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DIFFUSION IN A SINGULAR RANDOM ENVIRONMENT!

By W. Davip Wick
University of Colorado, Boulder

A class of diffusions on the line is considered whose drifts are generalized
functions (Schwartzian distributions). A probability measure is put on this
space of drifts, giving a diffusion in a random environment. An invariance
principle is then proven for the rescaled diffusion, generalizing a result of
De Masi, Ferrari, Goldstein and the author.

1. Introduction. Consider the stochastic differential equation
(1.1) dx(t) = —U'(x(t)) dt + dw(¢).

Here w(-) is a standard one-dimensional Wiener process, w(0) = 0 a.s.,, U is a
function on R, a prime denotes d/dx and x(¢) € R for ¢ > 0. If U is, say,
once-differentiable with a bounded, Lipschitz-continuous derivative, then (strong)
solutions to (1.1) exist a.s. for any initial condition x [x(0) = x a.s.] [see, e.g.,
McKean (1969)]. But if U is only assumed to be bounded, with perhaps some
mild regularity conditions (which permit U to have discontinuities), is it still
possible to associate a unique diffusion process (a process with continuous sample
paths a.s.) with (1.1), in such a way that this process is the limit of suitably
regularized processes? In this case (1.1) would be purely formal, as the drift could
only be interpreted as a generalized function (Schwartzian distribution), and so
the process would have to be characterized in some other way.

That the answer to this question is yes has been discovered by several
authors. The differential equation (1.1) is replaced by the Dirichlet form

(1.2) } [dxe 20D f1(x))".

Under suitable regularity conditions one can then associate a diffusion process
with (1.2) for a.e. initial condition. This process is time-reversible with respect to
the (in general infinite) measure exp(—2U(x)) dx. No smoothness condition is
required on the function U [see Silverstein (1974) and Fukushima (1980), and
references therein].

In this paper, I consider diffusions with singular drifts associated with
quadratic forms of the type (1.2). Sufficient conditions are given (see Section 4)
so that the diffusion is the weak limit of regularized processes [solutions of (1.1)
in the ordinary sense], and does not explode (reach infinity in a finite time). I
then consider diffusions of this type in a random environment; that is, I put a
probability measure on the space of “environments” U. An invariance principle
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for the rescaled diffusion can then be proved along the lines of the theorems in
Kipnis and Varadhan (1985) and De Masi, Ferrari, Goldstein and Wick (1985,
1987).

It will be more convenient to replace (1.1) and (1.2) by

(1.3) dx(t) = V'(x(t)) dt + 2V(x(¢)) dw(t)

and
(1.4) Jex V() (1(2))",

respectively. The reason for this is that solutions of (1.3) have Lebesgue measure
dx as reversible measure, and the Dirichlet form can be considered to be defined
on a suitable domain in L%(dx). Thus if we take a family of “environments”
Vi(x) = V(x) suitably, the corresponding family of Dirichlet forms, transition
operators, infinitesimal generators, etc., are all defined on the same space. A
transformation of the state space (R) will carry the process associated with
(1.3)—(1.4) to the process associated with (1.1)—(1.2) (see Section 4).

The organization of this paper is as follows. In Section 2 we construct the
diffusions associated with (1.4). We also characterize the corresponding transi-
tion function as a weak solution of the backward equation (see the remarks at
the end of the section). In Section 3 we put a probability measure on the space of
V'’s, construct the “environment process as seen from the diffusing particle” and
prove an invariance principle. In Section 4 we construct several examples of
singular random environments. In Section 5 we prove the corresponding theorem
for processes associated with (1.2). In the Appendix a scheme is given for
constructing regularized environments tending in a suitable way to a given
environment (a result needed in Sections 2 and 3).

Since the diffusions we treat in this paper are one-dimensional, one can also
construct them (at least if U is continuous) by time-change and scale-transfor-
mation from a standard Brownian motion [see It6 and McKean (1965) or
Freedman (1971)]. (Of course, this approach is not available for higher-dimen-
sional analogs of the processes constructed in this paper.) We do not pursue this
approach, but rather obtain our processes directly as weak limits of regularized
processes (a result needed in any case in Section 3). For a discussion of time-
changes for symmetric diffusions, see Fukushima (1980), Section 5.5].

One should contrast the cases discussed herein with that considered by Brox
(1986). In the latter case the random medium U was itself a Brownian motion
(I consider a similar case in Section 4), with “time-parameter” x, and U(0) = 0
a.s. This medium has very large excursions producing deep ‘ valleys” which trap
the diffusing particle for a long time. Thus one does not expect to get a Brownian
motion (with positive diffusion constant) in the scaling limit, and in fact Brox
found, informally,

x(t) ~ log?t,

just as in the discrete case [Sinai (1982)]. A similar result should be expected if
we take U(x) to be an integral (over the interval [0, x)) of a Poisson point
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process with random signs [so that U’ (x) is a linear combination of delta-func-
tions)]. The assumption that U is bounded in this paper rules out these interest-
ing cases (yielding always a positive diffusion constant for the rescaled diffusion).

2. A family of processes reversible with respect to Lebesgue measure.
Consider the stochastic differential equation

(2.1) dx,= V'(x,) dt + 2V(x,) dw(t).

Here w, is a standard Wiener process and V is a positive function. The
corresponding infinitesimal generator would be

(2:2) Lyf(x) = vV(x)vf(x)

with v = d/dx. If we assume, for instance, that V € C}(R) (continuously differ-
entiable functions with a bounded first derivative), and

(2.3) 0<c <V(x)<cy,<oo forallx,

then weak solutions of (2.1) exist for any initial condition x and do not explode
(reach infinity in a finite time). The corresponding path measures P§ on
C([0, »); R) form a Markovian diffusion process with generator given in (2.2) [see
Stroock and Varadhan (1979)]. However, we do not assume this but only that V
is upper semicontinuous (U.S.C.), either left- or right-continuous at each x and
(2.3). Having dropped the smoothness assumption on V, (2.1) and (2.2) become
purely formal. Nevertheless, we can associate a unique Markovian diffusion
process with V for a.e. initial condition, which is moreover a weak limit of
regularized diffusions.

Fundamental to the construction will be the Dirichlet form associated to V,
which we now introduce. Let H = L?(dx) and define

(2.4) Q1) = [deV(=)(f'(x))’

(the prime denoting d/dx), with domain

(2.5) D= D(Qy) = {f € H: f is absolutely continuous with ' € H}.

Qy is a closed quadratic form. [If f, —»f in H and Qy(f,—f,) >0 as
n, m — oo, then f; - g in L?, from which it follows easily that g = f’ a.e. and
Qy(f,— f) — 0.] Since @, is also nonnegative, by a standard result [Reed and
Simon (1972), Theorem 8.15] there is a self-adjoint, nonpositive operator L, with
D(Qy) = D((—L,)'”?) such that

(2.6) Qv(f) =I(=Ly)"* 13

(Il - Il is the L?norm). Additionally, @y is Dirichlet: If f € D(Qy) and ™) =
(fV(=N)) A N,

(2.7) Qv(f™) < Qu(f).

This implies [Fukushima (1980) and Silverstein (1974)] that the resolvents
(A= L,) Y A >0, and the semigroup T} = exp(Lt) are positivity-preserving.
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Thus we can construct a Markov process with transition semigroup T and any
initial measure p of form j(x) dx, § € L', (dx), on I1,cpg . R* (R* = R U {0},
the one-point compactification of R) by a standard construction [Nelson (1959)].

The Dirichlet form @, has several additional relevant properties, which we
list below [see Fukushima (1980)].

1. It is regular: C{°(R) is a core of D(Qy).

2. It is local: If f, g € D(Q,) and suppf N suppg = &, then Q,(f,g) = 0.
[Qv(-,-) is the bilinear form obtained from @, by polarization.]

3. A slightly stronger condition than 2 holds: If f, g € D(Q)) and f is constant
on supp g, then @Q,(f,g)=0. [This condition is relevant to part (d) of
Theorem 2.1.]

Dirichlet forms satisfying 1 and 2 are associated with diffusion processes
(processes with continuous sample paths), and in fact the following theorem is a
special case of a more general result on local Dirichlet forms [see Fukushima
(1980), especially Section 4.5, and Silverstein (1974)].

THEOREM 2.1. There is a null set N C R such that, for x & N, there are
measures Pj; on C([0, 00); R*) = Q* satisfying:

(a) x = PY(F) is measurable for any bounded continuous F on Q*.

(b) {P} has the (strong) Markov property.

(©) Pif(w,) = TEHf(x) a.s. for f € C(R*) (t — w, denotes a path in Q*).

(d) w,€R fort <, where § (the explosion time) is a measurable stopping
time, w, = oo for t > { and lim,,, u, = oo a.s.

(e) dx is a reversible measure for this process.

Note that PZ[{ < o] iff T{Ig(x) <1 for some ¢> 0. In this case the
diffusing particle reaches infinity in a finite time, but in fact our hypotheses on V
rule out this possibility. This will follow once we have recovered this process as a
limit of suitably regularized processes, which we now introduce.

Let V,, & =1,2,..., be a family of functions satisfying V, € C°(R) (infinitely
differentiable functions with bounded derivatives);

Vi(x) = V(x), Vi(x) » V(x) forallx,
Vi(x) < ¢, forall x.

If Vis U.S.C,, it is not difficult to construct a family satisfying (2.8); an explicit
construction is given in the Appendix. Let Py = P§ be the law of x,(-), the
solution of (2.1) (V replaced by V,) with initial condition x [x,(0) = x a.s.]. The
P form a Feller process on C([0, o0); R) = . We regard £ as a subset (which is
measurable) of Q* If p=p(x)dx and p € L (dx), write P? and Pf for
Jo(dx)Pj; and [p(dx)Py,, respectively.

(2.8)

THEOREM 2.2. (i) Pf — P*, weakly as k — oo.
(ii) For all T > 0,

(2.9) lim infPf[lw| <M,0<t<T]=1.
M- k
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The conclusion in (i) is that, for all bounded continuous F on QF,
P{(F) — P*(F). Consequently,

(2.10) limsup P£(C) < P*(C)

k— 0

for all closed C C Q*. Applying this fact and conclusion (ii) to C = [|w,| < M,
0 <t<T]for M,T fixed we conclude that

(2.11) lim P°[lw,) <M,0<t<T]=1.
M- o0
Therefore P°(22) = 1 and no explosion occurs a.s.

ProoF oF THEOREM 2.2. Let T{ be the Markov semigroup on Cy(R) associ-
ated to the process x,(:). T{ has infinitesimal generator L, given in (2.2) (V
replaced by V},), with domain CZ(R). Integration by parts shows that L,, on the
restricted domain CXR) (C%functions with compact support), is symmetric and
nonpositive as an operator on L*(dx). For A >0, (A — L,)(CZ) is dense in
L%(dx) (by elliptic regularity), so L, is essentially self-adjoint on C§. The
corresponding closed operator, which we continue to denote by L,, has associ-
ated Dirichlet form

(2.12) Qu(f) ==L f13 = [ Vi(x)(f'(x))°

with D(Q,) = D((—L,)"?) = {f € H: f is a.c. with f’ € H}. (To see this, note
that CZ is a core for L,. Hence

(i + TR = (i (T Tr) (- 1)GE

is dense in H, so C? is a core of the quadratic form. On C§, @), has the indicated
form, and the result now follows by a density argument.)
By the assumed properties of the family{V,} and the remarks above we have

D(Qk) = D = D(Qo)’
(2.13) Q(f)<@Qf), [fe€D, forallk,
Q(f) > Q(f) forfeD.

Hence by a theorem of Faris [Faris (1970), Theorem 7.9], T} — T strongly in H
for each ¢ > 0. From this we conclude the convergence of the finite-dimensional
marginals of P{ to those of PP. So we are reduced to proving tightness of the
family {Pf} on Q and (2.9).

For each k define

fok( y) 'dy, x>0,
0 -1
—f_ Vi(y) " dy, x<0O.
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It is each to check that

215)  hu(x(0) =hu(e), B30 = [T2/Vilmil(r))] dr

are martingales relative to =, = o(x,, 7 < ¢). [These claims follow from the
computations

Lyhy(x) =0, Lyhi(x) =2/Vy(x).]
It is also clear that, for all x, y and &,
Cy x| < hy(x) < Cy Yl
Cy'lx — ] < |hy(x) — hy( )l
By Doob’s martingale inequality, (2.15) and (2.16), for all T' > 0, M < oo,
Px[ sup |x,(2)] > M]

0<t<T

(2.16)

(217) < Px[ sup [hy(t)] > C;‘M]
0<t<T

< C,ME*h%(T) < CIM~22C['T.

The same result holds with initial measure p. This gives (2.9).

We establish tightness of {Pf}, x € R, fixed; this implies (i) of the theorem.
To do so we use the martingale A,(-) and Censov’s criterion [cf. Billingsley
(1968), Theorem 15.1, and subsequent discussion]. We follow a line of argument
that appeared in Holley and Stroock (1978), Lemma 4.6 and its proof; see also
Stroock and Varadhan (1979). Our goal is to prove that, for all 7' > 0, n > 0,

(2.18) lim sup P*

50 0<s<t<T

|s—t| <8

In light of (2.16) it suffices to prove (2.18) with A,(-) replacing x,(-).
For any bounded function f on [0, T'] let

@ (8) = sup {If(ts) = F(&)I A If(2) = F(2)I}

0<t;<ty<tz3<T

(2.19) (- )V (— 1) <8
v Supslf(t) - f(0) v supslf(T) - f(T - ¢)

0<t< 0<t<

sup (1) — x(s)] > nl - o.

and
(2.20)  w;(8) = sup If(ty) — (&)l

0t <t,<T
lta—t| <8

Then w;(8) < 2d;(8) [cf. Parthasarathy (1969), Lemma 6.4]. So we are reduced
to proving

(2.21) s:pr[LZ)hk(b‘) > 17] 8—_-:00.
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This in turn follows from Censov’s criterion if we can show
(2.22) s:pE"((hk(t;,) - hk(t2))2(hk(t2) - hk(tl))2) < Bty - t1)2’

for some constant B < oo and all0 < ¢, < t, < ¢, < T. By (2.16), h3(¢) — 2C;'T
is a supermartingale. Hence, with B = 2C; !,

E*[(halts) = ha(£:))*(Ra(ts) = ha(1))7]
= E*[(E(hl(&)17,) - B3(6))(ha(ts) = hi(8))']
< B(ty — t,) E*(hj(t,) — hi(,))
< B¥t,— t,)(t, — t,) < BX(t, — t,)". O

REMARKS. One can show that the transition function of the limiting process
satisfies a weak form of the backward equation. Given f € D, define

(2.23) uy(x,t) = TH(x),  u(x, t) = TH(x).
Then for ¢ > 0,

Vgl = [dx(vuy(=, 1))?

< C7! [ds V(=) (Va(x, 1))’
(2'24) -1 1/2 , Lyts 12

= CrU(=Ly) "e™F I3

< Cr'Q(f)

< CTGI 1113,
and if g € Cg,

(2.25) (g8, vu(-, 1), = _(Vg’ Tif )2k—_')oo — (ve, T ),
Since C! is dense in L?(dx), we conclude that
(2.26) vu(-,t) > vu(-,t)
weakly in L2 Let A € C®(R X (0, o0)). Then
ah ah du,
(2.27) f/—a;ukdxdt = /fg;Vk(x)dedt

so passing to the limit 2 — oo [note that (dh/dx)V, — (dh/dx)V strongly], we
obtain

(2.28) /f%udxdt = //%J’—:V(x)(;—z—dxdt,

which is a weak form of the backward equation.
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3. Diffusion in a singular random environment: The “environment
process” and an invariance principle. In this section we put a translation-
invariant probability measure on the space of environments introduced in
Section 2, and prove an invariance principle for the resulting diffusion in a
random environment. Let & be the space of environments V satisfying our
regularity conditions. Give & the topology of convergence in measure on each
finite interval and the corresponding Borel o-algebra. Let p be a probability
measure on & which is translation-invariant and ergodic under translations. By
this we mean that, if G is a bounded measurable function on & and the spatial
shift operator S, y € R, is defined by

(3.1) SV(x)=V(x-y), SG(V)=G(S_V)
(note that S, acts continuously on &), then
(3.2) r(S,G) = u(G)

for all y € R, and
(3.3) A c & measurable with S,(A) c A forall x € R implies u(A) = Oor 1.

Note that if (3.3) fails, we may always restrict p to an ergodic component.

We next construct the “environment process,” the process of the environ-
ments seen from the diffusing particle [see Kipnis and Varadhan (1985) and
De Masi, Ferrari, Goldstein and Wick (1987)]. We first consider a regularized
process. For & = 1,2,... we construct (in the Appendix) amapV — V,: & - Cp,
k=1,2,..., such that (2.8) is satisfied (note that V, - V pointwise implies
V, — V in measure), and such that this map is measurable for each k if Cg° is
given its natural topology (uniform convergence of all derivatives on compact
intervals) and the corresponding Borel o-algebra. Let x,(-) be the diffusion
associated to V), by solving (2.1), with x,(0) = ¥ a.s. Define a process V,(-) by
setting

(3.4) [Vi(B)](x) = S—xk(t)Vk(x) = Vi(x — x,(2)).

We call V,(-) the “environment process” [for the regularized diffusion x,(-)}. In
a similar fashion, let x(-) be the diffusion associated to V with initial measure p,
and let V() be the process given by

(3.5) [V(£)](x) = 8_,V = V(x — x(2)).

In this way we have constructed measures P*" and P*V on C([0, x); &).
Defining

(3.6) PV = [p(dE)P™%,

it follows immediately from the results of Section 2 that
(3.7) peVe — ppV

weakly on C([0, 0); &). Since the regularized diffusions x,(-) depend smoothly
on the drift and diffusion function appearing in the stochastic differential
equation, V —» P*V¥(G) is measurable for G bounded and continuous on &.
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Hence V — P?Y(G) is measurable, and we may define

pPpr = fp.(dV)Pp’V”,
(3.8)
prv= fu(dV)PP'V.

Since
I)Jc,V,z — PO,S—ka

for every x, it follows from (3.7), (3.8) and the translation invariance of p that the
measures Pf* and P** are actually independent of p. Henceforth we denote
them simply by p§ and P*, respectively. We have

(3.9) P} — P+

weakly on C([0, 0); &).
In terms of the regularized processes V,(:) we can recover the diffusing
particle’s position from the formula ‘

(3.10) x,(2) = /0 vy (1)](0) dr + jo "2V, (7) (0) dw,

(where the second integral is an Itd integral) holding a.s. on the probability space
of the Brownian process w. The following facts are proven in an analogous
fashion to the corresponding statements in De Masi, Ferrari, Goldstein and Wick
(1987), Section 6.

1. The process V() is time-reversible and ergodic.

2. The function ¢,(V) = V/(0) lies in the space H_, ,, the dual Hilbert space to
the space H  , , associated with the Dirichlet form of the process. The norm
in the latter is defined by

(3.11) IFII%, = lim ¢7}(F, (1= F*)F),,

where F € L% &, p), the inner product is in this space and 7! is the Markov
semigroup acting in L2, [The limit exists by spectral theory and is finite if and
only if F € D((—%,)"/?), &, the generator of 7,*.] H,, , is then a comple-
tion in this norm.

Fact 2 is implied by general results on time-reversible Markov processes, see
De Masi, Ferrari, Goldstein and Wick (1987), Section 2], but in fact we shall
determine precisely the generator of the process; fact 2 is then equivalent to the
statement that for some constant C < oo,

(3.12) (¢4, F)o < CY(F,(=Z,)F),

holds for F in a core of the Dirichlet form of the generator. In our context this
can be checked directly.

We shall need to know rather precisely what the generator of the regularized
process and the Dirichlet form are. The information we need is contained in the
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following proposition. Let v be the operator on L%(&; p):
(3.13) vF = ,llin})h‘l(ShF - F),

with domain the functions F for which the limit in (3.13) exists in L2 Let
F,=D(v)={FelL? vVF e L?},

(3.14)
%, = {F e L? vFand V?F arein L?}.

ProPosITION 3.1. (i) %, is a core for the generator ¥, of 7 and if
F e %,

(3.15) & F = vV,(0)VF.

(ii) %, is a core for the Dirichlet form of &, [defined in (3.11)] and if
Fez,

(3.16) Qu(F) = I(-2,)*FIi3 = [duV,(0)(VF)".

PROOF. On bounded continuous functions on & the semigroup of the process
V.(+) is given by

TEF(V) = E°F(S_, ,\V2)

(3.17) = [pi(dx|0)F(S_,V,,),

where pi(-| -) is the transition function of the diffusion x,(¢) associated with
V,. Taking L? limits in (3.17) defines the semigroup for F € LY &, p). If F € %,,
the derivative of (3.17) at ¢ = 0 exists in L? and is given by (3.15) since pi(-| - )
satisfies the forward equation associated with (2.2). On %,, (3.16) follows by an
integration by parts (note that v is skew-adjoint in L?). Given F € #, = D(V),
3 F, € %,, with F, > F and VF, > VF in L2 Hence (VE, — VF)? -> 0in L}
which gives (3.16), since the Dirichlet form is closed. To prove that these spaces
are cores for £, and (—%,)'/? respectively, it suffices to prove that they are
invariant under the semigroup [De Masi, Ferrari, Goldstein and Wick (1987),
Section 3]. This follows readily from the smoothness of the transition function,
since V, € C. O

We next introduce the rescaled diffusion. Let ¢ > 0 and

(3.18) x%(t) = ex(e7 %),  xi(t) = ex, (e %).
The next theorem is the analog of Theorem 6.1 of De Masi, Ferrari, Goldstein
and Wick (1987) for a process with singular drifts.

THEOREM 3.2. Let B(t) be a standard Brownian motion, B(0) =0 a.s.,
with diffusion constant

(3.19) D = t7'EB(t)* = 2(V(0) 1),
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({ + ), denoting the p-integral). Then
(3.20) x%(-) = B(+)

in the weak sense of convergence of path measures on C([0, |c); R).

PROOF. As in De Masi, Ferrari, Goldstein and Wick (1987) one has for the
regularized processes Vi(-),

(3:21) e[ [VUm]0) dr = Ni(2) + Ri(o),

where N{(t) is a rescaled, square-integrable martingale with stationary incre-
ments, and for all T > 0, § > 0,

sup E} ‘k(T)z -0,
k
(3.22)
supP,g‘[ sup |Ri(t)] >8] -0
k 0<t<T
as ¢ = 0. The latter facts follow from De Masi, Ferrari, Goldstein and Wick
(1987), Lemma 2.4; see also Kipnis and Varadhan (1985), and the following

computation. Let ¢,(V) = v V,(0). Then by Proposition 3.1 [see also De Masi,
Ferrari, Goldstein and Wick (1987), Section 2]

|f dp ¢ F)

sup .
FeD
rene) {duV,(0)(VF)

|f dp V,(0) O F|
up iz
F {[dpV,(0)(VF)*}

Now since v generates a unitary semigroup in L%(p), {VF: F € D(V)) is dense
in the orthogonal complement of one in L?(p). (iV is self-adjoint and the union
of its spectral subspaces corresponding to intervals not containing 0 are dense in
1+.) Hence {V})(0)'/>VF} is dense in the orthogonal complement of V,(0)~'/2
Hence, from (3.23),

lballe, 2 = (1 = Py, 0-12) Vi(0) /%32,

(324) = <Vk(0)>u - <Vk(0)_1>p._1
(3.25) < ¢y — €.

It follows as in De Masi, Ferrari, Goldstein and Wick (1987), Section 2, that if
V= (A= Z) %y, then [}y ~xno IWallss s < ¢ — ¢ for all k, from
which (3.22) follows as in De Masi, Ferrari, Goldstein and Wick (1987) and
Kipnis and Varadhan (1985).

Writing

2
lPrll, }1/2

(3.23)

(3.26) Mit) = [ RV (0) dw,,
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we have
(3.27) x5(t) = NE(t) + Mg(¢t) + R(¢).

We next establish that the sum of the martingales in (3.27) is tight (for ¢ > 0
fixed). This will follow from the Censov criterion, as in Section 2, if we can bound
the compensators of the squares of the martingales. For M(¢) we know from Itd
calculus that

(3.28) (M{(2))" = & [ "2(Vi()(0) dr

is another martingale. Since V, < c,, (Mf(¢))? — 2¢,t is a supermartingale. For
N{(t) we note, from its construction [De Masi, Ferrari, Goldstein and Wick
(1987), Section 2],

Ny(t) = L* - ii_l,T})NkA(t),
(3.29) ,
NNE) = [Lh(V(r)) dr = $)(V(0)) = $3(V(0))

and that ¢} € %, [follows from the smoothness of the kernel of the resolvent
(A = Z,)"']. Hence by Proposition 3.1 and an easy computation [see De Masi,
Ianiro, Pellegrinotti and Presutti (1984), Chapter 4]

(3.30) N2(2)* = [2Vi())O)(V43)(V(r)) dr
is a martingale. Since

(3.31) M = L = VV(0),

given F € D(V ), we have, after integrating by parts,

(3.32) AMF, 4}) + (Vi(0)VF,vy}) = (1, V4 (0)VF).

Since {V,(0)VF} is dense in the orthogonal complement of V,(0)~! and from
results in De Masi, Ferrari, Goldstein and Wick (1987)

(333) 11’2 - ‘l/k in H+1,k’
Ay —>0 inL%  as\ -0,
we conclude that
(3.34) Vi, =1+ cV,(0)7"
for some constant ¢, which (since (Vy,), = 0) must have the value
(3.35) c=—(V,(0) ", %

Thus N,(¢)? — 8cyc; *t is a supermartingale. The same holds for N{(t), and this
gives the sought-after tightness of the martingales.
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Now let F be bounded continuous on C([0, T']; R). Then for § > 0 there is ¢,
such that if & < g,

(3.36) Sl;pIEF(xi(')) — EF(Mi(-) + Ni(-)) < 8

for all k. By the tightness, along a subsequence {%;},
(3.37) M, () + N (+) =4 M(-)

weakly. Then M(-) is another square-integrable martingale with stationary
increments. Hence by the martingale form of the invariance principle [Helland
(1982); see also the discussion in De Masi, Ferrari, Goldstein and Wick (1987),
Section 2]

(3.38) Me(-) - B(-)
weakly where B(-) is a Brownian motion with variance
(3.39) EB(t)” = 321})EM‘(t)2 = Dt.
Furthermore, from (3.37) there follows
(3.40) D < limsupD,,

k— o0

and, by results in De Masi, Ferrari, Goldstein and Wick (1987), Section 2, and
(3.24),

Dy, = 2(V,(0)), — 2[léxll2 1, &
(3.41) = 2(V,(0) ),
- 2V(0) "y,
k— o0
Thus taking j — oo we obtain from (3.37), (3.38) and the results of Section 1, for
£ < 80,
(3.42) |EF(x%(t)) — EF(M*(-))| <.
Taking & — 0, we obtain the invariance principle with diffusion constant D,
which is bounded above by the expression in (3.19).

This appears to be the most that we can obtain from general theory (in this
context). However, we have available (in one dimension) an additional argument,
based on the construction of the martingale A, in Section 2. Following the line of
reasoning in De Masi, Ferrri, Goldstein and Wick (1987), Chapter 6 (final
remarks), we can construct for each k a martingale h;, a functional of the
process V,(+), which is square-integrable with stationary increments [ 4, is equal
to h,(x,(t)), regarding x,(t) as a functional of V,(-)]. From (2.15),

(3.43) ER3(t) = 26(V,(0) 1y,
In addition, by explicit computation

(3.44) Lk(hk(x))4 = 12hi(x)Vk(x)_1,
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so that A,(t) € L4 P*) with
(3.45) E*hi(t) < 24¢7%.

Since 4, lies in L*, i}ﬁ is uniformly integrable; since the compensator of A3 is
bounded (by 2¢; '), {h;)}, is tight. Hence

(3.46) i‘k(') ~d i‘(‘),
hisa square-integrable martingale with stationary increments, and
(3.47) E*R3(t) 2 E*h(t)’
-0
so that
(3.48) E*h(t)® = (V(0)™1,.
Since
(3.49) hy(x) > h(x)

[A(x) given by (2.14) with V, replaced by V] uniformly on compact sets, we have
that A(t) ~, h(x(t)). Furthermore, by stationarity and ergodicity,

(3.50) B()/x(2) > (V(0) ™),

[Note that |x(¢)| diverges in probability, since ¢,|h(t)| < |x,| a.s.] We conclude
from (3.50) by the martingale CLT that, as ¢t = oo,

(3.51) E*explix(t)/vt] ~ E“exp[i(h(t)/(V(O)_l)F/R\/Z)] = exp[~3De?],
where D is given in (3.19). This concludes the proof of Theorem 3.2. O

REMARKS. That the process lives in one dimension was used twice in the
proof of Theorem 3.2: once to obtain the process seen from the moving particle
as a limit of regularized processes, and again to obtain a lower bound on the
diffusion constant. General theory should suffice to obtain the process V, and
prove the invariance principle in higher dimensions [our conditions on V must be
modified in an appropriate way—the crucial point is to keep v V(0) in H_,].
However, a special argument will apparently be needed to ensure that the
diffusion matrix is nonsingular.

4. Some examples of singular random environments. Consider the dif-
fusions of Sections 2 and 3. As a first example, we construct a translation-
invariant measure p on & supported on highly discontinuous functions. Restrict-
ing p to an ergodic component then yields a nontrivial example of a singular
random environment of the type considered in Section 3.

Let H, ,, y €R,0 < r < oo, be defined by

(4) H, (%) = {

1, y—r<x<y+r,
0, otherwise.
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Construct the following objects on the same probability space:

{y,, —0 < i< + o}, alocally finite, stationary point process on R.

{a;, —o0 < i< + o0}, astationary sequence of nonnegative random variables.

{r;, —o0 < i< +00}, a stationary sequence of random variables taking values
in (0, R) for some R > 0 fixed.

V,, a random variable taking values in [¢,, + o0) for some ¢; > 0 fixed.

Let

(4.2) Vix)= ¥ aH, (x)+V,
0 <i< +o0

and for ¢, > ¢, fixed let

(4.3) V(x) = V(x) A c,.

The law of V provides an example of a measure of the indicated type. Note that
V'(x), thought of as a distribution (generalized function), is a linear combination
of delta-functions.

REMARKS. (i) Although in this example p is supported on piecewise constant
V (so V' = 0 a.e.), the drift still plays a role. To see this, note that the limiting
Brownian motion in Theorem 3.2 has variance 2{V(0)~!)~!t # 2(V(0))¢, the
limiting variance of the Itd integral one would have in the absence of the drift, if
V(0) is not constant.

(i1) By replacing the family {H, ,} by wilder functions one can construct more
exotic examples, e.g., measures supported on functions with discontinuities of the
second kind (oscillatory type).

(iii) The uniform bound V < ¢, in the definition of & can presumably be
replaced by a milder restriction, e.g., V(x) < ¢y(1 + |x|), without invalidating the
theorems of Sections 2 and 3. The truncation step (4.3) can presumably then be
dispensed with for certain point processes. Can one allow even milder restric-
tions, ie., V(x) < e¢(V)Q + |x|) with ¢(V) < o0, p a.e.? This would permit
taking {y,} to be a Poisson process [and dropping (4.3)].

Another approach to constructing interesting examples is to take a stationary
process V(x) with state space [c;, ¢,] and “time-parameter” x. For instance, let
V(x), —o0 < x < + o0, be Brownian motion on [ ¢, ¢,] with reflecting boundary
conditions and “initial” measure dV/c, — ¢,. This construction gives an example
of a random environment with continuous but nowhere differentiable sample
paths. The limiting Brownian motion of the rescaled diffusion has diffusion
constant (¢, — ¢;)(log ¢, — log ¢;) ™%

5. Processes associated with (1.1). We next consider processes associated
(formally) with the S.D.E. (1.1). Let (for the moment) V € Cy° and let

(5.1) Lyf(x) = =V'(x)f'(x) + 3" ().
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Define a map ¥3: R —» R by
f "o gy,
0

0 ~
- f e~ 2V gy,

x

(5.2) ¥y(x) =

and a corresponding operator by

(5.3) Ryf(x) = f o ¥(x).
Then by a straightforward computation
(5.4) Ry;LyRy,f = Lyf,

where L, is given in (2.2) with

(5.5) V(x) = (3)e 4o ¥ (x).

Hence ¥y transforms the diffusion associated with (1.1) (V = U),.which has
reversible measure

(5 6) e~ 2Vx) dx,

into the diffusion associated with (2.1), which has Lebesgue measure as reversible
measure. If V enjoys the regularity conditions specified in Section 2 except for
the bounds, which are replaced by

(5.7) —cy < V(x) <

for some c, < + o0, one can then construct a diffusion x(t) associated with V
and set

(5.8) x(t) = ¥;Y(x(t)), ¢t=0.
Since ¥ ! is continuous, #(-) is a diffusion. The associated quadratic form is
(5.9) Jdze ¥ 11(2)),

defined in the space L% e~ 2V®) dx). Furthermore, we can obtain £(¢) as a limit of
regularized processes %,(¢) by transforming the processes x,(¢). The proof of
Theorem 3.2 then goes through (with the necessary changes), and we obtain the
following theorem.

THEOREM 5.1. Let ji be a translation-invariant, ergodic probability measure
on & (the space of suitably regular V), and let B(-) be a Brownian motion,
B(0) = 0 a.s., with diffusion constant

(5.10) D= <82V(0)>’L_1<e_2‘7(0)>ﬂ_10
Then
(5.11) #(-) - B()

weakly as € — 0.
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_ Examples of measures i defining singular random environments supported on
& may be constructed in a manner similar to the examples presented in this
section.

APPENDIX

Construction of regularized environments. Consider the intervals, for
-0 <j< 400, k=12,...,
(A.1) Li=((j-427% G +1+1/427%),

which form an open cover of R for each k. Let {A; ,} be a C* partition of unity
subordinate to this cover. This means that

hj,€C®  0<h;,(x)=<1,

(A.2) supph; , C I; 4, Zhj,k(x) =1
J

for all x € R. Given V satisfying the conditions of Section 2, define

(A.3) s;, (V) = sup V().
and let |
(A.4) Vi(x) = Zsj,k(v)hj,k(x)'

Then V, € C, V(x) < V(%) < ¢, and Vi (x) = V(x) for x € R. [The last claim
follows from the U.S.C. of V. If U, are open intervals, x € U,, diamU, — 0,
then
(A.5) sup V(y) - V(x).

yel,
Each x is contained in the support of at most two A;,, which sum to 1.
Therefore V,(x) is a convex combination of two numbers, both greater than V{(x)
and tending to V(x) as & - 0.]

We must also show that, for each %, the map V — V, is measurable. Since V
is left-or-right-continuous at each x and U.S.C., the supremum in (A.3) can be
replaced by a supremum over the rationals in I; ,. So it suffices to prove that, for
each x,, V — V(x,) is measurable. But again by the one-sided continuity and
the semicontinuity,

(A6) V(x,) = lir?félp(8_1f

(x9—8, xq)

V(y)dy) v (‘3_1f<xo,xo+5)"(” dy),

which expresses V(x,) as a superior limit of continuous functionals on &. Thus
V(x,) is measurable.
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