The Annals of Probability
1990, Vol. 18, No. 1, 431-437

TWO BOOKS ON THE MALLIAVIN CALCULUS

DeNis R. BELL, The Malliavin Calculus, Pitman Monographs and Surveys in
Pure and Applied Mathematics 34, Longman Scientific and Technical, New
York, 1987, x + 105 pages, $64.95.

S. WATANABE, Lectures on Stochastic Differential Equations and Malliavin
Calculus, Tata Institute of Fundamental Research Lecture Notes, Springer, New
York, 1984, 111 pages, $15.00.

REVIEW BY DANIEL L. OCONE

Rutgers University

The Malliavin calculus is a recent development in stochastic process theory
that provides a method for studying the probability densities of random vectors
defined on Wiener space. Malliavin initiated the field [Malliavin (1978a, b)] in an
effort to achieve a probabilistic proof that solutions to stochastic ‘differential
equations whose vector fields satisfy Hérmander’s hypoellipticity conditions
admit C* probability densities. To explain, let £(x, ¢, W) be the solution to

(1) dé(t) = Xo(£(¢)) dt + f‘.Xi(ﬁ(t))°dW"(t), £(x,0) = x.

In (1), &(t) € R™, Xi(¢) = (X;(§),..., X;4(§)), 0 <i < d, are C* vector fields
on RY, (W\(¢t),...,Wi(t)), t > 0} is a Brownian motion, and o dW denotes the
Stratonovich differential. As usual, we interpret the vector fields as operator-val-
ued, ie, X;(§)=X{X,(£)vd/0¢, We want to find conditions on (1) that
guarantee the existence and regularity of the density for £(¢). The traditional
approach to this question relies on the theory of partial differential equations.
Let P(¢,-) denote the probability distribution of £(x, ¢, W), that is, P(t, A) =
Prob({(x, t, W) € A). P(¢,-) is a fundamental solution in the sense of distribu-
tions to the Fokker—Planck equation

3 14 *
@ 3e246) = | g TXHE) + Xo(6) | R(t),

where L* denotes the formal adjoint of an operator L. Therefore we can use
p.d.e. theory to study the existence of a density p,(t, £) satisfying pAt, §)dé =
P (¢, d¢). However there is also a differential geometric way to look at the
problem. Let [-,- ] denote the Lie bracket between vector fields defined by
[X;, X;]1= X, X, — X,;° X,. Let A be the smallest linear space of vector fields
closed under [-,-] and containing X,,..., X, and also [X,, X,],...,
[Xo, X1 [ X0, [ Xo, X110, ..., [ Xy, [ Xy, X,11, etc., that is, A is the ideal gener-
ated by X,,..., X, in the Lie algebra generated by Xy, ..., X, Let A(§) denote
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the vector fields of A at £. Roughly speaking, A(x) represents the set of possible
directions in which £(x, d¢t, W) moves transverse to the flow of X, in an
infinitesimal time, as W ranges over Wiener paths. Therefore, if the dimension of
A(x) = n, £&(¢) diffuses in all directions in R™ and this should have a smoothing
effect leading to existence and regularity of densities. Such reasoning suggests
the following result.

THEOREM 1. If dimension A(x) = n, p(&,t) exists and is a C*® function.

The condition that dimension A(§¢) = n for all ¢ is Hormander’s celebrated
condition for hypoellipticity of the operator 3/9¢ — (L¢X? + X,), and one can
prove a weaker version of Theorem 1 using Hormander’s theorem. Malliavin’s
achievement was to show how to prove Theorem 1 by a stochastic argument
making use of the differential geometric intuition. Moreover, in so doing he
invented a strategy for exploring existence and regularity of densities that
applies in principle to any random vector defined on Wiener space, not just to
solutions of stochastic d.e.’s. )

Malliavin’s work generated considerable interest and inspired a number of
researchers, most notably Stroock, Kusuoka, Watanabe and Bismut, who took
up Malliavin’s ideas and developed them into their present form. The achieve-
ments of the field to date include a complete probabilistic proof of Hérmander’s
theorem for second order operators and numerous new applications to problems
which did not submit to techniques from pure analysis, for example, existence of
densities for infinite systems of stochastic d.e.’s, existence of densities for multi-
ple Wiener integrals, regularity of conditional densities in nonlinear filtering,
regularity of Poisson kernels for degenerate elliptic operators, extensions of the
theory to Poisson driven stochastic d.e.’s, and connections to large deviation
analysis on Wiener space. This activity has also inspired more widespread
interest in functional analysis on infinite-dimensional Gaussian spaces, which lies
behind the Malliavin calculus. For example, Nualart and Pardoux (1988) have
recently developed the theory of the Skorohod stochastic integral, which general-
izes It6’s integral to nonadapted integrands, using the functional analytic setup
of the Malliavin calculus.

The fundamental criterion for existence and regularity of densities can be
easily stated and motivated. Consider first a finite-dimensional, nonstochastic
version of the problem. Let F: R™ — R", where m > n, and let M denote
Lebesgue measure on R*. We want a condition implying that Ao F~! be
absolutely continuous with respect to A*. To this end we introduce the co-area
formula, a result well known in geometric measure theory. Let DF(x) =

=l=nl=<s)=<

sis, if A € R",

(3)  [1(reeay/det DF(x) DFT(x) N"(dx) = jA #m(FY ()N (dy),
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where ™~ "*(F~Y(y)) is the (m — n)-dimensional Hausdorff measure of F~'( y).
It follows that

(4) det DF(x) DFT(x) > 0 fora.e. x

implies that Ao F~! < A", Indeed, if (4) holds, then from (3), A*(A) = 0 must
imply that [1z . ec4A™(dx) = X" F7(A) = 0 also.

The principal criterion of the Malliavin calculus is a generalization and
refinement of condition (4). We replace R™ by C,[0, T'], the space of continuous
paths on [0, T'] starting at 0, and A™ by Wiener measure, which we denote by p.
If F: Cy)[0, T] — R", the probability distribution of F is po F~'; thus, asking
that F admit a probability density is equivalent to asking that po F~! < X" To
generalize (4) requires a notion of differentiability of Wiener functionals, but
here we must be subtle. We might at first try working with functionals F that
are Fréchet differentiable with respect to the sup norm topology on C,[0, T'].
However, such a theory would not cover many interesting cases. For example,
solutions £(x, t, W) to (1) will not in general even be continuous functions in W
if the vector fields X,,..., X; do not commute, that is, if [ X;, X;] # 0 for some
1 < i, j < d. Moreover, having differentiability of Wiener functionals in arbi-
trary directions in C,[0, T'], as in Fréchet differentiable functionals, makes no
sense probabilistically because F is defined only up to sets of Wiener measure 0;
hence, for a fixed continuous function h, F(W + eh) is well defined only if
W(-) + eh(-) is absolutely continuous with respect to Wiener measure, that is,
only if u(A) = 0 implies u(W + eh € A) = 0 for any set A. But this can be the
case for all ¢ if and only if £ is in the space H of continuous function satisfying

(5) h(t) =f0‘h'(s)ds where /(;T|h’(s)|2ds< %.

(5) is the key to the proper concept of differentiability. Endow H with the
inner product (h, g) = [Fh'(s)- g'(s)ds. Very roughly, if G: Cy[0,T] - R,
G is said to be differentiable if there is an H-valued DG(W) such that
lim,_ e '[G(W + eh) — G(W)] = (DG(W), h) for all h € H. Similarly, one
can define higher order derivatives D?G = D(DG), D3G, etc. Of course, this
definition of D is not rigorous, but it conveys the idea. Clearly, D defines a
notion of derivative much weaker than that of Fréchet. For example, the solution
£(t) to (1), even though it may not be continuous in W, will be differentiable with
respect to D.

Now suppose that each component of F: C,[0, T] — R" is differentiable. The
analogue of the matrix appearing in (4) is the nonnegative definite matrix
[(DF,, DF;)],,.; j<n), Which is called the Malliavin covariance matrix. In anal-
ogy to (4), almost sure positivity of the Malliavin covariance matrix will imply
the existence of a density for F; see Bouleau and Hirsch (1986). This is the
reason for the term “covariance matrix”; indeed, if F is the Gaussian solution of
a linear stochastic d.e., then the Malliavin covariance matrix equals the covari-
ance matrix of F. The most important achievement of the Malliavin calculus,
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however, is a condition for regularity of the density. It is shown that F admits a
C* density if

(H.1) F is infinitely differentable w.r.t. D, and F and all its derivatives are in
LP(p) for all p > 1,

(H.2) (det[(DF;,, DF;)]))"' € L?(p) for all p > 1.

Thus, given an F on Wiener space, such as the solution &(x, £, W) of (1), one
calculates the Malliavin covariance matrix and tries to verify (H.1) and (H.2) in
order to prove existence of a smooth density. This is the strategy behind the
probabilistic proof of Theorem 1. The task of proving (H.1) and (H.2) for a
particular example is usually very difficult and analytically involved. It is this
stage of the subject that gives it its reputation for complexity and difficulty.

The Malliavin calculus is not one unified theory: Broadly speaking there are
two approaches, which we shall call, respectively, the Stroock—Shigekawa ap-
proach and the Bismut approach, after their main developers; see Stroock (1981),
Shigekawa (1980) and Bismut (1981). Although we motivated the Malliavin
covariance matrix with the co-area formula, the common point of departure for
both approaches is a different theorem from analysis. [However, for a direct
connection to the co-area formula, see Bouleau and Hirsch (1986).] If » is a finite
measure on R”, then dv/d\" exists and dv/dX* € CN~""Y(R") if there exists a
constant- C such that

lelgy (
©) [ 32 (ae)| < Coupioo)

for all infinitely differentiable functions ¢ with compact support and for all
multiindices @ = (a,,..., @,) such that |a| < N. Suppose that » = po F~! is the
probability distribution of a Wiener functional. Then the integral in the Lh.s. of
(6) may be written

8'“'¢(F(W))
I

dw) =
[0, 71 9x" w(aw)

3 e(F)
3xixx 3xg" '

The strategy of the Malliavin calculus is to prove inequalities like (6) by
somehow integrating by parts over Wiener space in order to remove the deriva-
tives from ¢, and the Stroock—Shigekawa and Bismut approaches distinguish
themselves from each other by the way they do this. The Stroock-Shigekawa
approach is functional analytic and builds on the theory of analysis on infinite-
dimensional Gaussian spaces developed by Gross, Kree, Kuo and others. The
It6-Wiener decomposition of L?*(u) and a generalization of the Orrstein—
Uhlenbeck operator L to L%(u) play a prominent role in the theory and t. v are
used to define Sobolev spaces of differentiable Wiener functionals. Integration by
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parts is then accomplished by using the Ornstein—Uhlenbeck operator, which is
self-adjoint, and the relation 2( DG, DG) = L(FG) — GL(F) — FL(G). Alter-
natively, following the book of Watanabe under review, one can define an adjoint
6 to D satisfying E[((DF, DG )] = E[F6( DF)]; the two methods are equivalent
because L = —48D. To see how integration by parts works, let F take values in
R. Then D(¢(F)) = ¢'(F)DF, and so ¢'(F) = (DF, DF)~X D(¢(F)), DF). By
using 8, E[¢'(F)] = E[¢(F)3({DF, DF) ' DF)]. We see immediately how
nondegeneracy and differentiability of the Malliavin covariance matrix enter
into the derivation of (6). The Bismut approach, on the other hand, relies on
Girsanov’s transformation. The idea is to represent the effects of a variation of
the sample paths W in a random direction A by a transformation of measures. In
this way, derivatives on ¢ are transferred to functional derivatives on the
Girsanov density. The Bismut approach is not used to prove the general criterion
of existence of C* densities sketched above. Rather it is used on a case by case
basis. The trick is the proper choice of &, which is always the one that leads to
the appearance of Malliavin’s covariance matrix. The Bismut approach is partic-
ularly suited to extension to random functionals of Poisson processes.

The two books under review here are both introductions to the Malliavin
calculus. Their contents overlap only partly and, taken together, they provide a
fairly complete picture of the field as it stands today. The book by Watanabe
contains the lecture notes of a course he gave at the Tata Institute in India in
1984. In it, he first develops the functional analysis on infinite-dimensional
Gaussian spaces necessary for defining the Malliavin covariance matrix and
proving conditions (H.1) and (H.2) for existence of C* densities. His approach to
(H.1) and (H.2) differs from those sketched above in that it does not use (6). But
don’t despair! It is not a completely different version of the Malliavin calculus. It
is rather a variant of the functional analytic approach. Watanabe introduces D
and defines Sobolev spaces of differentable functionals using the Ornstein-
Uhlenbeck operator in the spirit of Stroock and Shigekawa. However, he then
observes that where there are Sobolev spaces there are dual spaces of distribu-
tions, which in this context operate on Wiener functionals. Now let 8, denote the
Dirac delta function at y € R". Watanabe shows that (H.1) and (H.2) imply that
8,(F) can be made sense of as a distribution in one of these dual spaces, and that
y = §(F) is C* in an appropriate weak sense. We may thus define p.(y) =
E[5,(F)] = §(F)1), where §,(F)(1) is the action of § (F) on the function 1. It
is intuitively reasonable that p.(y) is the density of F and so existence of a
smooth density follows. The second part of the book is entirely taken up with
the lengthy proof of Theorem 1, which Watanabe presents very clearly. The
longest and most difficult step in this proof has recently been simplified by
Norris (1986); Norris’s proof appears in the book by Bell.

The style of Watanabe’s book is very much “definition—theorem—proof”
without a lot of casual motivation or example, and it is best read with some
initial orientation to the field. However, it is clear, very complete and definitive.
In particular, it contains a lengthy discussion of a difficult point in analysis on
Wiener space having to do with the continuity of D between different order
Sobolev spaces. Here, the treatment uses Meyer’s inequalities, which are a very
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beautiful extension of Littlewood—-Paley multiplier theory to Weiner space and
which Watanabe treats fully. This material is not directly used in applications
and the reader interested in the applications does not need to study it in detail.

The book by Bell is more introductory and broader in scope, and I think it is a
good place to go for those seeking a first time introduction. The blurb on the
jacket advertises “enough technical background to make the book accessible to
readers without specialized knowledge in stochastic analysis.” This is perhaps a
slight exaggeration. Stochastic integration is reviewed in three brief pages!
However, an elementary knowledge of stochastic integrals and stochastic differ-
ential equations and their connection to parabolic partial differential equations
should suffice. Certainly anyone able to make some intelligent sense of this
review will be well prepared to read Bell’s book.

I think this book will be a successful introduction. Care is taken to motivate
ideas and to get to the main results as directly and concisely as possible. Since its
inception, the subject has undergone much simplification as it has become better
understood, and the results of this process are evident in the book. Bell focuses
on the main steps in the arguments without getting too involved in minor
analytic details and thus he conveys the structure of the theory and brings out
its important ideas very clearly.

Bell’s book is also the most comprehensive survey of the field to date. He
discusses and compares both the Stroock and the Bismut approaches and also
reviews Malliavin’s original paper. Bell does not treat Watanabe’s method and,
in fact, he does not define the operator D within the context of Wiener space
functional analysis as in Watanabe. Instead, he follows a treatment of Stroock
(1981) defining the Malliavin covariance matrix using the Ornstein—Uhlenbeck
operator; recall that 2( DF, DG) = L(FG) — GL(F) — FL(G). Bell also treats
a variety of applications. Besides proving Theorem 1 using Norris’s simplifica-
tion, he also sketches an application of D. Michel to existence and regularity of
conditional densities in the nonlinear filtering problem, a study due to Stroock of
densities for infinite systems of interacting diffusions and some applications
of his own to infinite-dimensional stochastic differential equations on Banach
spaces.

The only major feature not covered by either the Bell or Watanabe book is
the formulation of the theory for functionals of jump processes. However, this
has been recently treated in book form by Bichteler, Gravereaux and Jacod
(1987).
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