolmogorov considers the case of “artificial
dispersion, where one hit and one-dimensional dispersion suffice for the given
purpose, for example, fire at a narrow long strip (e.g., a bridge) which is
perpendicular to the firing surface.

In 1949 Kolmogorov wrote a paper, “The solution of a probability problem
related to the question of the formation of strata” [K154], [PS-37]. A. B.
Vistelius says in his commentary ([PS], pages 527-531):

“At that time the geological sciences had hardly possessed such notions as
random variable, probability distribution function and sequence of values of a
random variable. It was a first step in the construction of such a scientific
foundation of geology to introduce stochastic methods. This basic reconstruction,
which subsequently gave birth to mathematical geology, was greatly stimulated
by this article and Kolmogorov’s personal advice and comments during the
period from 1945 to 1950.”

In 1946 there appeared the book by H. Cramér, Mathematical Methods of
Statistics [34]. A champion of mathematical and statistical education and an
enthusiast of the development of statistical research in the USSR, Kolmogorov
wrote a detailed introduction to the Russian edition and edited it [K149]. He
says in this Introduction:

“The existing courses in mathematical statistics had been erected on a
theoretical basis, which definitely fails to meet modern requirements” and
“studies of the specific issues of mathematical statistics have outgrown the old
level of presentation of the mathematical and probabilistic prerequisites” and
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therefore Cramér’s book is “an attempt to present systematically the fundamen-
tal issues of mathematical statistics from a rather up-to-date position.”

With a view to stimulating statistical research in the USSR, Kolmogorov
delivered the following reports at the Second All-Union Conference on Mathe-
matical Statistics, Tashkent, 1948: “Basic problems of theoretical statistics”
[K156] and “The real meaning of the analysis of variance” [K157]. In March
1950 Kolmogorov completed a fundamental work, “Unbiased estimates” [K164],
[PS-38], where he systematically analyzed the properties of unbiased estimates
and the different methods of their construction by means of sufficient statistics,
and also described significant application of unbiased estimates in problems of
statistical control and mass industrial quality control.

Kolmogorov’s “Unbiased estimates” and the subsequent “Statistical quality
control with the allowed number of defective items equal to zero” [K189]
initiated vast theoretical and practical probability research in sampling. (See
commentaries by Yu. K. Belyaev and Ya. P. Lumelskii in [PS], pages 522-523.)

Kolmogorov is rightfully mentioned among the founding fathers of the mod-
ern theory of branching random processes. (The very notion was introduced at
Kolmogorov’s university seminar, 1946-1947.)

Though some specific problems related to simple models of branching pro-
cesses had already been considered by Fisher [56], Steffenson [186], Leontovich
[105] and Kolmogorov himself [K101], [PS-25], the vigorous development of the
theory of branching random processes, an independent new area of probability,
was launched by Kolmogorov’s “Branching random processes” (in collaboration
with N. A. Dmitriev) [K139], [PS-32] and “The computation of the final
probabilities for branching random processes” (in collaboration with B. A.
Sevast’yanov) [K140], [PS-33].

The first post-war publication on branching processes in the West seems to be
_ Harris (1948) [75]. For historical background see Kendall [90, 91] (note the 1944
paper of Hawkins and Ulam—unpublished because of its Los Alamos security
classification—and Harris’ Princeton dissertation of 1947).

The works [K139] and [K140] consider the patterns of Markov branching
processes with several types of particles for both discrete and continuous time.
Later on research switched to more complicated patterns, which studied the
dependence of reproduction on the age of particles, their location, energy, etc.
Apart from giving the state of the art in branching processes at the time of
publication, the commentary by B. A. Sevast’yanov in [PS], pages 485-486, and
also [12, 76, 170] contain rich material on the various applications of the theory
of branching random processes to biology, chemistry, physics, technology, etc.

Probability theory owes a great debt to the book by B. V. Gnedenko and A. N.
Kolmogorov, Limit Distributions for Sums of Independent Random Variables
(1949) [K151] (English edition, 1954), devoted to the theory of limit theorems,
whose centerpiece is the notion of infinitely divisible and stable laws. In their
introduction to this book Gnedenko and Kolmogorov describe the problems of
limit theorems which brought them to these laws as follows.
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If £,&,,... is a sequence of independent identically distributed random
variables, S, = £, + -+ +£,, then it is natural to ask a general question about
the conditions under which the limit property

S,—A,
P( B sx)—»V(x), asn — oo,
holds for some choice of constants A, and B,, and which limit distributions V(x)
may arise here.

This problem was fully solved by Khinchin, who established that the possible
laws V(x) are the so-called “stable” distributions and, as [K151] says: “the range
of real applied problems where they might play an essential part could in time
prove to be rather extensive,” as subsequent developments have borne out.

Taking up the issue of infinitely divisible distributions, the authors especially
emphasized the importance of the scheme of series of random variables

gn = (gnl””’ gnn)

that are independent within each row, as this scheme may “contain in itself all
the meaningful and practically valuable limit theorems, relating to sums of
independent terms and leading to limit laws very much unlike the normal ones.”

In asking under which conditions S, = £,; + - -+ +£,, may have the limit

property
P( Sn - An

n

sx) - V(x), asn— oo,

and which limit laws V(x) may arise, Gnedenko and Kolmogorov restricted
themselves to arrays satisfying the negligibility condition
sup P(§,, — @,z 2 €B,) >0, asn— oo,
1<k<n

for some constants a,;. Under this assumption they gave a complete solution of
the limit problems considered, which has been taught to generations of students
of probability.

In Chapter 8 Gnedenko and Kolmogorov consider results on the speed of
convergence of

S, - A,
Vn(x)=P( 3 Sx)

n

to V(x). They note that P. L. Chebyshev emphasized, surprisingly early, the
significance of an asymptotic expansion for V,(x) and provided a central limit
theorem (without however a precise proof) with such an asymptotic expansion
with terms of order of n=/2,

The book Limit Distribution for Sums of Independent Random Variables by
B.<V. Gnedenko and A. N. Kolmogorov was awarded the P. L. Chebyshev Prize
(on December 14, 1951) of the USSR Academy of Sciences.
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In the late 1940s Kolmogorov began his significant work in The Large Soviet
Encyclopedia (2nd edition), as head of its mathematical section. He made up a
glossary, selected the contributors, edited articles and also made contributions
himself in the most diverse mathematical branches. From 1949 to 1958 he wrote
93 articles (1949—6, 1950—20, 1951—7, 1952—27, 1953 —14, 1954—9, 1955—5,
1956—2 and 1958—3). Among Kolmogorov’s contributions to the encyclopedia
one must especially distinguish his famous article “Mathematics” (The Large
Soviet Encyclopedia, 2nd edition, volume 26, pages 464-483, 1954 [K247]), where
“he briefly outlined the history of mathematics, marked the milestones of its
development and suggested an ingenious scheme of its periodization” [21].

In 1941 Kolmogorov and Khinchin were awarded the Stalin Prize.

In 1945 Kolmogorov was awarded a medal “For Valiant Labor in the Great
Patriotic War,” and in 1944 and 1945 the Order of Lenin.

In the fall of 1942 Kolmogorov married Anna Dmitrievna Egorova, a school
friend of his.

The fifties (1950-1959).

The general theory of Hamiltonian systems.

Information theory.

The ergodic theory of dynamical systems.

g-entropy.

The superposition of functions and Hilbert’s 13th problem... .

These are the mathematical branches in which Kolmogorov was doing research,
those which are definitively associated with his name, which gave rise to entire
scientific fields and schools.

Kolmogorov’s works in the theory of dynamical systems consist of two cycles.
The first one was directly initiated by and is related to problems of classical
mechanics ([K227, K242, K243], or 51, 52 and 53 in [MM]) and the second one
deals with information theory.

Kolmogorov says, commenting on his works in classical mechanics ((MM],
page 433):

“My works in classical mechanics were influenced by J. von Neumann’s
papers (e.g., [204]) on the spectral theory of dynamical systems and most of all
by the classical work of N. M. Krylov and N. N. Bogolyubov (1937) [102].

“I was then deeply intrigued by the question: Which are the ergodic sets (in
the sense of Krylov and Bogolyubov) in the dynamical systems of classical
mechanics, and which types of them may fill sets of positive measure (the
question has not been yet solved)? A special seminar on the study of some
specific examples was set up to accumulate concrete information on the subject.
" My ideas in these and adjacent areas found a wide response from the young
Moscow mathematicians.”

At the closing meeting of the International Mathematical Congress, Amster-
dam, 1954, Kolmogorov delivered a report, “The general theory of dynamical
systems and classical mechanics” [K243], [MM-53], which refers to “the basic
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problem of dynamics” (in H. Poincaré’s terms), that is, to research on the
quasipericdical motions of Hamiltonian systems under small perturbations of the
Hamiltonian. [The “smallness” of the variation of the Hamiltonian W{(p) is
understood as a transition to the Hamiltonian W( p) + 6S(q, p, 8) with small
parameter 6.]

The remarkable theoretical result by A. N. Kolmogorov says that quasiperiod-
ical motions will be preserved for the case of general position, i.e., det(d2W/dp?)
# 0, and for the majority of the initial conditions.

Kolmogorov’s theory and its subsequent development provided the long-
awaited solution to many problems. For instance, it implies the stability of rapid
rotation of an asymmetrical solid body about a fixed point, the stability of the
motion of an asteroid of negligible mass in the three-body problem; it implies the
stability of most magnetic surfaces under small variation of the magnetic field in
toroidal systems.

Speaking of his methods, Kolmogorov explained (see his report [K243], [MM-
53]) that the proof was based on developing the “idea of the possibility of
avoiding abnormally ‘small denominators’ in the computation of orbit perturba-
tions, which was widely disputed in celestial mechanics.” (See, e.g., Siegel and
Moser [178].)

(We know well the following example of the “small denominators”: 2w, — 5w, =
0.007, where w, = 299,1 and w, = 120;'5 are the frequencies of movement for
Jupiter and Saturn. These “small denominators” lead to big mutual perturba-
tions in the movements of the planets as the expressions mw; + nw, appear as
denominators in the series

Z amn
m,n#0
in the theory of perturbation.)

Kolmogorov’s method circumventing these “small denominators” was subse-
quently improved by V. I. Arnol’d, Kolmogorov’s pupil, and J. K. Moser, and it
is presently known as the KAM theory, for Kolmogorov—-Arnol’d-Moser. (See
details and references in Arnol’d [MM, pages 433-444] and the book by
Abraham and Marsden [1].)

In the second cycle of his works on the theory of dynamical systems
Kolmogorov applied certain ideas of information theory to research on the
ergodic properties of these systems.

In the early 1950s the work of Shannon stimulated Kolmogorov’s direct
approach to the problems of information theory. Kolmogorov said about it
([K316], Introduction):

“Shannon’s contribution to pure mathematics was denied immediate recogni-
tion. I can recall now that even at the International Mathematical Congress,
Amsterdam, 1954, my American colleagues in probability seemed rather doubtful
about my allegedly exaggerated interest in Shannon’s work, as they believed it
consisted more of techniques than of mathematics itself. Nowadays such views
hardly need a denouncement.

exp|i(mw, + nw,)]

mw; + nw,
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“However Shannon did not provide rigorous mathematical justification of the
complicated cases and left it all to his followers. Still his mathematical intuition
is amazingly correct.” ,

Thus it became evident that information theory was in need of a mathemati-
cal basis. The first steps in this direction were taken by Khinchin [97, 98], who
proved the basic theorems of information theory for the discrete case, and by
I. M. Gel'fand, A. N. Kolmogorov and A. M. Yaglom (see “On a general
definition of the amount of information” [K267], [IA-2] and “The amount of
information and entropy for continuous distributions” [K276], [IA-4]), who took
the general case, established the general properties of the quantity of informa-
tion in the Gaussian case and formulated the coding theorem for the transmis-
sion of messages with given precision.

In 1956 Kolmogorov reported his “The theory of transmission of information”
[K272], [IA-3] to the session of the USSR Academy of Sciences devoted to the
scientific problems of industrial automation. The report contained the basic
concepts of information theory and clarified the limits of its applicability.

All these works “set a tradition of presenting the results of information theory
in compliance with high standards of mathematical rigor, which was carefully
observed by both categories of researchers: mathematicians and engineers.”

His understanding of Shannon’s ideas in information theory brought
Kolmogorov to the unexpected combination of this theory with his theory of
approximation and theory of algorithms, which dated back to the 1930s. Let us
discuss this further.

Shannon described the uncertainty measure of discrete messages £, which
assume discrete values x,, x,,... with probabilities p,, p,,..., by the applica-
tion of “entropy” H({), as

H(§) = - X p;log p;.

He also defined the notion of the information I(£, n) contained in the object ¢
with respect to n by

I(¢,m) = Zp,, log—

i4j
in the case of discrete random Variables § and 7 with
pij=P(f=xi:"l=yj), pi=P(¢=x,;), Qj=P("l=yj)

and

p(x, y)
I x d
(571) f[ gp(x) (y) (’y)d"xy
when the variables £ and n have joint density p(x, y) and one-dimensional
densities p(x) and q(y), respectively.

In _the case of continuous messages all the natural analogues to the Shannon
entropy lead to infinite values. In this regard Kolmogorov repeatedly empha-
sized that for arbitrary messages the basic notion is the quantity of information
I(&, 1) of one object £ w.r.t. n, rather than the entropy.
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Starting from this idea Kolmogorov defines the e-entropy H(£) of a random
object £ as

H(¢) =infI(&,7),

where the infimum is taken (under the fixed distribution P; of the object £) over
all pairs of random variables (£, n) which satisfy the restriction that their joint
distribution P;, belongs to a given class W,, depending on a parameter ¢ (for
example,

W, = {(¢,7n): Eo(&,1) <e},

where p is a certain metric in the space of values of the objects considered).

The values H(£) had already been considered by Shannon as “rate of message
generation.” Kolmogorov writes in [K273], [1A-3]:

“Though the selection of a new name will not change the nature of the
problem, I will nevertheless venture to do so, as it emphasizes the wider interest
of the notion and its deeper similarity to the usual notion of entropy ... I would
especially note the interest of research on the asymptotic behavior of the
e-entropy as &€ — 0. The cases previously studied are nothing more than very
special ones of the possible regularities. My paper [K266], though using different
terminology, may cast light on the emerging prospects.”

The paper [K266] is the work “On certain asymptotic characteristics of
totally bounded metric spaces,” published in 1956. In this work Kolmogorov
introduces the notion of the e-entropy J#(C) of a nonrandom object C, a set in a
metric space (X, p), defined as the binary logarithm of N(C), the minimal
number of sets of diameter not bigger than 2¢ which can cover C.

Along with the e-entropy 5£(C), subsequently called absolute entropy,
Kolmogorov also introduces the relative e-entropy s#(C, X) and determines it as
the binary logarithm N(C, X) of the minimal number of elements in an e-net
from X for the set C.

Values 5#(C) and 5(C, X) are generally constructed in the same way as the
so-called “Kolmogorov diameters,” introduced by him in 1936 [K62]. For exam-
ple, the binary logarithm of the inverse function of the diameters

ény(C,X) = inf sup inf |x — y|,
Aely xeC yeA
where =, is the collection of N-point approximating sets, coincides with the
e-entropy #(C, X). '

As had happened to almost all of Kolmogorov’s notions, the e-entropy
techniques of estimating the “metric massiveness” of functional classes and
spaces laid the foundation for an entirely new area of research in approximation
theory. (See the commentary by V. M. Tikhomirov [IA], pages 262—-269.)

In 1958 a new Kolmogorov paper, “A new metric invariant of transitive
dynamical systems and automorphisms of Lebesgue spaces” [K280], [IA-5]
appeared. (A slightly revised version was published later in [K468].) In this work
the ideas of information theory led Kolmogorov to the introduction of entropy-
characteristics to the theory of dynamical systems (this is “the second cycle”
mentioned above on page 911).
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A dynamical system is understood in [K280], [IA-5] as a monoparametric
group {S’} of transformations of a probability space (X, %, ) which pre-
serve measure. As in the theory of stationary random processes, Kolmogorov
introduces the notion of quasiregular dynamical systems, now known as K-sys-
tems. The significance of this notion for ergodic theory was revealed a few years
later, when Ya. G. Sinai showed that many classical dynamical systems which
have nothing in common with the theory of probability are K-systems.

For quasiregular dynamical systems the notion of entropy was introduced by
Kolmogorov in [K280], [IA-5]. (A slightly modified and sharpened version of the
corresponding definition is given in [K468].) Shortly after that Sinai provided a
definition of entropy applicable to an arbitrary dynamical system. (For more
details see the commentary by Sinai in [IA], pages 275-279.)

In the case of discrete time (¢=1,2,...; S' = S) the commonly accepted
definition of the “Kolmogorov—Sinai entropy” is as follows.

Let A = {A,,..., Ay} be a finite partition of X, i.e,UA; =X, 4;,N A =g,
i # j. This partition defines the entropy

N
H(A) = — X u(A))logp(A,).
i=1
Write
Bi,...i, = ""(Ail NSA, N - nsr—lAi,)
and

H(A) = - . Z BT 1081-%, ..... i
Tiyenes i,
The Kolmogorov-Sinai entropy of the dynamical system (X, Z,p; S) is
defined by
‘ H/(A)
mat

H(S) = sup lim
A roow

The entropy of a dynamical system plays a central role in ergodic theory,
primarily in the solution of the metric classification of the dynamical system,
that is, the problem of describing a complete set of invariants, which imply the
metrical isomorphism of dynamical systems.

It should be recalled that the first example of a metric invariant is the
spectrum of a dynamical system.

In case of ergodic dynamical systems with pure point spectrum the complete
set of metric invariants is given by that spectrum (von Neumann [204] and
Halmos and von Neumann [74]). But if we take dynamical systems with
continuous spectra, in particular their most important subclass, the systems with
countably multiple Lebesgue spectrum (for example, for the Bernoulli automor-
phisms) we shall see that there have been no approaches to their metric
classification before Kolmogorov’s.

The entropy of a dynamical system proved to be a radically new invariant
under metrical isomorphism of dynamical systems, which is independent of their
spectrum, as the entropy may assume any of the admissible values in the class of
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systems with countable Lebesgue spectrum. Thus the new invariant allowed the
decomposition of dynamical systems with countable Lebesgue spectrum into a
continuum of invariant subclasses, with different values of entropy and therefore
metrically nonisomorphic.

All K-systems (from the viewpoint of the theory of random processes these
correspond to processes with a very weak condition of dependence between
values at mutually remote time intervals) have countable Lebesgue spectrum
and positive entropy. In the absence of other metric invariants for distinguishing
K-systems, besides the entropy, it was natural to ask whether it is true that
K-systems with equal values of entropy are metrically isomorphic.

The first examples of a nontrivial isomorphism of a Bernoulli automorphism
were provided by L. D. Meshalkin, a pupil of Kolmogorov. Sinai showed that the
Bernoulli automorphisms with equal entropies are weakly isomorphic, i.e., each
can be realized as a factor of the other. The complete solution of the problem of
isomorphism was obtained by the American mathematician Ornstein [143], who
showed that Bernoulli automorphisms with equal entropy are metrically isomor-
phic. However, it has recently been discovered that in the class of all K-systems
the entropy does not give a full system of metric invariants. (D. Ornstein and
P. Shields showed that the number of nonisomorphic types of K-systems with
equal entropy is uncountable.) For more details see the commentaries on Kol-
mogorov’s work in ergodic theory by Sinai ([IA], pages 275-279) and [100, 101,
124, 145]. It is shown here that nowadays the entropy theory of dynamical
systems, which was initiated by Kolmogorov’s works, has become an important
branch of ergodic theory.

Kolmogorov’s entropy characteristics of “metric massiveness” [J#(C),
H(C, X), ...] enabled him to assign a clear interpretation to the results by
A. G. Vitushkin on the nonrepresentability of a function of n wvariables of
smoothness r as the superposition of a function of m variables of smoothness [,
if n/r>m/L

This research brought Kolmogorov right to the 13th Hilbert problem, that is,
to the existence of a continuous function of three variables which is not
expressible as the superposition of continuous functions of two variables.

In 1955 Kolmogorov started a seminar for students on the theory of approxi-
mate representation of functions of several variables, including also problems in
approximate nomography.

Kolmogorov recalled about this seminar ((MM], page 444):

“Even in my introductory lecture I have formulated the 13th Hilbert problem
as a very remote and hardly realistic target.”

In Hilbert’s formulation his “13th problem” lies in showing that the solution
f = f(x, ¥, 2) of the equation of the seventh degree

fT+xf?+y%2+2f+1=0

(‘;/hjch an arbitrary algebraic equation of the seventh degree can be transformed
into) cannot be represented as a superposition of continuous functions of two
variables. (See [2, 118].)
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Kolmogorov begins his work of 1956, “On the representation of continuous
functions of several variables as superpositions of continuous functions of fewer
variables” [K265], [MM-55], by saying:

“Theorem 4, stated below, has the following unexpected consequence: Any
continuous function of however many variables is representable as a finite
superposition of continuous functions of at most three variables. Here is the
representation of an arbitrary function of four variables:

4
f(x1, 25, %3, 2,) = Zlhr[xu &l(x,, x5, x3), 85(%,, %, x3)].”
o

In 1957 V. 1. Arnol’d showed [11] that every continuous function of three
variables can be represented as a superposition of continuous functions of fwo
variables (thus disproving Hilbert’s conjecture). Finally in the same year, 1957,
Kolmogorov [K273], [MM-56] made the last step by showing that every continu-
ous function f(x,, x,, ..., x,) of n variables is representable as a superposition of

continuous functions of one variable and the operation of addition,

2n+1 n
f(xl’xZ’“"xn) = Z Xq[ Z ¢pq(xp)]’
q=1

p=1

where the “inner” functions ¢?¢ are universal and only the “outer” function x,
depends on the given function f(x,, x,,..., x,).

Arnol’d [MM, page 445] says that Kolmogorov described this result as his
“most technically difficult achievement.”

In 1953 Kolmogorov published his paper “Some recent work in the field of
limit theorems in probability theory” [K226], [PS-41]. He says in the introduc-
tion:

~ “In the mid-forties it was believed that the problems of classical limit
theorems (that is, problems on the limit behavior of the distribution of sums of
many terms, either independent or connected in a Markov chain) are almost
exhausted. Actually, however, in the late 1940s one would see considerable
activity in these classical branches.” It can be attributed to “the insufficient
accuracy of the bounds of the remainder terms in the limit theorems” and to the
fact that a number of traditional problems, which used to be soluble only under
complicated and restrictive conditions, achieved “rather simple and complete
solution.” '

This work of Kolmogorov is remarkable as it analysed and proposed various
measures of closeness between probability distributions and different types of
their convergence. In the same work Kolmogorov suggested a new formulation of
a problem on the approximation of the sums S, = §,, + -:- +§,, of independent
random variables satisfying the condition of asymptotic negligibility. (Under
such an assumption the limit distribution is infinitely divisible, if it exists.)

The essence of this new approach is the following.

Studies of convergence to concrete infinitely divisible laws had not fully
revealed how the distributions of the sums S, of independent random variables
behave. Kolmogorov radically changed the formulation of the problem by sug-
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gesting that, instead of studying the approximation of the distribution of sums
by individual distributions (together with the corresponding rate of convergence
estimates), one should employ the whole family of infinitely divisible distribu-
tions. This paper also raised the possibility of uniform theorems for whole classes
of random variables as well as for fixed sequences (§,,-- ., £,,)-

In 1955 Yu. V. Prokhorov proved in [156] that for an arbitrary distribution F
one may construct a sequence of infinitely divisible distributions D,, such that

p(F*",D,) > 0, asn — o,
where F** = Fx -.. * F is the n-fold convolution of the distribution F and
p(F,G) = sup, |F(x) — G(x)|-
In other words,
(36) p(F*", 2) = inf p(F*",D) - 0, asn — oo,
De9

where 2 is the class of all infinitely divisible distributions.

Kolmogorov’s “Two uniform limit theorems for the sums of independent
random variables” [K261], [PS-43], dated November 12, 1956, is a real break-
through: He manages to show that in (36) the convergence is uniform over the
class & of all distributions F, that is,

(37) ¥(n) = sup inf p(F**,D) - 0, asn — oo,
Fe#De2

and

(38) ¥(n) < Cn~ V5,

where C is a certain constant.

The same work supplied the corresponding theorem for nonidentically dis-
tributed terms as well.

These results of Kolmogorov gave a powerful impetus to the study of the right
order of decrease of the function y(n) when n - co.

In 1960 Prokhorov [158] showed that

Y(n) <en V31 + Inn)>.

In his work “On the approximation of distributions of sums of independent
terms by infinitely divisible distributions” ([K308], [PS-51]), dated 1963, Kol-
mogorov obtained the bound y(n) < cn™1/3,

L. D. Meshalkin ([130, 131], in 1960) obtained a lower bound

Y(n) 2 en 31 +Inn)""2
In 1980-1983 T. V. Arak and A. Yu. Zaitsev obtained the final result,
(39) en~ Y3 < y(n) < cyn™?3,.

where ¢, and c, are certain constants. For this and other results, as well as a
detailed historical and bibliographical description of the problems, see the book
by Arak and Zaitsev [9].

The value of (39) lies in particular in the fact that it leads to the existence for
F*" of infinitely divisible approximations whose order in the uniform metric is
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much better than the n~'/? provided by the classical Berry-Esseen bound (in
the case of the central limit theorem).

In his work [K261], [PS-43] Kolmogorov gives a number of inequalities for the
concentration function Q(/, £) = sup, P(x < §{ < x + /) of the random variable
¢, introduced by P. Lévy. This function is useful in characterizing the “disper-
sion” of random variables, especially in qualitatively describing the growth of the
“dispersion” when independent random variables are summed. Kolmogorov
develops Lévy’s results on the properties of the concentration function and
obtains the bound Q(, S,) for the sum S, = §, + - -+ +£,, via the concentration
function of each independent term. In 1961 Rogozin [160] reinforced
Kolmogorov’s inequality and presented it as

n -1/2
(40 o)< al Trh-eu.e)

Later, Miroshnikov and Rogozin [132, 133] obtained the inequality
-1/2

(41) Q(l, S)<CI{ZE[mm [ ] Q 2(l)} ,

i=1

where £ ; is the symmetrization of the random variable §,, i.e., £,» = §, — £/, where
¢, and £/ are iid random variables [the bound (40) follows from (41) when 21 > [,,
i=1,...,n]

The 1950s gave probability a new branch in the theory of random processes,
that is, the theory of functional limit theorems (in particular those of the
“invariance principle”), whose foundation benefitted much from the works by
A. N. Kolmogorov, Yu. V. Prokhorov and A. V. Skorokhod.

Even in 1931 in Kolmogorov’'s “Eine Verallgemeinerung des Laplace—
Liapounoffschen Satzes” [K31], [PS-12], he considered a problem which in
modern terms could be referred to as a typical boundary problem for the
“invariance principle.” (For more details see page 889.) A series of separate
results appeared in the 1940s and 1950s, by Erdos and Kac in 1947 [48], by Doob
in 1949 [42], by Donsker in 1951-1952 [39, 40], by Fortet and Mourier in 1953
[58] and by Maruyama in 1955 [127], which all refer to the “invariance principle.”

On November 30, 1948, Kolmogorov reported to the Moscow Mathematical
Society his “Measures and distributions of probabilities in functional spaces.”
Here he suggested considering the distribution of a random process as a measure
on the Borel o-algebra of some functional space, and pointed out that it is then
natural to take convergence of the distributions of a random process as weak
convergence of their corresponding measures in function space. In 1953
Kolmogorov’s pupil Yu. V. Prokhorov formulated a significant result [155],
saying that tightness of a family of probability measures implies relative com-
pactness in an arbitrary metric space; then he constructed the general theory of
weak convergence of distributions of random processes (necessity holds for
complete separable metric spaces) [157].
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In his consideration of random processes with values in the space D (functions
continuous from the right and with limits on the left) Skorokhod (in 1955-1956)
introduced a metric which turns D into a Hausdorff topological space. In the
work “On Skorokhod convergence” [K260], [PS-42] Kolmogorov suggests a more
convenient metric (equivalent to Skorokhod’s) where the space D proves to be
separable. In the same work Kolmogorov shows that general topological consid-
erations enable the space D to be given a metric, under which it becomes a
complete separable metric space, and sets the task of finding a simple construc-
tion of such a metric. (This was soon done by Yu. V. Prokhorov.)

The basic ideas of the general theory of weak convergence of probability
measures on metric spaces and its results were presented in the joint report by
A. N. Kolmogorov and Yu. V. Prokhorov [K262], [PS-44] to the Conference on
Probability and Mathematical Statistics in Berlin in 1956.

Kolmogorov’s ideas on algorithms date back to the 1950s. On the one hand he
intended to provide a most general mathematical definition of the notion of
algorithm and, on the other hand, he wished to clarify whether such a notion
would lead to the expansion of the already established notion of a computable
function (see [193, 152, 123, 37]). These ideas were presented in Kolmogorov’s
report “On the concept of algorithm” [K225], [IA-1], delivered at a meeting of
the Moscow Mathematical Society (March 17, 1953), and in the diploma paper
by his pupil V. A. Uspenskii, “The general definition of algorithmic computabil-
ity and algorithmic reducibility” (written in the first half of 1952). The detailed
analysis of the development of these ideas in the theory of algorithms and its
state at that time are presented in an article by Kolmogorov and Uspenskii, “On
the definition of algorithm” ([K283], [IA-6], 1958), and in the commentaries by
V. A. Uspenskii and A. L. Semenov ([IA], pages 279-289). In particular, in these
commentaries one might find a detailed explanation of the connections between
“Algorithms, or Kolmogorov machines” and “Computable functions, or Turing
machines” (for interesting material about the life and work of A. M. Turing see
[78, 209]).

In the late 1940s and early 1950s Kolmogorov initiated a new course, “Analy-
sis-II1,” for students of the Mathematics and Mechanics Faculty of Moscow
State University and read lectures himself. This replaced separate courses in the
theory of functions of a real variable, theory of measure, integral equations and
the calculus of variations.

These lectures by Kolmogorov and S. F. Fomin appeared in 1954 and 1960 in
two volumes (Elements of Function Theory and Functional Analysis [K253,
K297)). A second one-volume edition came out in 1968 [K351], survived several
subsequent editions (6th edition, 1989) and was translated into many languages.

Kolmogorov devoted much to his research, organizational and pedagogical
activities. During 1951-1953 he was Director of the Scientific and Research
Institute of Mathematics and Mechanics of Moscow State University. From
December 25, 1954 until February 1, 1958 he was Dean of the Mathematics and
Mechanics Faculty of Moscow State University; he headed the Department of
Probability of this Faculty (during 1939-1966) and headed the Probability



920 A.N. SHIRYAEV

Division in the Steklov Mathematical Institute, USSR Academy of Sciences
(from 1939 to 1958). In the spring of 1958 he was at the University of Paris as
Visiting Professor.

The sixties (1960-1969). This period is noted for Kolmogorov’s work on the
logical foundations of information and probability theories and their reconstruc-
tion on an algorithmic basis.

It might be said that unlike the 1950s, when Kolmogorov’s efforts were
concentrated on the application of information theory to the various branches of
mathematics, this time he created new mathematical fields:

Algorithmic information theory.
Algorithmic probability theory.

Analyzing the various approaches to information theory, Kolmogorov distin-
guishes three of them ([IA], pages 251-253):

1. The purely combinatorial approach.
2. The purely probabilistic approach.
3. The algorithmic approach.

In the commentaries on his works in information theory and its various
applications ([IA], pages 251-253) Kolmogorov describes the essence of the first
approach:

“In the combinatorial approach the quantity of information, transmitted by
indication of a certain element in a set of N objects, is taken as the binary
logarithm of N (R. Hartley, 1928). For example, there are

n!

C(ml,..., ms) = m ... ms'
10 .

different words in the alphabet of S elements, including the ith letter of our
alphabet m; times (m, + -+ +mg = n). Therefore the required quantity of
information is

H =log,C(m,,..., mg).
If n, my,..., mg tend to infinity, one obtains the asymptotic formula
m;

m.:
i ~ —log,—.
(i) H n; n 0g, n

The reader must have noticed its similarity to that in information theory,
(ii) H =n) p;log; p;.
s l

“If our work is constructed by a well-known pattern by means of independent
trials, then the asymptotic formula (i) is an evident consequence of (ii) and the
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law of large numbers, but the range of applicability of (i) is much wider. (See, for
example, works on the transmission of information through nonstationary chan-
nels.) In general I believe it very useful to get rid of surplus probability
assumptions whenever possible. I have repeatedly pointed out in my lectures the
proper value of the purely combinatorial approach to problems of information
theory.

“It is the purely combinatorial approach to entropy that supported my works
and those of my colleagues on e-entropy and the e-capacity of compact classes of
functions. Here the e-entropy H(K) is the quantity of information, required for
the selection of an individual function from a class of functions, and the
e-capacity C(K ) is the quantity of information which might be encoded by the
elements from K if the elements from K, located at a distance not smaller than
¢ from one another, are reliably distinguishable.”

The probability approach to the basic notions of information theory has been
described above (the 1950s). As to the algorithmic approach, Kolmogorov’s idea
is to define the entropy (alternatively, complexity) and the quantity of informa-
tion on the basis of algorithms and computable functions.

Kolmogorov described the essence and background of the algorithmic ap-
proach in his report to the Probability Section of the Moscow Mathematical
Society on April 24, 1963:

“One often has to deal with very long sequences of symbols. Some of them, for
example, the sequences of symbols in the 5-digit logarithm table, permit a simple
logical definition and therefore might be obtained by the computations (though
clumsy at times) of a simple pattern.

“QOthers seem not to admit any sufficiently simple ‘legitimate’ way to con-
struct them. It is supposed that such is the case for a rather long segment in a
table of random numbers.

“There arises the question of constructing a rigorous mathematical theory to
account for these differences of behavior.

“Let us follow the tradition of information theory and reduce ourselves to
binary sequences, that is, those of the type

x=(x,%9,...,%,),

where x; = 0 or 1. Let us denote by D" a set of these sequences of length n and
let E=D'U D?U --- be the set of all binary sequences.”

Kolmogorov emphasized that different methods are possible in the introduc-
tion of measures K(x) of “complexity” of sequences x, corresponding to this
idea, which is well-formulated, though some arbitrariness can hardly be avoided
here. “The basic discovery,” Kolmogorov wrote in [IA, page 253], “ which I have
accomplished independently from and simultaneously with R. Solomonoff lies in
the fact that the theory of algorithms enables us to limit this arbitrariness by
the determination of a ‘complexity’ which is almost invariant (the replacement
of one method by another leads only to the supplement of the bounded term).”

Let us identify each sequence x = (x,, x,,..., x,) with a natural number
whose binary expansion is uniquely determined by the ordered set {1, x,, ..., x,,).
This identification enables us to speak about the partially recursive (computable)
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functions f, determined on E, with values in E. By definition Kolmogorov
supposes that for each function f,

_ [min{n: x € f(D")}, x € f(E),
Ky (x) = {+oo, x & f(E),

and calls it a “complexity of the object x” at the “mode f of the assignment.”

Then Kolmogorov introduces the class %, of such functions f,, called opti-
mal, which have the property that for any other function f there exists a
constant C, depending on f, and f, such that for all x € E

K, (%) < K (x) + C.

A fundamental result, discovered by Kolmogorov and Solomonoff [185] inde-
pendently, states that this class %, of computable functions f, is not empty.
This basic result suggests calling a function

K(x) = K;(x)

(where f, € #;) a “complexity” (“measure of complexity”) of the sequence x. For
any two functions f, and f, from %, we have

|K; (x) = K (x)| < C(fy £)

at any x € E. In this sense all the optimal functions from the class %, are
equivalent and thus ([K461], [IA-13], page 243): “from the asymptotic point of
view the complexity K(x) of the element x does not depend on the random
peculiarities of the chosen optimal method.”

Along with the “complexity” K(x), also referred to as the “simple
Kolmogorov entropy” of the individual object x, he introduces the conditional
entropy K(y|x) of the object y at the known x and the information #(y|x)
about y, contained in x. [Note that Kolmogorov’s entropies K(x), K(y|x),...
are closely related to the notion of the “complexity of recursive functions,”
introduced by Schnorr [166-168] as the logarithm of the number (of the
function) with respect to an “optimal enumeration.”]

All these concepts introduced and researched by Kolmogorov in his papers,
“Three approaches to the definition of the quantity of information” [K320],
[IA-10], “On the logical foundations of information theory and probability
theory” [K354], [IA-12] and “Combinatorial foundations of information theory
and the calculus of probability” [K461], [IA-13], and also in the works by his
pupils and other researchers (for more details see the commentary by A. H. Sheny
in [IA], pages 257-261) gave birth to the development of a new subject,
algorithmic information theory. See also the book by Chaitin [28].

Kolmogorov’s ideas related to the introduction of the “complexity” led him to

consider afresh which class of concrete sequences x = (x,,..., x,) consisting of
0’s and 1’s, for instance, might-be naturally viewed as “random,” and which
might not.

If, for example, one fairly tosses an unbiased coin 2n times and describes the
results by 1 and 0, then for sufficiently large 2r, outcomes such as (0,0, 0,0, .. .,0)
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or (0,1,0,1,...,0,1) can hardly be considered random, though from the probabil-
ity point of view every such sequence (like any other) has one and the same
probability 272", Thus classical probability is unable to answer the question of
how to distinguish “random” and “nonrandom” sequences and what is the real
meaning of “randomness” of an individual sequence.

The very idea of distinguishing a subclass of the class of infinite (for instance,
binary) sequences x = (x,, X,, . .. ), whose elements could be called random, dates
back to R. von Mises, who employed here the German word “Kollectiv.” Under
his scheme it is first of all necessary, in order that the sequence x = (x;, x5,...)
be “random,” that there exist a limit lim (S, /n), where S, =x, + --- +x,, is
the number of ones in (x,, ..., x,,). The example of the sequence (0,1,0,1,0,1,...),
for which this limit exists, shows that this condition is necessary, but can by no
means be viewed as sufficient, for “randomness.”

This is why von Mises adds a further requirement, saying that the average
frequency of 1’s should be maintained, if the sequence is replaced by one of its
infinite subsequences, obtained via any acceptable rule of selection. But he did
not provide an exact definition. In 1940 Church [31] gave a possible definition of
an “acceptable rule of selection,” thus formally defining the random sequence
x = (x,, X, ...) and making the concept of von Mises precise.

The importance of Kolmogorov’s work “On tables of random numbers”
[K311], [IA-9], representing, as he said in the introduction to [IA-9], a certain
stage in his “drive for the comprehension of the frequency interpretation of
probability by von Mises,” lies primarily in the introduction of a more general
pattern of selection, which enlarges the class of acceptable selection rules and
states that “the order of terms in the subsequence is not bound to coincide with
their order in the initial sequence.” (Loveland reached this result independently
in 1966 [119, 120].) The class of sequences so defined is called the class of random
sequences in the sense of von Mises—Kolmogorov-Loveland, and all these se-
quences are random in the sense of von Mises—Church. However, the converse is
not true (as Loveland showed).

In [K311] (see also “The author’s remarks” in the Russian translation of the
work [IA], page 204), Kolmogorov discusses his broader (compared to von Mises)
definition of the algorithm of random selection and emphasizes that “the main
difference as compared to von Mises is the strictly finite nature of the whole
concept, and in the introduction of a quantitative bound on the frequency
stability.” By this Kolmogorov meant that the measure of the randomness can
be defined for sufficiently long finite sequences x = (x,, X, ..., x,) as well as for
infinite ones x = (x,, x5,...).

The approach to the problem, developed by Kolmogorov in [K311] and based
on the introduction of a finite system of selection rules, can naturally be called
the “frequency” one.

Later A. N. Kolmogorov, Martin-Léf [125] and Levin [107] developed an
approach, based on the notion of complexity, where those sequences x =
(xy,-.., x,) are called random whose complexity is maximum. [As the complexity
K(x,,...,x,) < n+ C, it is natural to call a sequence x = (x,,..., x,) random,
when K(x,,...,x,) > n — C.] For more details see [IA], page 272.
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Afterwards Kolmogorov repeatedly returned to the problems of “randomness
and complexity.” He delivered the report, “ Combinatorial foundations of infor-
mation theory and the calculus of probability” at the International Mathemati-
cal Congress, Nice, 1970, unfortunately published only in 1983 [K461], [1A-13].
Kolmogorov reported his “On logical foundations of probability theory” to the
Fourth Soviet-Japanese Symposium on Probability and Mathematical Statis-
tics, Thilisi, 1982 [K462], [PS-53], where he took the view that “randomness
means absence of regularities,” and explained how the complexity of a finite
object enables this idea to be made precise.

A Forum report, “Algorithms and randomness,” by Kolmogorov and V. A.
Uspenskii, was presented to the First World Congress of the Bernoulli Society,
1986; the full text of it appeared in [K475]. It contains the most exhaustive
picture of the concepts and results of Kolmogorov and his pupils and followers
on the algorithmic approach to the definition of “randomness.” See Zvonkin and
Levin [215] and Vovk [207], and also an exhaustive survey by Li and Vitanyi
[112].

Among Kolmogorov’s studies of the 1960s a special role belongs to his works
in linguistics and philology, devoted to the statistics of speech and to poetry
studies. His concepts in these branches are, on the one hand, closely connected to
information theory, implementing both the probabilistic and algorithmic ap-
proaches, and, on the other hand, they reflect his long-standing interest in the
analysis of the regularities inherent in the form of literary works and their style.
(Our description of these studies is based on materials prepared by A. V.
Prokhorov at the author’s request.)

Kolmogorov was reportedly interested in poetry studies even in the 1940s.
The basic idea that guided Kolmogorov’s studies is that the entropy of speech
(measure of the quantity of information conveyed) can be decomposed into two
components: the nonspeech information (essential, semantic) and the proper
speech information (linguistic). The first one describes diversity, enabling the
communication of semantically varied information; the second one, called “resid-
ual entropy,” describes the diversity of means of expressing the same (or
equivalent) semantic information—in other words, it characterizes the flexibility
of expression. The presence of the “residual” entropy ensures the possibility of
assigning special artistic (e.g., auditory) expressiveness to the communication of
the given semantic information. In view of this general idea, concrete problems
on the computation of the full and residual entropies were set and solved.
Together with Kolmogorov other contributions were also made by his pupils
A. V. Prokhorov, N. G. Rychkova-Khimchenko, N. D. Svetlova and A. P.
Savchuk.

In 1960-1961 Kolmogorov developed a new method for the consistent estima-
tion of the entropy of speech. Originating as the result of a considerable
refinement of the method of Shannon [171] on the determination of the entropy
by “guessing-the-sequel” tests, Kolmogorov’s method avoids the uncertainty of
the previous one, namely it leads (under the correct strategy of guessing) to the
consistent estimation of entropy instead of the upper and lower bounds of
Shannon. Guessing-the-sequel procedures provided only an upper bound for the
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entropy. However the bound proved more precise than Shannon’s. (Deviating
from the optimal strategy may result in overstating all the bounds and unrelia-
bility of the lower bounds [165, 149].)

In 1962 Kolmogorov suggested a purely combinatorial approach to the en-
tropy of speech: The combinatorial entropy of speech was defined as the limit

N,

H,= lim —,
n—o0 N

where N, is the number of texts of length n composed from the words of a given

vocabulary and obeying given rules of grammar. As had been conjectured, the

entropy bounds so obtained proved higher on average than the upper bounds
obtained by guessing-the-sequel methods when applied to concrete prose texts

([K320], [IA-10]).

From the point of defining the “flexibility” of speech and estimating the
“residual” entropy Kolmogorov focused his efforts on poetry, as here one dealt
with regularities that were independent of the meaning.

The possibility of assigning the proper auditory expressiveness to poetic
speech is based on the multiplicity of ways of communicating the same (or
equivalent) contents. Modern poetry studies contain many works which apply
statistical methods to research on metrics and rhythms of poetry. On
Kolmogorov’s initiative substantial research was carried out to revise and make
precise the results by such famous poetry scholars as A. Belyi, B. Tomashevskii,
G. Shengeli, K. Taranovsky, R. Jakobson, etc. The major results obtained by
Kolmogorov and his pupils and followers can be divided into the following
groups.

1. Revelations of metric laws. General and partial definition of meter, idea of
the image of meter and acoustic meter, strict formal logical definition of
classic meters [K313, K352, K353, K465]; description and classification of the
nonclassic Russian meters [K303, K312, K313, K317, K318, K325].

2. The classification and statistics of the meter’s rhythmic varieties. These
works formulated and verified the principal argument saying that the acous-
tic structure of speech obeys simple statistical regularities, which can be
computed by probability theory (these regularities are realized under pressure
of the demand to convey semantic information, if such pressure is not
balanced by a systematically introduced artistic trend); marked the general
method of construction of the theoretical patterns of various meters; and
formulated the hypothesis of “randomness imitation” [K314, 153, 154, K466].

3. The analysis of the “residual” entropy and its bound. A bound was obtained
for the “residual” entropy and the “consumption of the entropy” was calcu-
lated for the separate means of poetic auditory expressiveness.

The investigations headed by Kolmogorov initiated a large flow of studies on
mathematical methods for research on the language of artistic works. In the
1960s there were two seminars at Moscow State University, involving such
prominent figures in linguistics and philology as A. Zaliznyak, V. Ivanov, M.
Gasparov, and V. Rozentsveig. Many works in poetry studies were directly
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influenced by Kolmogorov’s ideas, for example, those of V. Ivanov, M. Gasparov,
M. Krasnoperova and others. Academician V. Zhirmunskii, Professor S. Bondi
and Professors K. Taranovsky and R. Jakobson of Harvard University displayed
continuous attention to and interest in this work.

In the 1960s Kolmogorov’s scientific and organizational activity was marked
by two major events: the establishment of the Laboratory of Statistical Meth-
ods, Department of Probability, Mathematics and Mechanics Faculty, Moscow
State University and the establishment of the Physics and Mathematics School
(No. 18), sponsored by Moscow State University.

The Laboratory of Statistical Methods was set up to unify efforts and
intensify research in the application of probability and statistical methods.

Kolmogorov outlined its major goals as: the theory of optimal control and
statistical decisions (I. V. Girsanov); the theory of reliability (B. V. Gnedenko
and Yu. K. Belyaev); design of experiments (V. V. Nalimov and V. V. Fedorov);
statistics and linguistics (A. V. Prokhorov); statistics in medicine (L. D.
Meshalkin); statistics in geology (A. M. Shurygin); and nonlinear spectral analy-
sis of random processes (A. N. Kolmogorov, A. N. Shiryaev and 1. G. Zhurbenko).

Some scholars of the academic institutes, such as L. K. Bolshev and A. N.
Shiryaev, worked in the Laboratory as consultants.

The widely known All-Union Seminar on Turbulence in Liquids and Gases
was organized within the framework of the Laboratory and with the direct
participation of A. N. Kolmogorov, M. D. Millionshchikov, A. M. Obukhov, S. A.
Khristianovich, L. I. Sedov, A. S. Monin, A. M. Yaglom, etc. This seminar
directly prompted Kolmogorov to commit himself to join two voyages of the
scientific research ship “Dmitrii Mendeleev” in 1970 and in 1971-1972, and thus
to study the turbulence of the ocean.

As scientific supervisor of these voyages Kolmogorov (together with A. S.
Monin, V. Pak, I. G. Zhurbenko, M. V. Kozlov, etc.) dealt with the research and
* application of highly robust methods (as compared to those which lead to
distortion from the neighboring frequencies) of spectral analysis. The special
significance of these methods is their potential application to the spectral
analysis of nonstationary processes. Admitting that the computation of the
statistical parameters of random space-time turbulent fields is rather lengthy
and complicated, Kolmogorov viewed his role in these voyages as “the prompt
clarification of the techniques directly on board; determination of the necessary
duration of the realization, and the interval of the discretization, etc.,” so that
the analysis of the result will facilitate “the further planning of measurements,
evaluating their representativeness; proper judgment of the applicability and
quality of the tested samples of the measuring equipment.”

Under the influence of the work of J. Neyman and E. Scott, Kolmogorov
launched research in the Statistical Laboratory on the statistical analysis of the
active effects on atmospheric phenomena (in particular, artificial stimulation of
rainfall). .

The studies of Neyman’s methods showed Kolmogorov that the parametric
methods are too “sophisticated” (nonrobust) for the relatively “rough” atmo-
spheric data. In this connection he created his already tested nonparametric
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methods (close to Fisher’s concepts). Together with Neyman he argues strongly
for the randomization of the experiment and for the necessity of obtaining
“pure” data. Kolmogorov vigorously supports Neyman, who said that “statistics
is helpless and powerless unless the initial data is not spoiled.”

Since the foundation of the Laboratory of Statistical Methods (1960)
Kolmogorov was its Director, giving it much of his time, energy and strength.
Kolmogorov granted much of his personal currency reserves (from the Interna-
tional Balzan award of 1963) for purchasing foreign books and journals for the
Library in Probability and Statistics of the Laboratory.

From February 1, 1976 Kolmogorov headed the new Division of Mathematical
Statistics, Mathematics and Mechanics Faculty, Moscow State University, which
was established on his initiative.

In 1963 the USSR Council of Ministers opened four schools in mathematics
and physics in the universities of Moscow, Leningrad, Kiev and Novosibirsk.

The School No. 18 of the new type sponsored by Moscow University is
inseparably linked to Kolmogorov, and therefore it is often referred to as
“Kolmogorov’s school.”

Answering a question on how he viewed the first steps in familiarizing the
future scholar with science, Kolmogorov said: “Following the biographies of
celebrated scientists, we see that they started with encouraging school teachers
who supported the capable pupils; then came the first scientific supervisor, who
outlined the first topic of independent research, which was very often specially
adjusted to the capabilities of this pupil. We also see one or two close friends,
encouraging one another. I suppose that these fragile human relationships which
shape scientists will maintain their value in the future as well.

“Now, when our country is in need of many capable and well-educated
researchers in the most diverse branches of science and technology it becomes
imperative to establish a wide system of institutional measures with extracurric-
ular lessons with the senior school children: specialized schools, various types of
nonschool activities, wide familiarization of the young with the specific nature of
work in the universities and technical colleges of the new technology (such as the
Moscow Physical-Technical College), proper organization of entrance examina-
tions, and wide involvement in research of students in colleges, where the
teaching of future researchers is subsidiary only. Certainly, all these organiza-
tional measures will not provide an exhaustive result, if they are not followed by
the individual call for every boy—a potential scholar—that I was talking about
in the beginning.”

Following these principles Kolmogorov committed himself entirely to this
School No. 18 right from its first day; he viewed his work with the school-
children, and the other broader work in the improvement of mathematical
teaching in secondary school, as necessary and valuable for his country, as his
civic duty, as his personal responsibility for mathematical education.

Kolmogorov’s personal efforts meant much for the school both in its founding
period and in its first days and years. He did not restrict himself (and it went on
for 15 years!) to lectures and exercises, but also wrote summaries for the pupils,
told them about music and literature and went camping with them.
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As already noted it was in 1922-1925 that Kolmogorov took up school
teaching of mathematics and physics in Potylikhin Experimental School. (His
employment list has as entry No. 1: “Total employment period of 3 years prior
to joining Moscow University.”) In this school Kolmogorov was Secretary of the
School Council and a tutor, a matter of pride for him. Forty years later, as the
Chairman of the School Trustee Council, he immediately looked into the needs
and problems of the pupils, many of whom came from small cities and villages.
(There is no admission to this school for the residents of university cities!) He
also supervised the work in general.

For more details about this school see [K413, K428]. A documentary film,
“Ask your questions, boys,” released in 1970, was devoted to this school.

In 1964 Kolmogorov headed a Mathematics Section of the Commission of the
USSR Academy of Sciences and the Academy of Pedagogical Sciences on the
contents of the secondary education. In 1968 this section issued a new school
curriculum in mathematics for grades 6-8 and 9-10, which contributed to the
further improvement of mathematical education and provided a background for
new textbooks. Kolmogorov participated directly in preparation of the textbooks
Algebra and the Beginnings of Analysis, 9-10 [K458] and Geometry, 6-8 [446].

Let us complete this portion of the school-related summary of Kolmogorov’s
activities by one of his annual reports.

“The report of the member of the USSR Academy of Pedagogical Sciences for
1969:

1. Three first contributions to Mathematics at School on the scientific founda-
tion of school mathematics (two of them published in 1969, the third to
appear in 1970).

2. Editing an experimental textbook on geometry (by Cherkasov, Nagibin and
Semenovich) for the sixth grade.

* 3. In the first six months I headed the Mathematics Section in the Commission
on the contents of mathematics education. Number of critical reviews made
on the textbooks.

4. Supervised teaching of mathematics in the school at Moscow State Univer-
sity. Lectures for students of the ninth grade (the first six months) and of the
tenth grade (second six months).

5. Collection of information for Quantum, a magazine for the senior school
children (publication scheduled for 1970).”

In the late 1950s and early 1960s Kolmogorov suggested to his pupils V. P.
Leonov and A. N. Shiryaev a series of problems related to the issues of nonlinear
analysis of random processes (in particular, in radio technology) which brought
about the techniques of calculating cumulants under nonlinear transformations,
and the development of the theory of spectral analysis of the high-order
moments of stationary random processes [104; 173; 176, pages 287-291].

Kolmogorov participated in and supervised research on the conditions for the
validity of various properties of ergodic and mixing type, and conditions for the
validity of certain basic limit theorems for random processes (Volkonskii and
Rozanov [199], Leonov [104], Sinai [179] and Shiryaev [174]).
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In his work [K304], [PS-50], Kolmogorov (in collaboration with M. Arato and
Ya. G. Sinai) constructed a mathematical theory for estimation of the parame-
ters describing the displacement of the Earth’s rotation axis, based on the idea
that the fine structure of the movement is governed by a complex stationary
Gauss—Markov process.

In 1964 the Laboratory of Statistical Methods under Kolmogorov’s supervi-
sion launched research on the nature of the eleven-year periodicity of sunspot
activity, which was to confirm a hypothesis by E. E. Slutskii (“a precise
periodicity with constant phase over hundreds of periods, obscured by noise,
instead of an oscillating process with varying phase”).

A report by A. N. Kolmogorov and A. N. Shiryaev, “The application of
Markov processes to the detection of disruption in industrial processes,” was
presented to the Sixth All-Union Conference on Probability and Mathematical
Statistics, Vilnius, 1960. It initiated broad development and research in statisti-
cal sequential analysis [K477, 175], optimal nonlinear filtering [114] and martin-
gale theory [115, 88].

On April 5, 1961 Kolmogorov spoke at Moscow State University on “Au-
tomata and life,” a lecture which impressed by its strength, depth of ideas and
remarkable vision.

In 1967 there came a work by A. N. Kolmogorov and Ya. M. Barzdin’, “On
the realization of networks in three-dimensional space” [K335], [IA-11], which
was inspired by an attempt to explain the following construction of the human
brain: Nervous fibres (axons) absorb the bulk of space and the nerve cells along
with their appendages (neurons) are located on the surface only. The presented
construction confirmed the optimal character of such structure for nerve net-
works.

On April 25, 1963, the day of Kolmogorov’s sixtieth birthday, the Presidium of
the Supreme Soviet of the USSR announced a Decree on “Awarding Academi-
cian A. N. Kolmogorov with the title of Hero of Socialist Labor”:

“For his outstanding merits in mathematics and on the occasion of his sixtieth
birthday Academician A. N. Kolmogorov is awarded the title of Hero of Socialist
Labor with the presentation of the Order of Lenin and the Gold Medal ‘Hammer
and Sickle’.”

The true appraisal of Kolmogorov’s outstanding merit was the presentation to
him in 1963 of the International Prize in Mathematics by the Fondation
Internationale Balzan (in other fields the award was given to Pope John XXIII,
historian S. Morison, biologist K. Frisch and composer P. Hindemith).

From December 1, 1964 to December 13, 1966 Kolmogorov was President of
the Moscow Mathematical Society.

In 1965 A. N. Kolmogorov and V. I. Arnol’d were awarded the Lenin Prize for
their works in the theory of perturbations of Hamiltonian systems.

The seventies and eighties (1970-October 20, 1987). The improvement of
school mathematics remained a centerpiece of Kolmogorov’s activities in both
the 1970s and 1980s. He worked at school, created (together with Academician
I. K. Kikoin) a popular scientific magazine in physics and mathematics for school
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children, Quantum, committed himself to work on the school curriculum and
worked on commissions on school education.

The uneasy quest for optimal systems in teaching of mathematics at school,
which is still under way, shows how complicated the matter is that Kolmogorov
was so concerned with. He was happy with the successes and grieved much about
misunderstandings of his concepts and positions in this area, but never sought
sympathy and never complained.

One can boldly admit that school mathematics was the subject of his perma-
nent interest and concern since 1927, when he had started teaching in Potylikhin
Experimental School, and throughout his whole life. On November 22 and 28,
1937, two meetings of the Moscow Mathematical Society discussed the draft of a
new textbook on elementary algebra (Algebra, Part I [K104]), submitted by
P. S. Aleksandrov and A. N. Kolmogorov. The authors stated here (the book
came out in 1939) certain principles, which constituted background for the
textbook:

“We always tried to combine simplicity of presentation with sufficient depth
and logical flawlessness. We started from the presumption that our book will be
a student’s reliable guide in both his first exposure to the subject and in his
further studies of mathematics. The authors always sought the complete and
exhaustive comprehension by the student of the meaning of all the operations. In
particular much had been done to avoid the separation of operations with
symbols from the arithmetic operations with numbers.”

In 1941 Mathematics at School published articles by Kolmogorov and
Aleksandrov, “Irrational numbers” [K124] and “Properties of inequalities and
the concept of approximation” [K123]. In 1961 these articles were reprinted in
the book Issues of Teaching Mathematics in the Secondary School [K301].

Let us again draw attention to some of Kolmogorov’s reports so as to give the
_ idea of the concreteness of his work in the 1970s and of his personal contribution
to mathematics education.

“A report on the work by A. N. Kolmogorov, member of the USSR Academy
of Pedagogical Sciences, 1970:

1. I head the methodological association of the mathematicians in School No. 18,
Moscow State University, give lectures and do some general work as Chair-
man of the Trustee Council. On the basis of the school experiences a new
textbook, The Mathematics Course for the Physics and Mathematics Schools,
was prepared together with V. A. Gusev, A. A. Shershevskii and A. V.
Sosinskii. (See [K381], published in 1971.) I have contributed certain chapters
to this book. )

During 24 summer days I was completely busy in the summer school, which
is responsible for the final selection of students to School No. 18.

2. Work on Quantum, as head of its mathematics section. Contributed a number
of notes and the big article on the modern understanding of the concept of
function. (See Quantum, 1970, Nos. 1-2 [K365, K367].)

3. A program has been worked out for a new course on “Scientific foundation of
the school course of mathematics” for the students of pedagogical colleges;
the program has been approved by the USSR Ministry of Education. One
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more article contributed to Mathematics at School (next in turn in a series of
articles on this subject).

. “Teaching materials for fifth grade geometry” [K364] has been written in

collaboration with R. S. Cherkasov and A. F. Semenovich. A textbook of
geometry for grades 6-8 worked out (in collaboration with the same coauthors
and F. F. Nagibin). The trial edition of the textbook for the sixth grade has
been released already, the one for the seventh grade has been handed for
printing. Participated in the Conference on Experimental Teaching in
Vladimir.

. Presided in the Mathematics Section of the Commission for the Contents of

Secondary Education, USSR Academy of Pedagogical Sciences, where de-
tailed critical reviews have been made on the textbooks (edited by A. I.
Markushevich) for fourth, fifth and sixth grades.

. The Commission being abolished, I started my work with the Mathematics

Commission of the Scientific Methodological Council, USSR Ministry of
Education. A report contributed, “A system of basic concepts and notation for
a school mathematics course”; its broad presentation will come in Mathemat-
ics at School ([K374]).

Supervision of the postgraduate schooling of A. Abramov.

January 5, 1971.”
“Report of A. N. Kolmogorov, acting member of the Academy of Pedagogical

Sciences for the year 1974.

1.

Work on textbooks for mass schools.

1.1. The revision of the textbook on algebra and the elements of analysis for
the ninth grade (in collaboration with O. S. Ivashev-Musatov and S. I.
Shvartsburd), originated by myself, B. E. Veits and I. G. Demidov
(general editing by me). The textbook will start in the mass school during
the fall of 1975.

1.2. Revision of the geometry textbook for grades 6-8 (in collaboration with
R. S. Cherkasov and A. F. Semenovich). The work to be completed in
1975.

. Work in School No. 18.

Lectures for students in the ninth grade. Leadership of the summer school
at Pushchino and of the admission to the school itself.

Collection of material for a textbook for the physics and mathematics
schools and for after-class studies in the ordinary schools (based on the
summer school experiences).

. Leadership of the mathematics section of the Scientiﬁc Council, USSR Min-

istry of Education.

. Editorial work on Quantum. Collaboration with the edltonal board of Mathe-

mqucs at School.

December 12, 1974.”
Though Kolmogorov’s school-related legacy has hardly been studied or docu-

mented in full it presents an inexhaustible source of clear-cut and uncommonly
stated ideas and concepts, which amazingly accurately and exactly grasp the
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essence of the problem. One vital task is to preserve this legacy, organize it and
bring it to public attention.

In this respect the reader may be interested in Kolmogorov’s small book,
Mathematics: Science and Profession, Quantum library, No. 64, 1988 [K476],
composed by G. A. Gal’perin.

Kolmogorov’s scientific and organizational work of the 1970s and 1980s is
associated with Moscow State University and the Steklov Mathematical Insti-
tute.

From February 1, 1976 to January 1, 1980 Kolmogorov headed the Division of
Mathematical Statistics of the Mathematics and Mechanics Faculty of Moscow
State University and from January 1, 1980 its Division of Mathematical Logic.
On October 3, 1983 Kolmogorov joined the Steklov Mathematical Institute on a
permanent basis. He headed the Department of Mathematical Statistics and
Information Theory, while still maintaining his appointment in the Division of
Mathematical Logic at Moscow State University.

From 1973 to October 15, 1985 Kolmogorov was President of the Moscow
Mathematical Society and from 1982 to 1987 he was Editor-in-Chief of Uspekhi
Matematicheskikh Nauk.

From August 22 to August 29, 1982, Thilisi hosted the Fourth Soviet—Japanese
Symposium on Probability and Mathematical Statistics. Although not well,
Kolmogorov participated and delivered a lecture, “On the logical, semantic and
algorithmic foundations of probability theory.” (It appeared in [K462], [PS-53]
under the title, “On logical foundations of probability theory.”) This symposium
was attended by 45 Japanese and 270 Soviet scientists, the Japanese delegation
being headed by K. Itd. The participation by Kolmogorov and It6 was a very
meaningful event.

In the early 1980s the Presidium of the USSR Academy of Sciences decided to
publish Kolmogorov’s selected works. Kolmogorov made up a list of his papers to
be included, sorted them by subject, and wrote and dictated his commentaries,
and he thoroughly studied the commentaries on groups of his papers, mainly
written by his pupils. (The first volume appeared in 1985, [K467] = [MM], the
second in 1986, [K471] = [PS] and the third in 1987, [K473] = [IA].)

A. N. Kolmogorov himself, the main editors (S. M. Nikol’skii and Yu. V.
Prokhorov), the editors (V. M. Tikhomirov and A. N. Shiryaev) and the acting
editor (V. I. Bityutskov) were greatly assisted by Kolmogorov’s pupils and
followers, who were very responsive to the call for Russian translations, commen-
taries, editing and checking the proofs.

On April 25, 1985, A. N. Kolmogorov’s eighty-second birthday, he dictated the
following “Epilogue”, reproduced here in full [IA, page 303]:

“The suggested three volumes of Selected Works actually comprise all my
works in mathematics, classical mechanics, the theory of turbulence, probability
theory, mathematical logic and information theory. They do not include the
papers on teaching and history of mathematics, on poetry and my general
articles.

“In certain areas the results achieved seem sufficiently unified and complete
and so in my 82 years I happily leave these things to my successors.
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“In other areas things do not stand like that and the published materials
seem to present only the fragments of future work, which I can only hope will be
achieved by others. Progress to date is mainly covered in the commentaries by
the group of my pupils, to whom I am most grateful.”

A. N. Kolmogorov created a number of scientific schools, many of them
headed by his pupils. The scientific atmosphere of high demands and high moral
standards, his ability to encourage creativity and to spot a fitting problem or
task for everyone, his extraordinarily generous attitude to ideas—this atmo-
sphere is really unforgettable for all his pupils.

Among his pupils are:

Academicians: 1. M. Gel'fand, A. I. Maltsev, M. D. Millionshchikov, V. S.
Mikhalevich, S. M. Nikol’skii, A. M. Obukhov and Yu. V. Prokhorov.
Academician of the Ukranian Academy of Sciences: B. V. Gnedenko.
Academician of the Uzbek Academy of Sciences: S. H. Sirazhdinov.
Corresponding Members of the USSR Academy of Sciences: V. 1. Arnol’d, L. N.
Bolshev, A. A. Borovkov, A. S. Monin and B. A. Sevast’yanov.

Doctors and Candidates of Sciences, researchers: A. M. Abramov, V. M.
Alekseev, M. Arato, D. A. Asarin, G. M. Bavli, G. 1. Barenblatt, L. A. Bassalygo,
Yu. K. Belyaev, E. P. Bezhich, V. I. Bityutskov, A. V. Bulinskii, I. Ya. Verchenko,
V. G. Vinokurov, V. G. Vovk, G. A. Gal’perin, A. N. Dvoichenkov, N. A.
Dmitriev, R. L. Dobrushin, E. B. Dynkin, V. D. Erokhin, I. G. Zhurbenko, V. N.
Zasukhin, V. M. Zolotarev, O. S. Ivashev-Musatov, M. V. Kozlov, V. V. Kozlov,
A. T. Kondurar’, L. A. Levin, V. P. Leonov, R. F. Matveev, P. Martin-Lof, Yu. T.
Medvedev, L. D. Meshalkin, R. A. Minlos, Yu. P. Ofman, Yu. S. Ochan, A. A.
Petrov, B. Penkov, M. S. Pinsker, A. V. Prokhorov, Yu. A. Rozanov, M.
Rosenblatt-Roth, Ya. G. Sinai, V. M. Tikhomirov, L. N. Tulaikov, V. A.
Uspenskii, S. V. Fomin, M. K. Fage, A. N. Shilov, A. N. Shiryaev, F. I. Shmidov,
~ B. M. Yunovich and A. M. Yaglom.

" In April 1986, celebrating his birthday, A. N. Kolmogorov invited his pupils to
his country cottage in the famous Komarovka. Talking about the Teacher,
everyone remarked on his invariable youthfulness of spirit. The severe illness
that Kolmogorov suffered from in his last years was accompanied by speech
failures and he could not convey what he wanted to say. The next day he
dictated the following text to one of his pupils:

Reply to Pupils

“There was talk about my allegedly inexhaustible youth. I am grateful for
such an appraisal, but I’d better introduce certain limits to it. Age is anyway
objective and one cannot escape it. Happy age... How can it be realized? Either
by the refusal to produce any new results, or by the tolerance of an actually
shallow existence. Leaving that aside, the old man can view this period as bright
and happy, but it will be inevitably combined with sad feelings about whether I
can do this or that. It refers to something more than cold baths and sport
successes.
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“The physicians objectively view my state as comparatively favorable. But
anyhow the quantitative output has become considerably less, and that brings
out those sad restrictions.

“In my case I see my scientific career as finished in the sense of obtaining new
results. Sorry about that, but I have to bow to the inevitable.

“In recent years my activity has been developing in other directions, I mean
my contribution to the school reform so vital for the nation. Here, firstly I think
that if age does not interfere I would introduce many useful and even indispens-
able things, working on school textbooks and manuals for young people fond of
science. Both directions are highly absorbing and I'd like to do things most
vigorously and with youthful ardor. But the time goes by, months are gone, and
this or that work has been scheduled, but is postponed.

“That is why the choice of that branch, where one is the most indispensable,
acquires now special priority. If I concentrate on textbooks for the most ad-
vanced, then I'll not manage those for ordinary schools. And now you caught me
at such a crossroad. If I agree to work actively and sweepingly in one direction,
then I’ll fail with same in the other. Such feelings intensify in old age. That is
why 1 greatly appreciate those young assistants, many of whom were invited
today.”

The First World Congress of the Bernoulli Society (September 8-14, 1986) did
much for probability and mathematical statistics. For health reasons,
Kolmogorov unfortunately could not attend.

The inauguration was immediately followed by the forum report by A. N.
Kolmogorov and V. A. Uspenskii, “Algorithms and randomness” (delivered by
Uspenskii) [K475], which considered the general issues of the applicability of
probability to real phenomena of a random nature and showed that the theory of
algorithms and recursive functions could give a precise mathematical meaning to
the concepts of “complexity” and “randomness,” and also outlined the programs

" of further research in this area.

The report by Uspenskii was preceded by Kolmogorov’s greeting to the
participants of the First World Congress of the Bernoulli Society (full text in
[K474], page 200).

Kolmogorov’s merits are highly appreciated by the Soviet State. He was
awarded the title of Hero of Socialist Labor (1963), seven Orders of Lenin (1944,
1945, 1953, 1961, 1963, 1973, 1975), a “Gold Star” medal (1963), Order of the
Labor Red Banner (1940), Order of the October Revolution (1983) and many
medals. ‘ '

In 1941 he was awarded the Stalin Prize and in 1965 the Lenin Prize.

In 1939 Kolmogorov was elected a full member of the USSR Academy of
Sciences and in 1966 a full member of the USSR Academy of Pedagogical
Sciences. '

In 1949 Kolmogorov was honored by the P. L. Chebyshev Prize of the USSR
Academy of Sciences and in 1987 by the N. I. Lobachevskii Prize of the
Academy.

The high ranking position of A. N. Kolmogorov in world science is reflected in
the fact that he has been elected a member of many academies, universities and
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societies:

1955 honorary degree of Doctor of Science, University of Paris.
1956 corresponding member of the Romanian Academy of Sciences.
foreign member of the Polish Academy of Sciences.
honorary member of the Royal Statistical Society, Great Britain.
1957 honorary member of the International Statistical Institute.
1959 honorary member of the American Academy of Arts and Sciences.
member of “Leopoldina,” the German Academy of Natural Sciences, GDR.
1960 honorary degree of Doctor of Sciences, Stockholm University.
1961 foreign member of the American Philosophical Society, Philadelphia.
1962 honorary degree of Doctor of Science, Indian Statistical Institute,
Calcutta.
honorary member of the American Meteorological Society.
honorary member of the Indian Mathematical Society.
honorary member of the London Mathematical Society.
1963 foreign member of the Netherlands Royal Academy of Sciences.
1964 Fellow of the Royal Society of London.
1965 honorary member of the Romanian Academy.
honorary member of the Hungarian Academy.
1967 member of the National Academy of Sciences, USA.
1968 foreign member of the French Academy of Sciences.
1973 doctor of science honoris causa, Hungary.
1977 honorary member of the International Academy of History of Science.
foreign member of the GDR Academy of Sciences.
member of the Society of the Order of “Pour le Mérite,” FRG.
1983 foreign member of the Finnish Academy of Sciences.

In 1963 A. N. Kolmogorov was awarded the International Prize in Mathemat-
ics from the Balzan Fund (Fondation Internationale Balzan).

In 1980 A. N. Kolmogorov was awarded the International Mathematical Prize
of the Wolf Foundation for his “deep and original discoveries in Fourier analysis,
in probability theory and ergodic theory and in dynamical systems.”

In the summer of 1987 Andrei Nikolaevich’s health (in recent years he had
been suffering from Parkinson’s disease) deteriorated to the point that he agreed
to preventive treatment in special clinics and to make full medical analyses,
including computer tomography, and to clarify the possibility of fighting his
almost complete blindness. The illness was rapidly progressing, and serious lung
failures were revealed at the beginning of October. At that time he was moved to
the lung department, where we had a small chat:

“Where am I actually now?” he asked.

“Lung department.”

4 But why?”

“They revealed some lung trouble.”

“What is the consequence?”

“You’ll have to stay here for a while so as to get home with healthy lungs.”
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“That is all right.”

It was actually the very last conversation with Andrei Nikolaevich. During
the next few days his temperature and blood pressure fluctuated wildly and his
breathing became complicated —the destructive forces of the disease were taking
their toll. On October 20th at 14 hours, 9 minutes the control oscillograph
displayed a straight line instead of the usual curve for the heart rhythm-—Andrei
Nikolaevich’s heart had stopped. Death immediately revealed his characteristic
curved nose, which was hardly visible in life, especially when his warm gaze was
lit by a big smile.

This is the end of life, the life of Academician A. N. Kolmogorov.

An obituary (Pravda and Izvestia, October 23, 1987), signed by the leaders of
the Communist Party and the Soviet State read:

“The whole life of A. N. Kolmogorov is an unparalleled feat for the cause of
science. He has been a symbol of nobility, selflessness and the highest morality in
the service of the Socialist Motherland. A. N. Kolmogorov has entered the Pleiad
of the great Russian and World scientists.”

Epilogue. One article can hardly embrace fully and exhaustively the versa-
tile life and creative activities of such a unique individual as A. N. Kolmogorov.
Despite its rather large scale much has been omitted. Kolmogorov’s work with
pupils and colleagues, the trips and walks with him, which were really extraordi-
nary in their scientific content and emotional impact, musical parties in his
well-known country house, Komarovka, excursions to the ancient Russian cities,
where Kolmogorov was a wonderful guide,... .

This article lacks (one hopes that the gap will be filled by his pupils)
Kolmogorov’s portrait—his broad smile, his eyes, characteristic voice uncompa-
rable with anything else.... Unlike anyone else Andrei Nikolaevich could
penetrate to the very essence of the problem being discussed and grasp its gist,
 making others see it anew. It might be recalled that at one of the preparatory
meetings of the Bernoulli Society Congress (in 1986) Andrei Nikolaevich seem-
ingly shrank into himself, but suddenly started and spoke out. Silence came
immediately and everyone heard his question: “What is the actual distribution
by age of the invited speakers?” (The computer plot revealed that they were
mainly in their forties.)

Primarily following chronological order, the author has tried to supplement
the broad description of the basic scientific results and inventions of A. N.
Kolmogorov (with emphasis on the probabilistic and statistical aspects) by
remarks bringing out the impact of his ideas and works on the origin and
development of many branches of science.

This article drew on various sources, in particular a number of articles about
Kolmogorov in Uspekhi Matematicheskikh Nauk and Theory of Probability and
Its Applications, and the commentaries to his works in the three volumes [MM,
PS,.IA] ’

Acknowledgments. An unrepayable debt is owed to Anna Dmitrievna,
widow of A. N. Kolmogorov, for her advice and access to the family archives.
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The advice and remarks by Yu. V. Prokhorov, V. A. Uspenskii, Ya. G. Sinai,

V. M. Tikhomirov, A. V. Prokhorov, A. M. Abramov, N. H. Bingham, and G. R.

Grimmett greatly improved the completeness and accuracy of the text.

The draft version of this English translation was prepared by M. M.
Romanovskaya and the author with participation and assistance by B. S.
Stechkin, S. S. Barsov, A. A. Gushchin and Yu. O. Usenko.

The final version of the English translation was carried out by N. H. Bmgham
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