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SELF-NORMALIZED LAWS OF THE ITERATED LOGARITHM

By PHILIP S. GRIFFIN! AND JAMES D. KUELBSs?

Syracuse University and University of Wisconsin

Using suitable self-normalizations for partial sums of ii.d. random vari-
ables, a law of the iterated logarithm, which generalizes the classical LIL, is
proved for all distributions in the Feller class. A special case of these results
applies to any distribution in the domain of attraction of some stable law.

1. Introduction. Let X, X, X,,... be nondegenerate, i.i.d., real-valued ran-
dom variables and set S, = X, + -+ +X,,. If Var(X) = 02 < o0, it follows from
the central limit theorem (CLT) that

S, — nE(X)
(1.1) W - N(O,].).
(no?)
In this case the a.s. deviations of S, from nE(X) are measured by the law of the
iterated logarithm (LIL),

(1.2) limsup ————
n— o (20272 LG)

Of course, there are many random variables with infinite variance for which the
normalized partial sums are asymptotically normal. A well-known necessary and
sufficient condition for this is given by

x’P(X| > x)
oo E(X?(X| < x))

(1.3)

Assuming for simplicity that E(X) = 0 whenever E(X?) < oo, if we define
a(0) = ini{ 5 B(XU(X| <)) = 7,
then under (1.3)

S, — nE(X)
14 ———F - N(0,1).
(14) 2o = NO.D)
In trying to extend (1.2) to this setting, it seems natural to ask whether
: S, — nE(X)
(1.5) lim sup =1 as.
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1572 P.S. GRIFFIN AND J. D. KUELBS

This turns out to be false as the following example of Feller shows [2]: Let X be
symmetric with density |x| ™2 for |x| > 1. Then one can easily show (1.3) holds
and d(n) ~ (nLn)'/2. However, (1.5) fails since

S, — nE(X)

limsup ———— = 0 as.
n_,oop (2nL,nLn)"*

Moreover, Feller was able to make precise why (1.5) fails. To describe this, let

(I)X,,, ceey (")Xn be an arrangement of X|,..., X, in decreasing order of magni-
tude, that is, |'"X,| > -+ > |™X,|. For r > 1 an integer set
r
(r)Sn = Sn - Z (t)Xn’
i=1

the sample sum with the r largest summands removed. Then Feller showed that
in his example

. (I)Sn - nkE ( X )

lim sup s = 1 as.

n-ow (2nLynLn)
Thus it is the single largest summand which prevents (1.5) from holding in this
case. The aim of this article is to show that while (1.5) fails, there is a natural
generalization of (1.2) which does hold in this setting (and beyond). This will be
done by self-normalizing or studentizing the partial sums, a procedure which is
common in statistical practice.
To describe our results, let

V.= Z X2
i=1

If E(X?) < o [and recalling that we assume E(X) = 0 in this situation], it
follows from the strong law of large numbers, (1.1) and (1.2) that

S, — nE(X)
(1.6) Vi - N(0,1)
and
S, — nE(X)
1.7 limsup —— =1 as.
(.7) oy 2L,V )

It is not hard to see that if we replace the condition E(X2) < oo by (1.3), then
1.8 Vo A
. —_—
( ) d2 ( n) P

and so (1.6) still holds. It is far from clear however that (1.7) should hold in this
case. Indeed that it does, bearing in mind Feller’s example, must depend on the
fact that almost sure convergence fails in (1.8).

1
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To see that there is some hope for (1.7) holding, observe that it cannot fail for
the same reason as in Feller’s example. This is simply because | VX,| < V, and so

) - nE(x) MS, — nE(X)
iz = limsup ————— 7.
n— o0 (2L2nV;) n—o0 (2L2nVn)

This idea, which is really the basis of our approach, can be carried further. By
the Cauchy—Schwarz inequality

r, r, 1/2
i i 1/2
¥ 0x, < r,zﬂ( > “’x,%) < (V)
i=1

i=1
and so if r, = o(Lyn), then

19) i S, — nE(X) i Un)g — nE(X)
o msup —mm—5 = sup——mm——————%5 -
e LV mm 2LV,

Now Kuelbs and Ledoux [5] have shown that if (1.3) holds, there is a sequence
r, = o(Lyn) such that

(1.10) i S, - nE(X)
. 1m su =
noom 27/°Lynd(n/Lyn)

Furthermore, since V, > T, = L%, XI(|X,| < d(n/Ly;n)) and E(T,) =
L,nd?*(n/Lyn), it seems reasonable to hope (and in fact it is true) that
1.11 li Va

(L) e Lynd*(n/Lyn) ~
- This then implies the upper bound in (1.7) for any X satisfying (1.3). Inter-
estingly, as the above shows, the large summands play no role in making
(S, — nE(X))2L,nV,) /2 big; indeed they tend to have the opposite effect of
making it small, which is in direct contrast to the situation in (1.5). This suggests
that to prove the lower bound in (1.7), one should look at times when the large
summands. are of moderate size. This idea will be made precise in the proof.

Studentized or self-normalized sums have been studied previously in connec-
tion with weak convergence; see [1] and [6]. In [6] the asymptotic distribution of
S/V/2 is found for X in the domain of attraction of a stable law. The limit law
turns out to have tails which are very much like those of the standard normal
distribution. Motivated by these findings, we consider extensions of (1.7) to this
case and more generally to the setting in which X belongs to the Feller class #,
that is, X is in & if there exist sequences a, and b, such that (S, — b,)a," is
tight with all subsequential limits nondegenerate, or, equivalently, if the analytic
condition limsup, _, , x2P(|X| > x)/E(X?*I(|X| < x)) < oo holds.

The class & is natural to consider in the sense that there are symmetric X
outside & such that

(1.12) limS,/PX, =1 as,;
n

a.s.
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see, for example, [7] and [9] for details and other references. Thus when (1.12)
holds we have the degenerate result

L
n (2LynV,)"* N

The precise statements of our LIL results will be given in Section 2.

NotaTioN. The following symbols and relationships are used throughout the
article.

X, X;, X,,... is an iid. sequence of real-valued, nondegenerate random
variables such that E(X) = 0 whenever E(X?) < co.

S,=X+--+X,n>1

G(x) = P(|X| > x) for x > 0.

K(x) = x2E(X(|X| < x)) for x > 0.

Q(x) = G(x) + K(x) for x > 0.

d(t) = inf{s > b + 1: K(s) < 1/t}, where b = inf{x > 1: K(x) > 0}.

d,(A) = d(An/Lyn).

B2 = nd A)K(d(N)) = Lynd2(\) /A since K(d(x)) = 1/x for x > b + 2.

Tn(A) :t=l 2I(|X| < dn(x))

¥a(A) = @LynBAA)Y2 = (2/N)2Lynd (M)

since K(d(x)) =1/x forx > b + 2.

V;t = E?=1 Xzz‘

F= {X:limsup, _, , G(x)/K(x) < o0}.

Z(0) = {X:limsup, , , G(x)/K(x) < 8} for 6 > 0.

2. Statement of results. The most complete result is our first theorem. If
x € R!, A C R}, then the distance from x to A is defined as

d(x,A) = inf |x — y|.
yEA

If {x,)} is a real sequence, then C({x,}) denotes its cluster set, that is, C({x,}) =
{y:liminf |x — y| = 0}. We write {x } » A if both lim,d(x,, A) =0 and

C({xn}) =

THEOREM 1. If X is in the domain of attraction of a Gaussian law, then
E(X) exists and

(2.1)

REMARK. The cluster set [—1,1] in (2.1) is correct even if E(X?) < oo since
we are assuming E(X) = 0 in this situation. Of course, if Y is nondegenerate
and E(Y?) < o, then Theorem 1 applies to X = Y — E(Y), and hence no loss of

{s,,— nE(X)

W} -> [—1,1] Qa.s.
2%V n
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generality occurs in this assumption.

An extension of Theorem 1 to random variables in the domain of attraction of
a stable law is given by the following theorem.

THEOREM 2. If X is in the domain of attraction of a stable law of index
a € (0,2], denoted X € D(a), then

S, — nE(XI(X| < d,(1)))
(2.2) { (2L,nV,)"?

where k, (X, \) are finite for every A and strictly positive if A\ is sufficiently
large. Furthermore, it is possible to choose N\ = A(a) such that for i =1, 2,

} > [—kl(x’)\)’k2(X’>‘)] a.s.,

(2.3) lim, sup k(X,A\)=1 a.s.
at2 XeD(a)

and

(2.4) lim inf k(X,A\)=1 a.s.
a12 XeD(a)

REMARK. One might suspect that the constants k,(X, A) do not depend on
X but just on a. However the manner in which the centerings depend upon the
distribution of X makes this seem unlikely.

If E(X) exists, it seems plausible that the centerings used in (2.2) should be
replaceable by nE(X). This is indeed the case if a > 1 and follows from
Theorem 3 where a more general setting is considered.

THEOREM 3. If X € F with
(2.5) limsupG(x)/K(x) <0 <1,

xX—> 0

then E(|X]|) < oo and
S, — nE(X)
(2L,nV,)"*

where k,(X) and ky(X) are strictly positive finite numbers. Furthermore, with
F(0) = {X:limsup, , , G(x)/K(x) < 0} we have fori=1, 2,

2.7 lim sup A2(X)=1lim inf 2(X)=1 a.s.
27) wXGsaP(a) {(X) 810 XeF(6) {(X)

(26) } o [ B(X), B(X)] wopd,

REMARK. If X € D(a),0 < a < 2, then
lim G(x)/K(x) = (2 — a)/a
and hence when 1 < a < 2 there is a § < 1 such that (2.5) holds. Thus Theorem

3 applies to this situation. Observe also that when a =2, § may be chosen
arbitrarily small and so (2.6) and (2.7) imply Theorem 1.
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The major technical results required in the proof of the previous theorems are
contained in the next theorem.

THEOREM 4. Let X € #(0) and assume E(X) = 0 when E(X?) < . Then:
(D) For all A > 0,

S, - nE(XI(X| < d,(A))
(2.8) hmnsup LV =C(X,N) a.s,

where C(X, \) is a finite constant.
D) If X € # is fixed, then for N sufficiently large C,(X,\) is strictly

positive.
(II1) In addition,
2.9 lim sup C(X,A)= lim inf C/(X,A)=1.
(2.9) 610 Xeg}-zo) i ) 010 XeF(0) i )
A=0"2 A=012

REMARKS. 1. The assumption that E(X) =0 when E(X?) < o is only
important for (III). That is, if 0 < E(X?) < o and E(X) = p # 0, then for
A>0,

8, = nE(XI(X| < dn(})))
lim sup %
(2.10) n (2L,ynV,)

1/2
<

= (B((x - p)’)/E(X?)) " <1.

This is obvious from the classical LIL since 0 < E(X?) < oo implies V, ~ nE(X?)
and

limsupnE (| X|I(X| > d,())))/(2L,nV,)"?
1) n(E(XY)(E(dM)

< limsup
n (2nE(X?)Lyn)"”

by (1.3).
2. The constant C (X, A) in (2.8) can be estimated via knowledge of those
numbers § which satisfy

limsupG(x)/K(x) <8 < 0.

xX—> o0

“

The detailed inequalities for these estimates are given throughout the proof of
Theorem 4.
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3. We do not know whether a clustering result holds in this general setting.

It does if the centering terms §, satisfy the regularity condition
(8, — 8,_)2L,nV,)"1/2 - 0 as., as we now show.

PROPOSITION 2.1. Assume 8, is a centering sequence such that

(8, — 8n—1)/(2L2nVn)1/2 -0 as.
If
hmmf—s"—_s'i— =C hmsups——s"——— =C
@LnV,)2 (2LnV,) 2
then
(2.12) ' {Ei—:;%} -»[C,C].

ProoF. Let T, = (2L,nV,)"/2 Then for any n,
Sn_sn _ Sn—l_sn—l &_ 8n_8n—1
T, T, T T,

n

(2.13) S

n—1" %-1

T,

n

+0(1) as.

Now let C € (C,, C,). If C > 0 we define
n, = inf{n: (S, - 8,)T,* < C},
my = inf{n > n,: (S, - §,)I, ' 2 c}, k>1,
nkH=inf{n>m,,:(S,,—8,,)I‘n‘1<C}, k>1.
Then m,, n, — o as. Since T, is increasing a.s. and C = 0, we have by (2.15)
Sm, = 8m,  Sm-1 —‘8,,%_1 T,

mk-l g
<=7 = T T +0(1) < C+ o(1).

my, m,—1 my,

Thus (S,, ) Iy — C as.
The case C <0 is handled analogously. O

3. Some lemmas. Here we prove some results used in the proof of Theorem
4. The notation of this section is that established at the end of Section 1, and we
always assume X € % (0).

LEmMA 3.1. If X € #(0), then for y > x and all x sufficiently large
(3.1) ¥ K(y) — x’K(x) < sz(x){(y/x)2"p(1 +0) - 1}
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and

(3.2) 1< d(y)/d(x) < ((3/2)(1 + 6))"7,
where

(3.3) p=2/(1+8).

Proor. By Lemma 2.4 of [8], x?Q(x) decreases for all x sufficiently large
where p is as in (3.3). Hence for y > x and x sufficiently large

y*K(y) - x°K(x) < y’Q(y) — 2K (x)
=y"PyPQ(y) — x°K(x)
< y* PxPQ(x) — x2K(x)
<y*PxP(1 + 0)K(x) — x%K(x)
= sz(x){(y/x)2_p(1 +6) - 1}
and (3.1) holds. Similarly, since K(d(x)) = 1/x,
d*(y) = yd*(y)K(d(y))
< d¥(x)(d(y)/d(x))* " (y/x)(1 + 6)
and this yields (3.2) since d(x) is nondecreasing. I
LEmMMA 32. LetX € #(0), a > 1, n, = [a*] for k > 1 and p be as in (3.3);
then for each A\ > 0,
1< limksupd2 (A)/d2(N)

RE+1

(3.4

= limksup > (AN)/B2 oy < (a1 + N
and
limksupnk+1E(|X|I(dnh()\) < |X| < d,_ (7)) (N)
(3.5)

< (0/2}\)1/2a{(a(1 +‘0))(2_”)/"(1 +6) - 1}1/2.
Proor. Since B,(A) and d,(A) increase as n increases and
li}an2nk+l/L2nk =1,
it suffices to verify

limsupd?, (N)/d2(N) < (a(1 + 8))™.
k

Rp+1

This follows immediately from (3.2), so (3.4) is proved.
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To verify (3.5), apply the Cauchy—Schwarz inequality to obtain
limsuprn, B (IXU(d,, (M) < 1X] < d,, (M) /% (A)

1/2

< limsup . B(X*I(d, (V) < 1X1 = dy,, ())) G (1) 7/10)

< limsupnk+101/2(K(dnk(")))l/2
k

x{d2, (ME(d,, (M) = ZME(d, M)}/, (0)
[since limsup G(x)/K(x) < 6]
< limsupn,, ,0*?K(d,(N))d, (N)
k

X{(dny. M)/ (V) (1 +8) = 1)/, (1)
[by (3.1)]
< (6/20)2a{(a(1 + 8))*PP(1 + 6) - 1}1/2
[by (3.2)].
Thus the lemma is proved. O

LEMMA 33. Let X€F(0), a>1, n,= [a*] for B>1, A>0, I, =
(ng, nyiq] and

(3.6) g\ = S I(X) > d,, (N))

Jj=1

for n € I(k). Then

(8.7) limsup sup J,(A)/L,n < ay(6/A),
k  nelk)
where
(3.8) a,(8/1) = inf{p > 6/\: p(log(pA/8) — 1) + 6/A > 1}.
Furthermore, A
(3.9 o/litgoal(H/A) = 0.

REMARK. One can prove an unblocked version of Lemma 3.3, but the above
is directly applicable for use in Lemma 4.3.
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Proor. Forp>0,¢e>0, u>0,

P( sup J(A)/L,n > p) < P(dJ, () > pLyny)

n
nel(k) kel

< E(e"ImM)e=uoLam A

= (1+ (e* - 1)G(d,,, (A))) ™" e uotam

< exp{n,,,G(d,,, (A))(e* — 1) — upLyn,}
< exp{n,, 0K (d,, (A))(e* - 1) — upLyn,}
= exp{(8/A)Lyny, (e — 1) — upLyn,)

<exp{—Lyn, {(p— &)u— (8/\)e* + 6/A}}

if & is sufficiently large. Now assume p > a,(6/A) and set u = log(pA/8). Then
u > 0 and hence

P( Sl}ge)Jn(’\)/LG > p) < exp{ —Lyny,{(p — €)log(pA/8) — p + 6/A}}.

By choosing ¢ > 0 sufficiently small that (p — &)log(pA/8) — p + 8/A > 1, this
then implies

TP sup J,(N)/Lon> p) < oo.
k nel(k)
Thus (3.7) holds, and (3.9) is obvious. O

LEMMA 34. Let V,Y,Y,,... be an arbitrary i.i.d. sequence of random
variables. Then forany b>0,v>0,s>0andn > 1,

Pl| T vy < b) - E( > YY) < b))l

J=1 Jj=1

(3.10)
> ve’nbKy(b)/2 + sb/v) <2e*®

where K (b) = E(Y2(|Y] < b))/b%

Proor. Let W, =Y7_,Y.I(|Y] < b) and apply the one-sided inequality of
Lemma 3.1 in [8] to both W, and its negative. Ther (3.10) follows immediately
since W, is a sum of truncated variables rather than the censored variables of
Pruitt’s Lemma 3.1. O

LEMMA 3.5. Let A > 0, X € #(0) and set
(3.11) ay(A) = (1/2)N/2X” + 2N/2,
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Let p be as in (3.3). Then, for each A\ > 0,

(3.12) limsup T,(A)/B2(N) < a4(A, 8),
where

(3.13) ag(N,0) = (1 +80)7P(ay(N) +1).
Furthermore, for each X € #(0), -

(3.14) 1imninfT,,(>\)//33(>\) > a,(A,0),
where

(3.15) a,(A,0) = (1 - ay(N)/(1+68)*">0

if A > 0 is sufficiently small so that a,(\) < 1. Finally, if A, > 0 is such that
ay(Ao) <1, then for all XA = A,

(3.16)  liminf V./B2(N) = a,(Ag, 0)(A/A)P™2P(1 + 6) %7 > 0.
PrOOF. Applying Lemma 3.4 to the random variables {Y; = X7: j > 1} with
= d%(\), s = 2L,n, and v > 0, we obtain
gany  FUBO) — B> cendi()Ky(4200)/2
+2L,nd2(N)/v) < 2e720m,
Setting v = N'/2 and noting that
Ky(x?) = E(Y(Y] < x2))/x*
< E(X(X| < x))/x?
= K(x),
we obtain
(3.18) P(IT,(A) = B2 > B2(A)ay(R)) < 2e72em,

To verify (3.12), let a > 1, n, = [a*] and I(k) = (n,, n, ) I
p(a(l + 6))~2/P — 1 > a,(A), then for each ¢ > 0 and all % sufficiently large

P(T,(N)/B2(N) > p + ¢ for some n € I(k))
< P(T, (V) > (o + BLN)

Rp+1

©Ba(A)
319) =P|T, (A)- nk+1(>\)> e M) ("+) O

< P(|T,,. () - B2, (M) > B2, (M(p(a1 +0)) 7 - 1))
< 2exp{—2Lyn,,,}.
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By the Borel-Cantelli lemma (3.19) implies (3.12) [and (3.13)] since a > 1 and
€ > 0 are arbitrary in (3.19).

To verify (3.14) and (3.15), let A > 0 be sufficiently small that ay(A) < 1. Fix
a > 1 and assume p > 0 satisfies

(3.20) 1 - p(a(l +8))*? > ay(A).
Then for any ¢ € (0, p) and all k sufficiently large
P(T,(\)/B2(A) < p — ¢ for some n € I(k))
< P(T,(A) < (p — )82, (V)
@21) = P(T,(A) - BE(A) < BE(AN)((0 — e)BE,(N)/BE(N) — 1))

< P(lTnkO\) - B,?k(k)l > B,fk(}\)(l —p(a(1 + 0))2/1;))
< 2exp{—2L,n,}

by (3.18) and (3.20).

The Borel-Cantelli lemma, (3.20) and (3.21) now imply (3.14) and (3.15) since
a > 1and ¢ € (0, p) are arbitrary in (3.20) and (3.21). Finally, fix A, > 0 so that
ay(Ay) <1 and let A > A,. Then by (3.14) and (3.2)

T(Ao) Bi(Ao)
Bi(Xo) Bi(N)

. .da(Xo) A
= a4(}\0, 0)llmn1nf-c—i2—(5\7 ‘X;

liminfV,/B%(A) > liminf
n n

(P-2/p
1+6)%7>0.

> a0 )|
Thus (3.17) holds and the lemma is proved. O
4. Proof of the upper-bound portion of Theorem 4. Throughout this

section we assume the notation established at the end of Section 1. In addition,
for a > 1 set n, = [a*] and I(k) =.(n,, n,,,] for k > 1. For n € I(k) set

(4'1) Un(}\) = Z uj,
j=1
where .
(4.2) u;=uk,\)=XI(X|<d, (), 1<j<n,.

LEMMA 4.1. For each A > 0, a > 1 and X € #(0),
(4.3) limsup |U,(A) — E(U,(X))|/7.(A) = Co(A, X, @) w.p.1,
n
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where C(\, X, a) is a finite constant such that

(4.4) Cy(A, X, a) < (a(l + 8))"{exp{(21)"*} + 1} /2.

ProoF. Since y,(A)1 o for each A > 0 as n 100, Cy(A, X, a) is measurable
with respect to the tail o-field of {X;: j > 1}, and hence is a constant. To show it
is finite, we proceed as follows.

For each ¢ > 0, Chebyshev’s inequality and (3.4) imply

limsup sup )P(IU,,M(A) - E(U,,. (V) - (UA) - EGA)] > e, (V)

, nenE(X(X) < d,, (N))(a(1 + 6))*”
< limsu = 5
k 2(5L2nk+1dnk+l(}‘)) /A

= limksup}\nk+lK(dnk_”(}\))(a(l + 0))2/p/(2(5L2nk+1)2)

=0.
Hence by Ottaviani’s inequality, for each § > ¢ > 0 and all & sufficiently large

P sup [T,(0) = BW0)|> b1,0))
nel(k)

< 2P([t,, (N) - E(U,, (V)] > 6 - e/2)m,(M))
< 2P(|U,,,(A) - E(U,,, ()] > (6 = )m,, (M(a(t +6))77)
[by (3.4)].

Thus Cy(A, X, a) will be finite if for some p > 0,

(4.5) L P([W(A)] > oy, (M) (a1 +6))77) < oo,
k

where

(46) W(A) = U, (A - E(T,,, (M)

In fact, since & > 0 is arbitrary

(4.7) Cy)(A, X, a) < inf{p > 0; (4.5) converges}.

By Lemma 34 for any ¢ > 0 and v > 0, with s = (I + §)Lyn, .y,
| P(|Wy(A)| > veny i 1d,,, (MNK(d,,, (N))/2
(4.8) +(1+ &) Lyny, d,, (A)/v)
<2exp(—(1 + £)Lyng,q).
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Now
ve’ny,d, (MK(d,, (A)/2+ Q1 +§)Lyny,d,, (X)/v
(4.9) = T (N{(V/2) et/ @A) + (1 + 6)(A/2)/0)

= Yp (M {exp{ @V} + (1 + )} /2

by setting v = (2X)!/2 Since £ > 0 is arbitrary, (4.5) will follow from (4. 6), 4.8)
and (4.9) if

p(a(1 +8))™? > {exp{(21)/*} +1} /2.
Thus by (4.7)
C(\, X,a) < (a(1 + 0))1/p(exp{(2)\)1/2} + 1)/2
and Lemma 4.1 is proved. O

LEMMA 4.2. If X € %#(0), then for all A > 0,
S, = nE(XI(X| < d,(\)))

(4.10 lim su = Gy(A, X),
) ) n p (2L2nVn)l/2 3( )
where C( A, X) is a finite constant. Moreover,
(4.11) limsup sup C4(A, X) < 1.
010 XeZF(6)
A=0'2

ProoF. Recalling the definition of a,(A) in (3.11), we see that for any A > 0
we can find A, € (0, A] such that ay(A,) < 1. Fix such a A,. Then for @ > 1 and
nel,

S, — nE(XI(X| < d,(N))) = (Uy(A) = E(U,(N))) + (S, — U(A))
(4.12) +(E(Uy(N)) — nE(XI(X| < d,(A))))
=A,(N) + B,(A) + C,(N).

Setting ag(0, A, Ag) = a,(0, Ag)(AA;HP~D/P(1 + 6)~%/P, we have by (3.16)
and (4.3) that
limsup | 4,(A)|/(2L;nV, )"

(4.13) | < limsup|A,(A)|/(2L,nB(N)a5(8, A, X))

= Cy(\, X, a)(a5(8, A, N)) % < o0,
where Cy(A, X, a) satisfies (4.4). Now (3.5) implies in a similar fashion that

limsup | C,(A)|/(2LynV,)"? < (a5(8, A, Ao)) ~/? limsup|C,(A)] /¥a(A)

(4.14) Co< (a5(0’ A, )\0))——1/2(0/2}\)1/2

xa{(a(l +6))* P71 +6) -1
< 00.

}1/2
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Next, by the Cauchy—-Schwarz inequality
B, < (Ju(N))*V2,
where J (M) is as in Lemma 3.3. Thus by Lemma 3.3
(4.15) limsup|B,(A)|/(2L,nV,)"? < 27%a,(6/A) < .

n

Combining (4.13), (4.14) and (4.15), it follows that

(4.16) limsup|S, — nE(XI(X| < d,(A)))|/(2L,nV,)"? < o as.

Hence by the Kolmogorov zero-one law (4.10) holds with Cy(A, X) a finite
constant, and furthermore,

Cy(A, X) < (a5(8,A,Ap)) 7

(4.17) x{Cy(A, X, @)+ (8/20)a{(a(1 + 6))*PP(1 + 6) - 1) 2}

+ 272, (8/7),

where A, € (6, A]is such that ay(A,) < 1. Thus, if A is sufficiently small that
ay(A) < 1, then we may choose A, = A in the above. Hence by (3.9), (3.11), (3.15),
the definition of ay (8, A, A,) and (4.4) (since a > 1 is arbitrary),

(4.18) limsup sup Cy(A, X) <1. O
010 XeF(9)
A=6'2

Proor oF (I) AND PART OF (III) oF THEOREM 4. Lemma 4.2 and the
Kolmogorov zero—one law combine to give (I) with

(4.19) |C(X,A)| < C(A, X) < .
Hence (4.18) implies
(4.20) limsup sup |C)(X,A)|<1.
010 XeF(0)
A=012

The remaining aspects of Theorem 4 are proved in Section 5. O

5. The lower-bound portion of Theorem 4. Our first objective is to
develop a suitable probability estimate useful in connection with the establish-
ment of nontrivial lower bounds in Theorem 4. We first develop some lemmas,
and the estimate itself appears in Proposition 5.1.

For m>1, A >0, let Z(A, m), Z (A, m), Zy(]A, m),... be iid. random vari-
ables with distribution function Fy, ), that of X conditioned by |X| < d,(A);
thus ’

(6.1) dFy, my(x) = I(=d,(N) <x < d,(A)) dF(x)/P(X| < d,(N)),
where F is the distribution function of X. We will also have need for the related
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random variables
U\, m)=2Z,(A\,m) + -+ +Z (A, m),
62 0 m) = 20, m) (A, m)
TN, m) =22\, m) + --- +Z2(\, m).

The following lemma is a simple modification of Lemma 3.4 in [3], and
provides proper emphasis for the conditioning interpretation. Lemma 3.4 of [3] is
stated under the blanket assumption that F(x) is continuous, but the proof
remains the same even if F is not continuous.

LEMMA 5.1. For any n,m>1, A >0 and any bounded Borel function
$:R"™ > R,
E(¢(Xy,..., X)X} < d,(A),1<j<n))
(5.3) n
= E(y(Z,(\, m),..., Z,(\, m))) 1‘[1P(|Xj| < d,(N)).
j=

Proor. Let ¢(S,,...,S,) =¢(S;, S, — S,,...,S, — S,_1) and apply Lemma
3.4 of [3] to obtain (5.3). O

LEMMA 5.2. Let A > 0, ay(A) be as in (3.11), and suppose

(5.4) A > 1+ ay(A).
Let m > n be such that m ~ n as m, n — . Then for all n sufficiently large
(5.5) P(T(\, m) > AE(T(A, m))) < 2¢2Lem,

PrOOF. Applying Lemma 3.4 to the random variables Y; = Z*(\, m), j > 1,
with b = d%(\), s = 2L,n and v > 0, we obtain

P('Tn(}\, m) — E(Tn()\, m))| > ve"nd,ﬁ()\)lf(d,ﬁ()\))/2

(5.6) +2Lynd2(A)/v) < 2e72Len,
where
E(x?) = E(Z4\, m)I(ZX(\, m) < x2))/x*
(5.7) < E(Z2(\, m)I(|Z(A, m)| < x)) /x2.
Thus .

_ K(d2(V) < E(X(X] < d(M))/(dr(MP(X] < dy(1)))
(5.8) = K(d,()))/P(X| < d,(}))
= Lym/(AmP(X| < d,(}))).
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By setting v = A2 and combining (5.6) and (5.8), we obtain

di(\)L,m

P\|T,(A, m) = E(T,(\, m))| >

(5.9) X(}\l/ze"l/zn(2mP(|X| <d,(\)) '+ 2>\1/2L2n(L2m)_1))

< 2¢ 2L,
Next notice that
E(T(\, m)) = nE(Z}(\, m))
= nE(X?I(X| < d,())))/P(X| < d,()))
dZ(A) 2

(5.10)
(n/m)/P(X| < d,(7)).
Now
P(T,(\, m) > AE(T,(\, m)))

= P(T,(A, m) - E(T,(\, m)) > (A - DE(T,(A, m)))

< P(|T (A, m) — E(T(A, m))| > (A = DE(T(X, m))),
and hence by (5.9)
(5.11) P(T (A, m) > AE(T(A, m))) < 2e-25om,
provided

(A - DE(T,(\, m))

Lymd, (M)

(5.12) > X

(X/%*"n(2mP(|X| < d,,(A))) "

+2N/2L,n(Lym) _l) .

If A > 0 is fixed and the strict inequality in (5.4) holds, then m > n and m ~ n
as m,n — oo together with (5.10) implies (5.12) for large n since P(|X]| <

d,(A)11 and a,(A) = (1/2)N/2%*” + 2N/2, Thus (5. 11) is valid and the lemma
is proved. O

LEmMA 53. If X € #(0) and A >0, then for all n sufficiently large and
m=>n,

(5.13) P( max X, < dm()\)) > exp{ —(20/A)L,n}.
<j<n
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Proor. For all n sufficiently large and m > n,

P( max X)) < (M) = (1 = G(d,(N)))

n

2 (1-G(d,(A)"

> exp{ —2nG(d,(}))}

> exp{ —2n0K(d,(1))}

= exp{ —(20/\)L,n}. m]

DEFINITION. For every A > 0 and m > 1 set

(5.14) o2(A, m) = E((T,(A, m) — E(T,(A, m)))’).

LEMMA 54. For A>0, y>0 and m>n > 1 there exist n(y) > 0 and
e(y) > 0 such that

(515) P(ﬁn(k’ m) - E(Un(k, m)) > £(2L2n0n2(>\, m))1/2)

> exp{ —§%(1 + v)Lyn},
provided both £(2L,n)? > e(y) and £2Lyn)/?d,(N)/0 (N, m) < w(y).

Proor. This is a simple application of Kolmogorov’s exponential bound
result in [10], Theorem 5.2.2. O

PROPOSITION 5.1. Let X € #(0). Suppose m > nand m ~ n as m,n — oo.
Then for every y > 0, there exists w(y) > O such that for every A > 0, every
A > 1+ ayA), every 8 < 7(y)/(2Q + Y)AA)'/2 and every n sufficiently large
(depending on vy, A and §),

P(S, - E(U,(A, m)) > 8(2L,nV,)"”)

(5.16) > exp{ —(26/\)L,n}
X {exp{ -8%(1 + y)2AL2n} — 2exp{—2L,n} } .

Proor. If §>0,A>0, m >n and

v(x,...,%,) =I((x1,...,.7cn):x1 + o +x,

i=1

~E(U(w, m)) > 8(2L2n f x?)l/z),
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then Lemma 5.1 implies

P(S, - E(U,(A, m)) > 8(2L;n¥,)""

> P(s,, = E(T,(\, m)) > 82LynV,)?, max X)) < dm()\))
<J<n

(5.17) . . .
= P(U,(\, m) - E(T,(A, m)) > 8(2LynTiy(A, m))™)
XP( lr;)jasxanjl < dm(}\)).
Furthermore,

P(U,(A, m) - E(U,(\, m)) > 8(2L,nT, (A, m))"”)
2 P(U,(\, m) — E(U,(A, m)) > 8(2L,nT (A, m))™7*,
(5.18) T\, m) < AE(Ty(A, m)))
> P(U’,,(A, m) — E(U,(\, m)) > 8AV2(2L,nE (T (A, m)))w)
- P(T(A, m) > AE(T,(X, m))).
Since we are assuming E(X) = 0 when E(X?) < oo,
(E(XI(X| < b)))* = o( E(X’I(X] < b)))
as b — oo. Thus it is easy to see that as n, m — oo with m ~ n,
o2(A, m) = nE((Z((X, m) — E(Z,(\, m)))’)
~ nE(X?(X| < d,())))
~ Lymd2(\) /A
~ E(T,(A, m))
by (5.10). Next observe that
8((1 + y)A2L,n)"2d,(N) /o, (A, m) ~ 8(2(1 + y)AN)"?

as n, m — oo with n ~ m. Since § < #(y)2(1 + y)AX)" V2, (5.19) and Lemma
5.4 then imply that for any y > 0 if m, n are sufficiently large

P(U,(A, m) — E(T,(A, m)) > 88/*(2L,nE(T,(A, m)))"”)

(5.19)

f5,20) > p([jn(}\’ m) — E(U(\, m)) > 8(1 + )2 AV2(2Lyno2(A, m))l/z)

> exp{ —82A(1 + y)2L2n}.
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Combining (5.17), (5.18) and (5.20) along with Lemma 5.2 and Lemma 5.3, we
obtain for m ~ n and n sufficiently large that

P(S, - E(U,(A, m)) > 8(2L,n¥,)"")
(5.21) > exp{ —(20/A)L,n}
X {exp{ —8%A(1 + v)?Lyn} — 2exp{—2L,n} } ]

provided 8 < 7(y)2(1 + y)AA)~'/2, Hence (5.16) holds and the proposition is
proved. O

LEMMA 5.5. Let X € #(6). Then for all N\ sufficiently large there exists a
8 = 8(\) > 0 such that for m > n, m ~ n and n sufficiently large

(5.22) P(Sn - E(T,(\,m)) > 8(2L2nVn)l/2) > exp{ —(1/2)Lyn}.

ProOOF. Set y =1 in Proposition 5.1 and let A =160 V 47%y), where
7(y) = w(1) is given as in Proposition 5.1. Then for

8 =8(2) = 7(v)/(2((1 + v)AA)"7),
(5.22) follows from (5.16) since

20
-— =<

1 (DL +y)A  (1+y)
X =8

1
d 82(1+y)°A= = .
and  §%(1 +7) 41+ )M 16 8

The extra term 2exp{ —2L,n} in (5.16) is small enough to be absorbed into the
right-hand side of (5.22). O

LEMMA 5.6. Let X € #(0). Then for every y € (0,1/2) there exists a 6, > 0
such that for all 0 € (0, 6,) if A\ = 6'/2, then

P(Sn - E(U,(\,m))> (1 - 27)1/2(2L2nVn)l/2)

)

asm,n — oo withm > n and m ~ n.

(5.23)

Proor. Fix y € (0,1/2). Choose 6, > 0 sufficiently small so that with A =
6'/2 and 0 € (0, 6,) we can find A satisfying

D) A >1+ ayA),
(i) A < - v)>/(1 —2y) and
(i) 7(v)/@QA + Y)AA)2 > 1.
Then we can take & = (1 — 2y)!/2 in (5.16) and obtain (5.23) since again the

extra term 2exp{—2L,n} in (5.16) is small enough to be absorbed into the
right-hand side of (5.23). O
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Another useful lemma is the following.

LEMMA 5.7. Let W;,W,,...,W, be i.i.d. random variables. Then for any
O<r<l-1,

l
(5.24) Pl Y I(W,<W)>l-r|<r/L

=1

REMARK. The strict inequality W, < W, in (5.24) is essential, as easy exam-
ples show.

PROOF. Let F be the distribution function of W, and let F~I(x)=
inf(y: F(y) > x} for x € [0,1). Then F~! is right-continuous and if U, ..., U,
are i.i.d. uniform on [0, 1], then

FYW),..., FFY(U,)

have the same joint law as W,,..., W,. Thus assume W,,..., W, are given by
F~XU,),..., F~XU)). Since W, > W; implies U, > U,

l l
P EI(VI§<WI)2l—r)sP(EI(U}<U1)zl—r -r/l. O

Jj=1 J=1

PROPOSITION 5.2. If n, = [e*'] where q > 1, then
(5.25) liinV /Vo, =0 w.pl.

Rpt1

PROOF. An easy application of the Borel-Cantelli lemma yields (5.25) if for
every M > 0,

 (5:26) LP(V,,,, < MV,,) < co.
Fix M > 0 and without loss of generality assume M is an integer. Then
‘,"kﬂ = w,l+ Tt +vvlk’
where
(i) L= [ng.1/n,]
and
(ii) W=V, = Vii—ys, forj=1,...,1.
Now lim, /, = + 00 and
P(V,,,, <MV,) < P(W, + --- +W,) < MW,)
22
<P| Y I(W,>2W,) <M)
j=1
. 1,
=P| ¥ I(W;< Wl)zlk—M)

Jj=1

<M/,
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by Lemma 5.7. Hence, since

(5.27) I, ~ e®+D"% > exp{qka~1}

for large & (with g > 1), (5.26) follows immediately. Thus (5.25) holds and the
proposition is proved. O

We now prove a technical result which enables us to complete the proof of
Theorem 4 with a simple application of the Borel-Cantelli lemma.

PROPOSITION 5.3. Let X € #(0) and set n, = [e*"] where q > 1. Then for
all A > 0,

. S, — nE(XI(X| < d,(\)))
hmf P (2L,nV,)"?

> limksup((Snk“ ~8,) = (nper — n)E(XI(X) < d,,_(N)))
x(P(X) <d,, (\))7)
- (2L2(nk+1 - nk)(v;ukﬂ - Vn,e))l/2

(5.28)

PROOF. Write
S - nk+1E(XI(|X| = dnk“()\)))

= (SnkH - Snk) - (nk+1 - nk)E(XI(lXI < dnkH(A)))
+8, — nE(X1(X| < d,(}N)))
- n,E(XI(d, () < |X| < d,_(N))).

By the upper-bound portion of Theorem 4 already established [see (4.10)] and
Proposition 5.2

(5.29)

— n E(XI(X] < d,(\)))
(2LonyaiVi,, )

17ng1q

|S
h =0 a.s.

(5.30) lim sup
k

for all A > 0. Next by (3.16), for all A > 0 there is a ¢ = ¢(A) > 0 such that
liminf V,/B2(\) > ¢. Hence

nE(X11(d,(A) < |X| <d, _(N)))

li
mksup (2L2nk+1Vn,,+1)1/2
oy E(X(X < 4, (V) (6(d,0))
< limsup Tz
(5.31) k (25 ;fk+l(7‘)L2nk+1)

= limksup (nk/(2£‘nk+1))l/2(nkG(dnk(h))/Lan+1)1/2

< limsup (0n,/(2é\n,,,))"? = 0.
k
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Furthermore, for all A > 0,
(nger — n)E(XI(X) < d,,, (V) (P(X| <d, (7))
— Ry — n)E(XI(X) < d,, (D))
= (npey — n)E(XI(X| < d, (V)

xG(d,,, (\)/P(X| <d,, (N)),

(5.32)

while
for all m sufficiently large. Applying (3.16) as above, we obtain for all A > 0,

E(IXi1(X] < d,,,, (M)))G(d,,, (M)
Y P(x <d, (N)(2Lyny. Y, )Y

Mg +1

limsup(n,,, — n
(5.33)

0
< Gao2 imsep E(XII(X) < d,,, (V) /d, (M) = 0

by the dominated convergence theorem. Finally, by Proposition 5.2
2Ly(ngyy — nk)(V - Vn,,) ~ 2Lyn,. Y,

.
gt Ngi1?

thus (5.28) follows from (5.29)—(5.33). O

PROOF OF (II) AND THE REMAINDER OF (III) OF THEOREM 4. Set n, = [e*’]
with ¢ € (1,3/2). Since X,, X,,... are iid., by applying Lemma 5.5 with
n=n,,,—n, and m=n,, , it follows that for all A > 0 sufficiently large
there is a § = 8(A) > 0 such that for %k sufficiently large

(Mg — n)E(XI(X) < d,, (M)
P{(S"“' ") - P(X| <d,,_ (V)
(5.34) > 8(2Ly(ngy — np)(V, ., — v,,k))‘”}
1
2 EXP{_(E)Lz(nkH - nk)}°

Since the events in (5.34) are independent, and the corresponding probabilities
sum to + oo (recall ¢/2 < 1), the Borel-Cantelli lemma implies the right-hand
term in (5.28) is greater than or equal to 8§ = 8(A) > 0 a.s. Hence (II) of Theorem
4 follows from Proposition 5.3.
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To complete the proof of Theorem 4, it suffices to show that the right-hand
term in (5.28) can be made arbitrarily close to 1 as § — 0 with A = §1/2,

To verify this, fix y € (0,1/2) and take ¢ € (1,3/2) such that g1 — y2) < 1.
Again set n, = [e**]. Choose 6, > 0 as in Lemma 5.6 such that in addition
20,2+ (1 — y%)2 < (1 - v?%). Let 6 €(0,0,) and set A = /% Then with n =
ng,,—n, and m=n, ,, (5.23) and the Borel-Cantelli lemma imply for &
sufficiently large that the right-hand term in (5.28) is greater than or equal to
(1 — 2y)/2. Since y > 0 is arbitrary this implies

5.35 lim. inf ,A) =1.
(5.35) 940 XEnglr(o)Cl(X M =1
A=612

Combining (4.20) and (5.35) yields (2.9) and Theorem 4 is proved. O

6. Proof of Theorems 2,3 and 1. Since X € D(«a) implies
(6.1) lim G(x)/K(x) = (2 — a)/a < o,
X —> 00

Theorem 4 implies k,(X, A) = C(X, A) is a finite nonnegative number for each
A > 0, and is strictly positive if A is sufficiently large. Applying Theorem 4 with
X, X,, X,,... replaced by —X, — X, — X,,... yields

(6.2) lim sup (=5,) - E(_XI(IX| <d,(1)))

=k, (—-X,A) as.,
n (2L,nV,)"? (=61

where ky(—X,A)=C,(—X,A) is also a finite nonnegative number for each
A > 0 and is strictly positive if A is sufficiently large. Hence, setting 2,(X, A) =
ky(—X, N), we have

S, — nE(XI(X| < d,(x))) = —k(X,\) as
(2L2nVn)l/2 1 ) S

(6.3) liminf =

In order to apply Proposition 2.1 to prove clustering in (2.2), it suffices to show

o "E(XI(X| < d,(V))) — (n ~ VE(XI(X| < d,.,(V))) _

0
n (2L,nB2(N))"”

(6.4)

Now the absolute value of the numerator in (6.4) is dominated by the quantity
(65)  nE(X|I(d, () < |X]| < d,(0)) + E(X|I(X] < d,(}))).
Cléarly, '

E(XII(X| < d,()))) < do(A) = o((2L2nB2(A)) "),
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while

limsup nE(1X|I(d,_,(A) < |X| < d,(A)))/(2LynB2(N))"”

< limsupnd,(A)[G(d,_,(A)) = G(d, ()] /((2/X)/*Lynd ()

- timeup (4/2) 06 (d, ()[1 = o (1)
X 2—-a _ G(dn(k))
= limsup | — |(2)A) 1/2[1 - —-——————}
(6.6) nup( a ) G(dn—l(A))
0 ) ifa =2,
- limsup(a%o‘)@)\)_l/2 1- %] if0<a<2
0 ) ifa=2,
- limsup(2—;-g)(2?\)_l/2 1- %] =0 if0<a<?2

= 0.

Thus (2.2) holds and for the remainder of Theorem 2 we simply apply
Theorem 4(III) since a 12 implies § can be made arbitrarily small. Thus Theo-
rem 2 is proved. O

It now suffices to prove Theorem 3, since Theorem 1 is an immediate
consequence of (2.6) and (2.7), and that a = 2 allows 6 to be taken arbitrarily
small.

The main step of the proof of Theorem 3 is the following proposition.

ProposITION 6.1. If X € #(0) with 0 < 1, then E|X| < co and

(67) fimeup X)L _ o(x)

. msup ———————5 = C a.s.,
P L)

where 0 < ¢(X) < oo is a constant such that

6.8 lim sup ¢(X)=1lm inf ¢(X)=1.

(6.8) 040 Xeggo) (X) 010 XeF(8) (X)

Proor. That E|X| < oo is known from [4]. Furthermore, by the
Kolmogorov zero—one law ¢(X) is a constant with probability 1. We will prove
that ¢(X) < oo and (6.8) holds via the following three lemmas. That ¢(X) > 0
for all # < 1 then follows in Lemma 6.7. O
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LEMMA 6.1. If E|X| < oo and
N(x) = E(X|I(X| > x))/x, x>0,
then

LwK(y) dy = xN(x) + xK(x), x>0.

ProoF. Integrate by parts. O

LEMMA 62. If X € #(0) with 8 <1andp =2/(1 + 0) as in (3.3), then for
all large x,

(69) M) < K| 272 .

p—1
Proor. For x sufficiently large
fwa(y) dy < fwa(y) dy < x”Q(x)fxwy"’dy,
since yPQ( y) decreases eventually ([8], Lemma 2.4). Thus for sufficiently large x,
[TK(») dy < 2@(x)/(p - D),

since p > 1 when § < 1. Applying Lemma 6.1, we thus have for all x sufficiently
large that

N(x) == [ “K(y)dy - K(x)
<Q(x)/(p—-1) - K(x)
<K(x)2+0-p)/(p—-1). O

LEMMA 6.3. If X € #(0) with 0 < 1, then

(6.10) i S, — nE(X)
. msup —mm—+
a P (2LnV,)

Furthermore, (6.8) holds.

=c¢(X) <o a.s.

Proor. By Theorem 4(I), for any A > 0,
(6.11) |e(X) — C(X, )| < limsupnE(X|I(X| > d,(A)))/(2LynV, ).
n
By (3.16) and (3.11), with A, = min(A/2,1/64), we have
limniann/B,f(U 2 (1 - ay(Ag))(1 + 8) P (A/N) P77
(5.12) > (1/2)(1 + §)*/Pap-2/p
=(1+0) *P2-¥p,
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where p = 2/(1 + 6). Since B%(A) = LyndZ(\)/A, Lemma 6.2 and (6.12) imply
limsupnE (| X|I(X| > d,(})))/(2LynV,)"*

< limsup nd,(M)N(d,(M))
T (20 +0) P2 o) Lynd,(V)

(6.13) e nK(d,(A))( + 6 — p)N/2

n o Lyn(201+6) P27%) " (p - 1)

= @+0-p)/{(p-D(2A1+ 0)~ra-2e)".
Combining Theorem 4(I), (6.11) and (6.13), we see ¢(X) < oo. Furthermore, by
(6.11) for all A > 0,
e(X) =C(X,\) +&(X,N),
where

(X, A)| < limsupnE(X| (X = (1)) /(2LynV,)" .

Now (6.13) with p = 2/(1 + ) implies

li X, A lim 6% + 36 0
< —
01113 |3( ’ )I = 8.0 (20)1/2(1 + 0)—2/p2_(1+o)/2(1 _ 0)

A=0'/2
Combining this with Theorem 4(III) gives (6.8). O
To complete the proof of Proposition 6.1, it now suffices to prove the lower

bound, that is, ¢(X) > 0 for all 8 < 1. Using the notation of the above lemma,
we have for all A > 0,

o(X) = C(X,\) + &(X, M).

Unfortunately, our estimates on Cy(X,-) and &(X,-) are not good enough to
show that C(X, A) + & X, A) > 0 for even one value of A. Thus we proceed to
verify c(X) > 0 directly.

LEMMA 6.4. If X € #(0) with < 1, then E|X| < co and there exists ¢ > 0
such that )
(6.14) P(S,— nE(X)>d(n)) =c

for all n sufficiently large. Furthermore, it is also the case that thereisa é > 0
such that

(6.15) inflP(Sn - nE(X)>0)>é
n=
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Proor. The inequality in (6.14) is essentially Theorem 3 of [4] because
X € # implies the constants d(n) in (6.14) are equivalent (asymptotically) to
the constants a, used in [4]. The inequality in (6.15) now holds because X
nondegenerate implies P(S, — nE(X) > 0) > 0 for each n, and for some ¢ > 0,

P(S, - nE(X)>0) > P(S,- nE(X) 2d(n)) 2 c,

provided n is sufficiently large. O

LEMMA 6.5. If X € #(0), then {V,/d*(n): n > 1} is bounded in probability,
that is, tight.

Proor. First observe that
P(V, > Md*(n))

(6.16) < P ¥ X2(X) < td(n)) = Md¥(n)| + nG(zd(n))

< n&’K(&d(n))/M + nG(¢d(n)).

Recalling xPQ(x) eventually decreases for p = 2/(1 + 8), it follows that for
£ > 1 and n large (independent of £ > 1)

G(éd(n)) < Q(¢d(n))
< ¢77Q(d(n))
<¢7P(1+ 0)K(d(n)).

Similarly, K(¢d(n)) < §72(1 + 0)K(d(n)), and hence for large n independent of
£>1,

P(V, = Md*(n)) < £277(1 + 8)/M + £ P(1 + 9).

Thus given & > 0 choose £ large enough that (1 + 6){™? < &/2 and then M large
enough that £27P(1 + 0)/M < e/2. For this choice of M and n large

P(V, > Md*(n)) <e,

which proves the lemma. O

LEMMA 6.6. Assume X € #(0) with 8 < 1. Then for 8 > 0 sufficiently small
and all n sufficiently large :

(6.17) P(S, - nE(X) 2-6(2LynV,)"?) = exp(—(1/2)Lyn).

Proor. Let N = 4log(2/c) where ¢ > 0 is such that (6.14) holds. Let
7(N,n) = [Nn/Lyn] and p(N, n) = [n/7(N, n)] + 1, where [-] is the greatest
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integer function. Then p(N, n) ~ (Lyn)/N and we define for i = 1,..., p(N, n),
R;= (Si‘r(N,n) —ir(N, n)E(X))

(6.18) ~(Sg- vy — (i = D(N, n) E(X)),
W, = ‘,iT(N, n)y — V(i—l)‘r(N, ny*

Letting k(N, n) = (p(N, n) — 1)7(N, n), it follows that k(N,n) <n and for
large n,

P(S, - nE(X) = 8(2L,nV,)"?)
> P(8, - nE(X) 2 8(2L,nV,)"”,
W, < Md?*(n/Lyn),1 < i < p(N, n))
> P(S, - nE(X) 2 8(2(Lyn)p(N, n)Md?(n/Lyn))"”,
(6.19) W, < Md*(n/Lyn),1 <i < p(N, n))
> P(R;> 28( MN)*d(n/Lyn),
W, < Md?*(n/Lyn),1 < i< p(N,n)
and S, — Sy, my — E(Su = Skw, ) > 0 Wy, my < Md2(n/L2n)}

> P(Rl > 23(MN)1/2d(n/L2n), W, < Md2(n/L2n))"(N’ n)rn,

- Whel'e rn = P(Sn - Sk(N, n) - E(Sn - Sk(N, n)) > 0 and M(N’ n) S Md2(n/L2n)).
With ¢ as in (6.14) and ¢ as in (6.15), apply (3.2) and Lemma 6.5 (since N is a
fixed finite number) to choose M large enough so that

P(W, < Md*(n/Lyn)) = P(Vig 1, < Md*(n/Lyn))
> max{l — ¢/2,1 — &/2}.
For this choice of M take § = (1/2)(MN )~1/2, Then by (6.14)
(620) P(R, > 28(MN)"’d(n/L,n)) = P(R, 2 d([Nn/L;n])) = ¢

for all large n since N > 1. Furthermore, T, > /2 for all large n. Thus for n
sufficiently large (6.15), (6.19) and (6.20) combine to yield

P(S, — nE(X) > 8(2L,nV,)"”) = (6/2)(c/2)“’

= (¢/2)exp{—(N/4)p(N, n)}
> exp{ —1/2L,n}

(N, n)

and (6.17) holds. O
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LEMMA 6.7. If X € #(0) with 0 < 1, then

(6.21) lim su S, ~ nE(X)

—_— > 0 a.s.
n P (2L,nV,)"?

PROOF. Let n, = [e*"] where ¢ € (1,2) and write
Snkﬂ - nk+1E(X) = (Sn,,H - Snk)

~(Mpes — R E(X) + 8, — n,E(X).
Applying Lemma 6.3 to X and — X, we have

. IS, — nE(X)
(6.23) limsup ————7~

Together with Proposition 5.2, this implies that

(6.22)

< o0 as.

: 1S,, — np E(X))|
(6.24) lim sup 7z =0 as.
k (2L2nk+1";k+l)

Furthermore, if § > 0 is as in Lemma 6.6 and

Ek = {(Snkﬂ - Sn,,) - (nk+l - nk)E(X)

(6.25) 1/2
> 6(2142(”1”1 - nk)(V;u,,H - Vn,,)) ’ }’

then for all large &,
(6.26) P(E,) = (k+1)"2

* Since the events {E,} are independent and 1 < gq <2, (6.26) and the
Borel-Cantelli lemma easily imply

(Snk+1 B Snk) - (nk+1 - nk)E(fiZ) >0 a.s.
(2L2(nk+1 - nk)(VnkH - ‘,”k))

Hence (6.22), (6.24) and (6.27) and Proposition 5.2 together yield (6.21), and
Lemma 6.7 is proved. O

(6.27) lim sup
k

Thus Proposition 6.1 holds. The final step in the proof of Theorem 3 is to see

that clustering occurs; this is now an immediate consequence of Proposition 2.1.
0O
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