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ON INDEPENDENCE AND CONDITIONING
ON WIENER SPACE

BY ALI SULEYMAN USTUNEL AND MOSHE ZAKAI!

Paris and Technion-Israel Institute of Technology

Let I,(f) and I,(g) be multiple Wiener-It integrals of order p and gq,
respectively. A characterization of independence of general random variables
on Wiener space in the context of the stochastic calculus of variations is
derived and a necessary and sufficient condition on the pair of kernels ( f, g)
is derived under which the random variables I,(f), I,(g) are independent.

1. Introduction. Let T denote the interval [0, £,] for some finite ¢, > 0 or
T = [0, o0) and let W,, ¢t € T, be the Wiener process on T. The purpose of this
note is to consider the notion of independence of functionals of the Wiener
process. More specifically, our purpose is to derive geometric conditions for
independence, namely, conditions expressed in terms of notions of the Malliavin
calculus. For simplicity we restrict the discussion to the case where T is an
interval; however, the results presented here go over to the more general setup
where the parameter space T is an atomless measure space and W is an
orthogonal Gaussian measure on T and to an abstract Wiener space in which a
one parameter “time” has been introduced through a self-adjoint operator with
a continuous spectrum [13].

Let X,Y be L? functionals of W,, ¢t € T, and let DX, DY be the H-deriva-
tives of X and Y, respectively (cf., e.g. [8], [14], [15]) which are assumed to exist
and belong to L%(Q X T'). The subsigma field induced by X is certainly different
from the one induced by (DX),, t € T, or by (DX, DX );»ry. It is still natural
* to inquire whether there exists a relation between the independence of X and Y
and the orthogonality of DX, DY, ie., (DX, DY);3ry=0 as. Consider
the following example: Let f(t), g(t) be two orthonormal L? kernels on 7. Let
f=1I(f) and g = I(g). Then f and g are independent. Consider now the
random variables

X=(f)+@° Y=iNX.
It is well known that X and Y are independent. Since Dh = h, a straightforward
calculation yields that (DX, DY)z, =0 as. This special case is “singular”
from the point of view of this paper since it does not seem to be an example to
the results presented here [Proposition 5 applied to this case yields that, since
X,Y are independent and X is, up to a constant, a multiple integral of order 2,

E(DX,DY)|Y) =0 as. but not that (DX, DY) = 0 as.]. We do not know
whether in general independence of X, Y implies the orthogonality of DX, DY;
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1442 A. S. USTUNEL AND M. ZAKAI

however, as the following example shows, orthogonality of the H-derivatives
does not imply, in general, independence. Let f and g be as in the previous
example. Set

U=-min(f,8), V=max(f2).

Then (DU, DV) = 0 a.s. since (Df, Dg) = 0 a.s. but U and V are obviously not
independent. This does not eliminate the possibility of obtaining geometric
characterizations for independence of Wiener functionals but obviously the
conditions will have to be more complicated.

The next section is devoted to notation and preliminaries. In Sections 3 and 4
we consider functionals which are of the form X = I(f,)and Y = I, (&,) where
I, and I, are multiple Wiener-It6 integrals of order p and g, respectively,
associated with the symmetric kernels f and g. In Section 3 we derive a
necessary condition on the kernels f and g for the independence of X and Y. In
Section 4 it is shown that this condition implies that (DX, DY) = 0 a.s. The
problem of independence of general L? Wiener functionals is considered in
Section 5 and independence is characterized in terms of conditional expectations
and the representation of Wiener functionals as stochastic integrals. The results
of Section 5 are applied in Section 6 to show that the necessary conditions of
Sections 3 and 4 are, in fact, sufficient.

2. Notation and preliminaries. Some notation: f = fp=1F(t;...,t,) and
g=28,=8(,...,t,) will denote L? kernels on T” and T, respectively. The L?
kernel on T?*? which is the tensor product of f and g will be denoted by f ® g
[namely ( f ® g)(tl, AR tp+q) = f(tb A tp) : g(tp+1, (AR tp+q)]° The kernels f
and g will be assumed to be symmetric throughout this note; note however, that
f® g need not be symmetric. For a (not necessarily symmetric) kernel
" h(ty,...,t,), B" will denote the symmetrization of k. For m < min(p, q),
f ®, & will denote the contracted L? kernel on T?*+?~2™ defined by

0 fe, g= mef(tl,...,tp_m,al,...,om)

g(ol,-.., Oy tp—m+1""’ tp+q—2m) do’l oo dOm

and in particular

@) f& g= fo(tl,..., ty_1,0)8(0,t,, ..., ty, 4 5) do.

The multiple Wiener-1t6 integrals I(f) and I(g) satisfy the product formula
(for f and g symmetric) (cf., e.g., page 247 of [4] or Lemma 4.1 of [8])
min(p, ¢) plg!

I . = -

(3) N p(f) Iq(g) mgo m!(p_ m)!(q_ m)!
Also, for h, € LX(T*), E(Ii(h;))* = k!||A"||}2r+, and are finite.

A pair of random variables X,Y possessing all moments will be said to be

weakly independent if EX™Y" = EX™EY™" for all integers m and n. This notion

Ip+q—2m( f ®m g)'
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is introduced here for the following reason. If the moments u, ,= EX™Y"
satisfy a certain growth condition, then they determine uniquely the probability
law of (X, Y) and in this case weak independence implies independence. How-
ever, as pointed out by McKean [3], page 202 (cf. also [2], Theorem 6.6 and page
119)

E(L(1))™ < (p)™((2n)!/2"n1)" - | 1 ey
= (p)™(@ne™)” - |1 ey
Therefore
pm
(4) EIIp( fm< exp[—2- log m + O(m)],

Consequently for p < 2, a sufficient condition of Carleman for the uniqueness of
the Hamburger moment problem ([9], Theorem 1.10) is satisfied. Consequently
the moments E(IL,(f))™, m = 1,2,..., define uniquely the distribution function
of the random variable I,(f). For p > 3 this sufficient condition is not satisfied
and the uniqueness of the solution to the moment problem in this case is open.
Similarly by Theorem 1.12 of [9], for p, ¢ < 2 the joint moments y,, , determine
uniquely the joint probability distribution of I,(f), I,(g) and consequently for
P, q < 2 weak independence implies independence. For p > 3 or ¢ > 3 the
condition of Theorem 1.12 of [9] is not satisfied (cf. also [7]).

REMARK. As shown by Shigekawa [8], the random variable I( f ) possesses
a probability density; however as the example fy(¢;, t,) = fi(¢)f,(Z;) shows
(I fy) = (I(f))? = || f1ll?) therefore the density of I f,) is not smooth.

3. A characterization of the pairs (f,g) for which I ,(f),I(g) are
weakly independent.

PROPOSITION 1. A necessary and sufficient condition for the weak indepen-
dence of I(f) and I (g) is

(5) feg=0
a.e. Lebesgue on T?*972 namely,
(5a) If & 8l 2ge+a-2y = 0,

where f ® g is as defined by (2) and, since for p, q < 2 weak independence is
equivalent to independence, (5) is a necessary and sufficient condition for
independence in this case.

ProoOF. Starting with the proof of necessity, since I,(f) and I (g) are
weakly independent with f and ‘g symmetric,
E(L()I(2))" = P I32zs, - @lElare)

=plql|lf ® g"%"'(TP*q)'

(6)
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On the other hand, by the product formula and the orthogonality between
multiple integrals of different order,

E(L(f)I(8))’
(7) min(p, q)

-k (""(5)(3;))2(1’ +q = 2m)! (I(f @, &) Ilzcrrramy.

m=0

Dropping terms with m > 1 yields

2 N
(8) E(L(f) 1(8))" 2 (p + @)U(f ® &) lIZ2(rrs)-
Let II denote the group of permutations of (1,2,...,p + q) and for 7 € 11

denote 7(1,2,..., p + q) = (m, M,..., 7,, ). Then
2
“( f ® g)AIIiZ(TpH)) = ( + ) Z f( 17'1 ‘Irp)g(tﬂp+l’ (R twp+q)
(9) b q aell L2(Tp*‘7)
= Y ((p+a)) A,

p,pell

where

A, = pr+qf(t"1""’ t, )&ty sty VE(teont, )

gty o t, . )dt - dt,,,.

We want to show that A, , > 0 for all g, p € II. Assume, now, that p=<gq and
that (p,,...,p,) and (p,,..., p,) have k elements in common. Then, since f and

& are symmetric,

(10)

A, = '[prf(tl,..., thr S1rees Sp ) 8(Ehstseevs by Orreens Oy (poiy)

(1) X (e by bprtses by )g(sl,...,sp_k,al,...,aq_(p_k))
X dt, -+ dt,do, -+ do,_,_y ds, -+ ds

p—Fk
=|f ®_k g|I2L2(Tq—p+2k).

Hence, A, , > 0. Note that for k=p, A, ,=|/f® g||Lz(Tp+q) Substituting (11)
and (9) 1nt0 (8) yields

p-1

(12) EL(f)I;(&) =2 p'qIf ® gllizray + 2 Chllf @y &llT2cro-rrony
k=0

with ¢, > 0. Comparing this with (6) yields

(13) 1f @ &ll3zcrrra-smy =0

for all 1 < m < min( p, ¢) and in particular m = 1 yields (5).
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Turning to the converse direction, in order to prove that f® g =0 ae.
L*(T?*9-2) implies weak independence, it is necessary to show that

(14) E{(L,(1))*(1,(8))"} = EL}(f) - EI}*(g)

for all integers %,, k,. From the multiplication formula (3) it follows that

Pk,

Ih(f) = X I(a,) + EIN(f),
(15) ~

qky
I}2(g) = ¥ I(b,) + EI}(g).

s=1

Consequently it suffices to show that

E(I(a,)I(5,)) =0

for all 1 < r < min(qk,, pk,). Let ¢ be an L? kernel on T* and let i, j be two
distinct integers 1 < i, j < k. Assume that ¢ is of trace class for the i and j
variables (this is automatically trueif ¢ = f ® g with ¢, in f and ¢; in g). Define
the L? kernel on T*~2

0

c(i, j)o = ,[,r¢(t1""’?""’j""’tk—2) do;

repeating this procedure we define the multiple contractions c¢(i, j,)(c(Z,, J1)),
etc. Let f ®* denote the k,th order tensor product f ® - - - ®f. Then [by (3)] the
kernels a, in (15) are obtained by multiple contractions on ¢ = f ®*, similarly b,
are obtained by multiple contractions on ¥ = g®*2. Consequently and because
f ® g = 0 a.e. the scalar product,

[ ety )bty s t,) dty - dt,
T"

must vanish; the same holds for the scalar product of a,¢,...,%¢;,) with
b(¢,,...,t,) for any permutation = of (1,..., r), which completes the proof. O

From Proposition 1 we have the following corollaries.

COROLLARY A. The Wick product of two elements of the Wiener chaos is
defined by

Ip(f): Iq(g) = Ip+q(f®g)'
Under the assumptions of Proposition 1,
L(f):1,(g) = L,(f) - I(8)-
The proof follows directly from (5), (13) and the product formula.

For the case p = ¢ = 2 and for kernels which are of trace class it is well
known (cf., e.g., page 204 of [3]) that the characteristic function of I(f) is
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given by
E expialy( fy) = [det(I — iaf,)] ~V* - exp(— Liatrace f,),

where det denotes the Fredholm determinant (the product of the eigenvalues of
the symmetric operator taking into account multiplicities [10]). It holds in
general that det(I + A)det(I + B) = det(I + A + B + AB) (cf., e.g., Theorem
3.5 of [10]). From Proposition 1 we have the nonprobabilistic result regarding
Fredholm determinants:

COROLLARY B. Let f, g be LY T?) symmetric kernels of trace class. Then
(16) det(I + af + Bg) = det(I + af )det(I + Bg)
for any (a, B) in a sufficiently small neighborhood of (0,0) if and only if
f® g=g® f=0(as an operator).

4. A necessary condition for weak independence in terms of H-deriva-
tives. Let DI(f) denote the H-derivative of I(f) (cf. e.g., [8], [11], [14] and
[15]). Consider now the pth order kernel f as a kemel of order (p — 1)
parameterxzed by one of the variables, i.e., f® = f(¢,...,t,_,,8) and denote by

oa( f ) the collection of random varlables belongmg to the (p — 1)th chaos
parametnzed by 6. Then

DI(f) =pI,_,(f®)

and

(DL(1), DI(&))2cry = Pa [ L @)T,-1(8®) db.

PROPOSITION 2. A necessary condition for the weak independence of I(f)
and I(g) is

(17) (DIL(f),DI(&))2ry=0 a.s.

ProoF. Let @ = (DI(f), DI(g)). We show that f ® g =0 a.e. implies
that EQ% = 0 or

0 = pyq f p 1( f(o)) 1(3(0))11;—1( fw))Iq—l(g(‘p))} dy de.
By the multiplication formula,

o a( F OV A(89) = Ty o £(t1sees 8y 1,0)8(bps -, tyig 5, 6))

(18) min(p, g)—1
+ Z amIp+q—2—2m( f(0) ®m g(0))'

m=1

If f,® g,=0ae,then [P g® =0ae.forall m>1and all terms in the
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sum from m = 1 to m = min( p, q¢) — 1 will vanish. Consequently

=00 [ B{Lyuqo ) ® 80,y o1V © 8V)} dy db;

the kernels f® ® g® are not necessarily symmetric, but a straightforward
calculation yields that (f ® g) = 0 implies EQ? = 0 which is (17). Note that, if
(17) holds, then by (18),

_/;‘2E{Ip+q—2—2m( f(0) ®m g(o))Ip+q—2—2m( f(\b) ®m g(\lz))} dad‘!’ =0

and in particular

(19) 0= f Lo FO®gN,, ., (Ve gw))} dy de.
By a Fubini type identity [cf. (30)], (19) is equivalent to

E(Ip+q—2( f ®1 g))2 = O’

from which (f ® g)" =0 a.e. follows directly; however, this does not imply
f® g=00

5. A characterization of independence. In this section we consider the
case in which at least one of the random variables is a general random variable
on Wiener space. D, ; will be used to denote the collection of L? functionals X
which possess a square integrable H-derivative, namely E|DX|? T2(T)<w, and
D,, , will denote the collection of L? functionals possessing a square integrable
kth H-derivative (cf., e.g., [5], [8], [14], and [15]). For any L? functional Y on the
Wiener space we have the (nonunique) representation Y = EY + 8Uy, where &
denotes the dual to D which is the Skorohod integral (cf. [5], [6] and [12]). The
integrand Uy may be chosen to be adapted, in which case Uy coincides with the
It6 integral (cf., e.g., [1], [6] and [12]). Another pos51b1hty is as follows: L™, the
inverse of the Ornstein—-Uhlenbeck operator L, is well defined on the class of Zero
mean L2 functionals and L - L~ 'Y =Y — EY. Since L = 4D, it follows that
Y = EY + 8(DL™'[Y — EY]); hence we may set Uy = DL~'Y. Recall that the
class D, , denotes the collection of L? functionals Z which possess a square
integrable H-derivative DZ.

PROPOSITION 3. Let X € D,, and Y € L? Then X and Y are independent if
and only if for every C? functzon n: R > R [or just for every n of the form
n(x) = exp iax, x € R, with a € R],

(20) E{<Un(y), DX) IX} =0 a.s,

where U, y, is defined through n(Y) = 8U,y) + En(Y) or
(20a) E{(DL 1[n(Y) En(Y)], DX)IX} =0 a.s.
or

(20b) E{{(I+L)'Dy(Y), DX)|X} = 0.
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ProoF. If X and Y are independent, then E(8U, vy - P(X)) = 0 for every p:
R — R which is bounded and smooth. Therefore, applying the integration by
parts formula (cf., e.g. [5]),

0= E(U,y), Dp(X))
= Ep'(X)(Uyy,, DX);

(20) follows since p is arbitrary. Equation (20a) follows since we may choose
U,y = DL '9(Y) and (20b) follows from (20a) by the commutation relation
(Y) —

7
DL™" = (L + 1)7'D. To prove the converse note that the same argument works

in the converse direction. O

The following extension of the previous proposition will be needed for the
proof of Proposition 7 in the next section.

PROPOSITION 4. Let X € D, , and Y € L?, Z € L2 Then X is independent
of the pair (Y, Z) if and only if for every real a, B8,
(21) E{{(I+ L) 'De"*¥*f% DXy|X} =0 a.s.
Proor. The proof follows along the same lines as that of the previous
proposition: Let p(-) be as before. Then
E(LL—I(ei(aY+BZ) _ Eei(aY+BZ))p(X))
— E{<DL—1(ei(aY+BZ) _ Eei(aY+BZ))’ pl(X)DX>} ,

from which the result follows by the commutation relation DL~ = (I + L)~ 'D.
]

(22)

PROPOSITION 5. Let G = I(g) and X € Dy, . Assume that G and K are
independent. Then

(23) E((D*G, D*X Y201 | X) =0 a.s.
PROOF. For k > g, D*G = 0 and (21) is trivially true. Consider now the case

k = 1. Since DG = qG and EG = 0, it follows from the integration by parts
formula that for any C}, n: R — R,

0=E(n(X)-G)

ZB(x(x) -80G)

%E(Dn(X), DG)

%E{n'(XXDX, DG)},

which proves the result since 7 is arbitrary. For 1 < 2 < g the proof follows
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along the same line with 8D replaced by 8*D* and the generalized integration by
parts formula (Proposition 2.7 of [6]). O

6. A characterization of the independence of I,( f) and I, (g). In this
section we apply the results of the previous section to show that the conditions
of Propositions 1 or 2 imply independence.

Let f € L*(TP), S; will denote the following subspace of L%(T'):

S; = Span{pr_lf(t, ty1)d(t,_) dt,_1, d(t,_1) € LZ(Tp—l)}.

THEOREM 6. Let f, and g, be symmetric L? kernels on TP and TY, respec-
tively. The following are equivalent:

(@) I(f) and I (g) are independent random variables.

(®) f, ® g,=0 a.e. Lebesgue on TP*92

(© S; LS,

(d) The subsigma fields o{I\(h), h € S;} and o{I,(f), h € S;} are indepen-
dent. .

Note that it follows directly from (d) that if S; =S, then any multiple
integral I,(h,,) which is independent of I,( f) is also independent of I (g).

Proor. In view of Propositions 1 and 2 it suffices to prove that (b) implies
(a). In fact, we will show that assumption (b) implies that for F = I (f),

G = I(8)
(24) (DF,(1+ L) 'De®®);p =0 as.

It will then follow directly from Proposition 3 [(20b)] that F and G are
independent. Fix a and denote the chaos decomposition of iaexp iaG by

o0
iaexpiaG = Y. I(h,);
0
set
N
QN = ZIn(hn)’
0

where the A, are symmetric kernels on T”. In order to prove (24) it suffices to
prove that for a subsequence N;, N,,... with N; > oo as i = oo,

(25) (DF,(1+ L) (QnDG)) =i~ (DF,(1+ L) 'iaeSDG) as.
and that for all N,
(26) (DF,(1+ L) '(QyDG)) =0 as.
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We start by proving (25). Note first that by the Schwarz inequality, the
following holds a.s.:
|(DF, (1 + L) '{(Qy — ize™®)DG}}|
<IDFll2ry - W1 + L)@y — iae’*®) DGl ar.
Consider the last term; taking expectations we have [15]
Uy=E¥?|(1 + L) ((Qy — ine™*¢) DG)
(@7) = (@y — iae™®)DGlly, , iz
< (@y — iae™®) DGy, , 1),

where D, . are the Sobolev spaces defined in ([14], page 25). Consequently, by
the Meyer—Hélder inequality (Proposition 1.10 of [14] with p = 2, s = 6, r = 3),

(28) Uv<K|Qy— iaeiaG”Dz,o : ”DG”ns,o(T),

which proves (25) since ||Qy — iae’C||p,  — 0as N > oo.

Turning to the proof of (26), let A, be a symmetric n-kernel on T7 ie, a
symmetric L? function on T” By A ; we denote the symmetrlc (n—1) kernel
obtained from h, by considering ¢ as a parameter, ie., A (¢,...,¢, ) =

h(t,....;t,_1, 0), and then
(29) DI(h,) = nl,_,(h,).

Note the Fubini type result

(30) f A(£9)de =1, (/ <0>1d0).

) [This result follows by the following argument: Assume that the Lebesgue
measure of T is finite, say u. Then it follows from the isometry property of the
multiple integral that

E(/T{Ip_l( £) - ( ff( ) dx)} d0)2 =0

and (30) follows.]
Returning to (26),

|3/2
LX(T)

QnDG = E ()L, 1(g2,).

By the product formula (3), for every 8 € T, each term in the right-hand side is a
finite sum of multiple Wiener—Ito integrals with kernels of the form

ngutth 2m—1 " f n(tl’ ©3 Pysee ’Pm)g(t)l( ,Pp--',Pm) dp, --- dp,
(31)
—h, 8,82,
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with m < n, m < q — 1. Since applying (1 + L)™' to a multiple Wiener-It6
integral of order r+ 1 is (1 + r)”! times this integral, it follows that
(1 + L) 'QyDG is a finite sum of multiple Wiener—Itd integrals of the form
(n+q—2m)"'L, . 5, (n®). Since DF = pI, (")), in order to prove (26)
we have to consider the scalar product of I, _,( f{%) with I, 5, (n®):

(32) fT L (£, omo(n®) d8.

Applying the product formula again will yield a finite sum of multiple integrals
with kernels of the type

(33) 20 = fOty,...) @, hy(ts...) 8, 8D(t,...).

Finally we have to integrate with respect to §. Note that while evaluating the
multiple integral of the kernel 2z’ we may have to symmetrize it with respect to
the variables of the kernel but no symmetrization is necessary with respect to
the 8 parameter. By (30) we may interchange the order of the integrations,
integrating first with respect to # and then performing the Wiener-Itd integra-
tion. Because of the assumption f ® g = 0 a.e. it follows that [;2° = 0 proving
(26). (c) and (d) follow immediately from (b) which completes the proof. O

From Theorem 6 we also obtain the following two propositions.

PROPOSITION 7. Assume that f, 1 and ¢ are symmetric L? kernels on TP, T?
and T™, respectively. Further assume that f® 7n=0 and f® £§=0 a.e.
Lebesgue on TP*9~2 and TP*™ "2, respectively. Then I( f ) is independent of the
pair (L n), L(§)), i.e., in this case pairwise independence implies mutual

independence.

ProOF. The proof follows along the same lines as that of Theorem 6 and is
based on Proposition 4 instead of Proposition 3. Except for this the proof is the
same and is therefore omitted. O

REMARK. Note that in the proof of Theorem 6, the fact that szo do =0,
where 2 is as given by (33), follows from the fact that f ® g = 0 and this does
not depend on the A, which appears in (33).

PrOPOSITION 8. Let X,Y be L? random variables on the Wiener space with
the decomposition

X= iIn( fn)’ Y= iIn(gn)

If f, ® &, =0 a.e. Lebesgue on.T™ "2 for all m,n > 1, then X and Y are
independent, in particular if X € D, , and if for every m > 1,

IDX & &l 2gm-1y =0 a.s.
Then X and Y are independent.
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Proor. Note first that convergence in probability and independence com-
mute, ie., if X, »p X and Y, —», Y and for all n, X, and Y, are independent,
then

Eexpi(aX + BY) = lim Eexpi(aX, + BY,)

n—oo

= lim (EexpiaX, - EexpifY,)

n— oo
EexpiaX - EexpifY

and consequently X and Y are independent. Therefore it suffices to prove the
result for

It

N M
(34) X=YIL(f), Y=YXI(8&n)-

Consequently by Proposition 3, (20b) it suffices to prove that for all n,
((1+ L) 'De™¥, DI(f,)y =0 as.
It therefore suffices to show that

(1 + L) 'iae™ + DI, (g,,), DL(f,)) =0

for all1 < m < M, 1 < n. The rest of the proof is the same as that of Theorem 6
(cf. the remark following Proposition 7) and is therefore omitted. O
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