The Annals of Probability
1990, Vol. 18, No. 2, 887-900

OPTIMAL CONVERGENCE RATES IN SIGNAL RECOVERY

By PeTER HaLL!

Brown University

In the context of image analysis, the method of Fourier-domain process-
ing is shown to yield restored signals of optimal quality. This confirms
conjectures of statistical optimality that have been made in the past.
Quality is measured in terms of convergence rates, and the influence of
image smoothness on convergence rates is quantified. This influence is
particularly interesting in the case of motion blur, where there is a critical
degree of image smoothness (approximately four derivatives of the image)
beyond which no improvement in restored image quality may be obtained
by passing to smoother images. That is in marked contrast to the case of
out-of-focus blur, where restored image quality is always greater for
smoother images.

1. Introduction and results.

1.1. Introduction and summary. Let ¢ denote a signal, to be distorted by a
Toeplitz transformation and further corrupted by stochastic noise. A practical
illustration of this phenomenon is image processing, where ¢ represents the
true scene, the transformation describes blurring effects such as incorrect
focussing and subject motion, and the stochastic component models electronic
noise at a pixel level. It is desired to recover ¢ from the blurred, noisy recorded
signal, in the sense of estimating ¢ by a data-based signal 7. A relatively old yet
still commonly used method of signal recovery is Fourier-domain processing, in
which one operates numerically on the Fourier transform of the recorded
image to correct for the effect of blur and noise and then constructs 7 by
Fourier inversion. It is often alleged that this technique yields ‘‘a restoration
that is optimal in a statistical sense’’ [Cannon and Hunt (1981)], although very
little theoretical evidence is available to support this claim. In the present
paper we show that, under appropriate models for the true signal and signal
degradation, Fourier-domain processing yields optimal convergence rates of
E(f — t)? to zero.

We also give a concise description of the effects on optimal image restoration
of image smoothness and smoothness of the blurring transformation. The
effect of image smoothness is particularly interesting, for the following rea-
sons. In the case of out-of-focus blur, increasing smoothness of the true image
always results in improved restoration. However, this is not the case for
motion blur. There we prove that there is a critical degree of image smooth-
ness, corresponding approximately to four derivatives of the true image,
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beyond which no improvements in restored image quality are obtainable by
passing to smoother true images.

The method of Fourier-domain image processing may be described very
simply as follows. Since the effect of the blur is to convolve the true image with
a known function, called the point-spread function, then the Fourier transfor-
mation of the blurred image (neglecting the noise) is just the product of the
Fourier transforms 7 and y of the true image ¢ and the point-spread function
h, respectively. If we divide this product by y and invert, we should obtain
precisely ¢. However, in the presence of noise, serious problems arise in the
vicinity of frequencies where y is very small or zero. There we are, in effect,
dividing by zero, and so the influence of noise at such frequencies will be
greatly increased. The solution is to dampen down the contribution of those
frequencies when inverting the Fourier transform. In this paper, we assign
zero weight to such frequencies in the inversion, although it will be clear that
one could obtain identical convergence rates with a smoother compromise.

Cannon and Hunt [(1981), pages 143 and 144] give an equivalent but
slightly less technical account of Fourier-domain image processing. See also
Rosenfeld and Kac [(1982), Chapter 6].

Mathematical models for images, image degradation and partial Fourier
inversion will be described in Sections 1.2, 1.3 and 1.4, respectively. Our
results will be stated in Section 1.5 and related to existing literature in Section
1.6. Proofs will be given in Section 2.

1.2. Image models. To model the effect of discrete image digitisation, we
take ¢ to be a real-valued function on the d-dimensional integer lattice Z¢ and
define the discrete Fourier transforms of ¢ by

7(9) = Zt(j)eijTo, 0 < (—‘rr,‘rr)d.
J

We might think of #(j) as the grey-scale intensity of the true scene at pixel j.

Our theory models the performance of image restoration procedure on grids
which become increasingly fine. In effect, we treat #(j) as though it were the
value f(j/n) of a function f, where n increases as the grid becomes finer.
There is no requirement for n to be an integer, but connections with statisti-
cal theory are stronger if we think of n¢ as “sample size’’; see the statistical
work cited in Section 1.6.

If ¢ were continuous and #(x) = f(x/n), then the (continuous) Fourier
transform of ¢ would be 7(8) = n%$(n6) where ¢ is the Fourier transform of
f. Therefore we may encapsulate our model for images on an increasingly fine
grid by indexing their discrete Fourier transform 7 according to ‘‘smoothness
classes” €(a, A), defined by '

£(a, A) = {t:|7(0)] < And(1 + |n0|) ", 0 € (—m,m)%},

(1.1)
a>1land A > 0.

Here, [|0]| = (62 + - -+ +69)'/2,
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1.3. Image degradation models. Let H denote the Toeplitz transforma-
tion describing blur, and let % (a nonnegative function) be the corresponding
point-spread function. The effect of the blur is to spread the light which would
have been recorded at pixel j over other pixels, in such a way that a proportion
h(j + k) falls at pixel j + k. Thus, the blurred image is b = H¢, where

(1.2) b(j) = Xk',h(k)t(j+k), j € Z°,

To ensure that total image intensity is preserved, we ask that X h(j) = 1, so
that k is a probability density function on Z¢. \

We consider two types of point-spread function, one describing out-of-focus
blur and the other, motion blur. In the out-of-focus case, take

hay(J) = {(1 = p) /(1 +p)}%pV!  j ez,

where 0 <p <1 and |(j;,...,Jj )| = X,j;- This point-spread function de-
scribes defocussing when the out-of-focus effect decreases exponentially quickly
away from the origin. Let %, denote the v-fold convolution of % ;,. The index
v describes the degree of smoothness of the distortion—the higher the value of
v, the smoother is H. To incorporate our asymptotic model for the increasingly
fine pixel grid we should take p = 1 + cn~! + o(n™1) as n — o, where ¢ > 0.

Motion blur is a one-dimensional phenomenon, to a first approximation, and
so there we take d = 1. Let m > 1 be an integer, put

hy(j) = {(2m - 1) i) <m,
0 otherwise,
and define b by (1.2) with A = h,. The point-spread function %, models image
degradation caused by the subject moving a distance of approximately 2m /n
during exposure. To incorporate our asymptotic model, we should take
m ~cn as n — o, where ¢ > 0. For both motion blur and out-of-focus
blur, our definitions of h ensure that average image intensity is preserved,
since ¥ ;h(j) = 1.
Let the noise N be independent and identically distributed on pixels, with
variance 12. The observed, degraded image is

X=b+N=Ht+N.

1.4. Partial Fourier inversion. Discrete Fourier transforms of the point-
spread functions k., and h, are

X(v)(e) = Z eitToh(v)(o)
J

f: {1+2p(1~p)_2(1—c0s0,)}_y; oe(—mm)°,
=1

L e hy(6)
J

sin{(2m — 1)6/2} /{(2m — 1)sin(6/2)}, 0e(—m,m)),

I

“ Xo(6)
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respectively. Suppose the degraded image X is recorded within a large but
finite region . Put
20) = ¥ e"X(j),

JER

let ® be a subset of (—r, )%, and define

(1.3) £2(/) = (2m) " Re [ e7"4(0)(x(8)} " d,
where Re denotes real part. This is a partial Fourier inversion estimate of ¢,
“partial” because ® usually does not include all of (— 1, )¢. Selection of © is
analogous to choice of smoothing parameter in statistical curve estimation,
and so ® might be called a smoothing set.

We do not treat the problem of boundary effects, and so work with

E{f()) ~ ()" = lim E{i5()) (D))"

1.5. Results. It is convenient to think of noise variance 72 as being
indexed by n. Now, it is relatively easy to show that mean-square consistency
is possible if and only if » and n vary together in such a manner that
n~n? > 0 as n — ». Therefore we assume throughout that £ = n=9n2 - 0.
It turns out that optimal convergence rates depend on n and 52 only
through ¢.

In the results below, part (i) always refers to out-of-focus blur and part (ii)
to motion blur. The set (a, A) of images ¢ is defined in (1.1), the point-spread
functions 4 ,, and k, are defined as in Section 1.3, and a(¢), A(¢) and s(¢) are

defined by

glatD/2atD, £V/@HD Gf] < g <4
a(€) ={ (¢/llog £)'?,  A(€) = (g0 if @ = 4,
£173, o ifa >4,

§(2a—1)/(2‘1+1) ifl <a< 4’
s(6) = (€7 og ¢*° ifa =4,
§£2/3 if a > 4,

respectively.
First we present upper bounds to convergence rates for partial Fourier

inversion estimates.

THEOREM 1. (i) Suppose d > 1, a > d, v > 1 and n,n vary together such
that £ — 0 as n = «. Then in the case of out-of-focus blur, if we choose the
smoothing set © to be

0={oe (—77,71-)‘{: 10,] < n~lgmt/@arddv=d) foreqchl,1 <1 < d},
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we have

sup sup E{#(j) — t(j))* = O(¢2e- @/ @erddvmd),
ted(a,A) jez?
(i) Suppose d = 1, a > 1 and n, n vary together such that ¢ = 0. Then in
the case of motion blur, if we take the smoothing set O to be

0 = {0 e (—m,m):n"la(¢) < 6] < n N(¢) and |0 — 2jm(2m — 1) |
> n"la(€) 9?2 forallj + O},

we have

sup sup E{Z(j) - t(j)}* = O{s(¢)}.
te€(a, A) jezd

Next we present lower bounds to convergence rates of arbitrary estimators.
These results show that the upper bounds described in Theorem 1 are best
possible with respect to the image classes <(a, A). Let .7~ denote the class of
all possible d-dimensional image restoration methods. Assume in Theorem 2
that N is Gaussian.

THEOREM 2. (i) Under the conditions of part (i) of Theorem 1,

lim inf £~ 2e-d)/@atsdv=d)jnr  gup  E{#(0) — £(0)}°
§-0 (€T te ¢(a, A)

(ii) Under the conditions of part (ii) of Theorem 1,

liminfs(£) ™' inf sup E{#(0) — ¢(0)}* > 0.
£-0 €T te¢(a, A)

ReEMARKS. (a) The “optimal” smoothing sets ® in Theorem 1 are designed
to prevent the function {x(#)} !, appearing in the definition (1.3) of the
estimator £, from becoming too large. In the case of out-of-focus blur,
the function {x(#)} ! only takes large values when 6 is some distance from the
origin and therefore, ® is defined so as to avoid giving emphasis to the tails.
However, in the case of motion blur, {y(8)}~! equals infinity whenever @ is an
integer multiple of 27 /(2m — 1), and so @ is designed to avoid those points as
well as #-values in the tails.

(b) In the case of out-of-focus blur, observe that

g2(a—d)/(2a+4dv—d) N 4_‘:

as a — . This means that, for very smooth images [i.e., images from ¢(a, A)
for large a], the optimal convergence rate is approx1mately £. The rate steadily
improves as a increases.

(c) The property evinced in Remark (b) does not hold for motion blur.
There, the optimal convergence rate for all images with a > 4 is ¢*/%. This
may be explained as follows. In the case of out-of-focus blur, the main
difficulties in restoring images are due to high-frequency components, because
it is only for @-values some distance from zero that the function {x(8)} ™! is



892 P. HALL

large. When images are smooth, relatively little information is present in high
frequencies and so restoration is relatively simple. However, in the case of
motion blur there are many /low frequencies where restoration is
difficult—these frequencies are those 6-values for which x(8) = 0. Of course,
they persist even if the image is quite smooth, and so there is a point
(corresponding to a = 4, i.e., to approximately four derivatives of the true
image) beyond which no improvement in resolution is obtainable by passing to
smoother images.

(d) In the case of out-of-focus blur, the convergence rate becomes worse as v
increases or, equivalently, as the point-spread function becomes less smooth.
This may be explained much as in (¢) above—for smooth point-spread func-
tions, {x(6)}~! is larger and so image restoration is correspondingly more
difficult.

1.6. Alternative models and related literature. As we pointed out at the
very beginning, our aim in this paper has been to verify claims that have been
made concerning the statistical optimality of Fourier-domain image process-
ing. Our choice of models for images and image degradation has reflected this
goal. One can draw somewhat different conclusions under different models.
For example, one could adopt a Bayesian viewpoint, place a prior on the class
of images and compute the Bayes risk and Bayes estimate. If the prior is
Gaussian, then an exact optimal estimator, the Wiener filter, results. This
solution is classical. )

Our discrete model and our assumption of additive, uncorrelated noise are
good approximations to reality in the case of electronic recording devices of the
still-video type. However, if the image is recorded by analogue means and if
digital processing takes place on a pixel grid much finer than the noise
_ structure, then it is necessary to use continuum models for both image and
~ noise, and it is essential to allow a correlation structure for noise. Continuous
models with correlated noise will be treated by Hall and Koch (1989).

Even within the confines of the basic models treated in this paper, alterna-
tive approaches are possible. For example, instead of imposing a condition
directly on the size of the Fourier transform 7, such as [7(6)] <
An?(1 + ||n6|)~?, one could place a bound on the integral of |7|%, such as

fln_dT(G/n)|2(1 +10N* do < A.

The analogue of this approach in statistical curve estimation would be to ask
that the function g being estimated satisfy [|g®|? < A instead of |g®| < A,
where g denotes the kth derivative of g. The square integral type of
constraint is usually favoured in orthogonal series curve estimation. In other
contexts Kuks and Olman (1972), Li (1982) and Speckman (1985) give formu-
lae for the exact linear minimax estimator of a linear functional when the
function class is determined by a square integral constraint. See also Sacks
and Ylvisaker (1978, 1981) and Donoho and Liu (1987).

Our emphasis has been on rates of convergence, not on the precise manner
of convergence. That is, if E(f — t)2 ~ Cn~° then only the value of ¢, not that
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of C, is of interest to us. Again this is a feature of our decision to focus on the
problem of Fourier-domain image processing, which is optimal in the sense
that it yields the best ¢ but not optimal in the sense of giving the best C.

In the explicit context of image processing, some authors have studied the
problems of distinguishing between a single object and two closely-spaced
objects, of image information and of diffraction-limited resolution [e.g., Barnes
(1966); Buck and Gastincic (1967); Frieden (1970); Cunningham, Laramore
and Barrett (1976); Gonsalves (1976)]. Hall (1987, 1988) has described perfor-
mance of restoration methods from the viewpoint of consistency. In the
present paper we focus instead on the rate of consistency, using image models
entirely different from those considered earlier by Hall. Our present approach
is most closely related to work on statistical function estimation, where the
emphasis is on rates of convergence of function estimates. See for example,
Farrell (1972), Wahba (1975) or Stone (1980, 1982, 1983).

2. Proofs. Throughout, the symbols C,C,, C,, ... denote positive generic
constants not depending on j, n or 6.

Proor oF THEOREM 1. The following results will be used to prove both
parts of the theorem: Mean-squared error between #(j) and #(j) is given by

(2.1) E(i(j) - t(j)}* = B(J)* +V,
where
(2.2) B(j) = (27r) “Re f@e‘”T"fr(O) do — t(j)

denotes bias,
(2.3) V= n2(2w)_dfx(0)_2d0
®

equals variance and O is the complement of ® in (—1r, 7)<
(i) In the case of out-of-focus blur, take

@={0e(-mm)" |0l <eforl<l<d}
Then for ¢ € €(a, A) we see from (2.2) that

d
emBi)< L [ HOIEL

1=1"16)>¢;10,,|<7,all m

< dAndf (1+|n6)) " °de

164]>€; 16,,| <, all m

(2.4)

szddA[wdelf (L+6,+ - +6,) “do, -~ db,

(0,00)4"1

<C(a, A,d)(en)?™".
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Furthermore, since x(8) = IT,{1 + 2p(1 —p)~%(1 — cos 6,)} °, we see from

(2.3) that
d

V= w—d,.,2[f:{1 +2p(1 = p) "3(1 — cos x)}zvdx]

(2.5) < Cy(c, d)nz{j:(l + n2x2)® dx}d
< Cy(c, d)n?{n~Y(en) ™)

if en > const.
Combining (2.1), (2.4) and (2.5), we deduce that

E{f(j) - t(j)}* =B(j)*+V
<C(a,A,c, d)[(sn)Z(d"“) + ﬂz{n—l(sn)‘wﬂ}d] '
Taking en = (ndn~2)1/@a+4dv-d) e ohtain

E(#(j) — t())}* < 2C(a, A, c,d)(n~4n2)" @/ Caradm®,
(ii) In the case of motion blur, take the smoothing set ® to be the one given
in Theorem 1. Then for ¢t € €(a, A) we see from (2.2) that

27|B(j)| < /@|T(o)|do sAfn@(l +10) " *de

<C, Y (1+16) “de
(26) lil<A “l6—{2njm/@m— D} <¢;

+ le (1+16) “de
6]>ne
< Cz{ Y J%; + (ns)_a“}.
1<j<A
Since x(0) = sin{(2m — 1)6/2}/{(2m — 1)sin(0 /2)}, then by (2.3),

V<o i(2m - 1) 'n? 02(sin 0) "2 do
em-10/2

(2.7) <Cn g2 Y j2 (sin 6) "2 d6
ljish  T10—jm|>@m—1De,/2nm

1<j<A
Combining (2.1), (2.6), and (2.7), we conclude that
T, = E{{(j) - t(j)}* .
<T,

sca(a,A){( Z'r“ej+r“+1)2+§ > J}

1<j<A 1<j<A

(2.8)

where £ = n™ 152
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Define

AN4=9/2if ] <a < 4,
(2.9) S(A) = {log A if a = 4,
1 if a > 4,

and ¢; = aj@*?/? where a = a(¢) will be chosen shortly. Then
Y, J%j=a ), j® 9?2 <CS(A),

1<j<A 1<j<A
Y Jjik;t=a"t Y j@ 2 <Ca”1S(A).
1<j<a 1<j<A
Hence,
(2.10) T, < Cs(a, A){€a™'S(1) + a?S(1)® + A~ e D}, “

If1<a <4, take a = £@+2/2@a+D gpd A = ¢-1/@e+D jp (2.8) and (2.10), to
deduce that

T, < T, < C¢(a, A)gxa-D/@at+D),
If a = 4, take a = (£/|log £)/% and A = £-1/9, obtaining
T, < T, < Cs(a, A)¢*?llog £*/°.
If a > 4, take a = £1/2 and A = o, obtaining
T, <T, < C4(a, A) 3. o

Proor oF THEOREM 2. The following argument is used to prove both parts
of the theorem. Let ¢, and ¢, be two images from ¢(a, A), let b, = Ht, denote
the blur of ¢, and let X =56 + N where b is either b, or b,. Likelihood is
proportional to

(2.11) exp| -3 X {X(J) - b,(/)}?|,

J
assuming ¢, is the true image. The likelihood-ratio, or Bayes, rule for choosing
between ¢; and ¢, is to decide in favor of ¢, if and only if

Y {X() —b,()) < X {X(j) - by(f)}™

J J
The probability of incorrectly deciding in favor of ¢,, given that the true image
is t;, equals

p= P[Z (5.() + N(J) = b)) < T (5:(5) + N() — b))}

(2.12) !

- P|2Z > {n_z )» tbl(j) - bz(j))z}l/z],

where Z is Normal N(0,1). If # is an estimator of #, define D =1 if
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[#0) — £,(0)] < |#(0) — ¢,(0)] and put D = 2 otherwise. Then D is a decision
rule for choosing between ¢, and ¢,. Let D, be the Bayes rule defined above.
By the Neyman-Pearson lemma,

Ptl(D = 2) + Ptz(D =1) > Ptl(Do = 2) + Ptz(DO = 1) > Ptl(Do =2) =p.
Therefore,
2 max E({i(0) - #(0)}" = E,{#(0) - #,(0)}* + E,{#(0) - t,(0))

(2.13) i{t(0) — &(O}(P(D = 2) + P(D = 1)}

%

> 1p{t,(0) — ,(0)}>.

Suppose we prove that ¢,,¢, (depending on n and 1) may be chosen from
¢(a, A) such that p > C, and

(2.14) {t1(0) — £,(0)}* = Cys,
where C; and-C, are fixed constants. Then it will follow from (2.13) that

sup E{#(0) — ¢(0)}* = 1C,Cys,
teeg

as claimed by Theorem 2. In view of (2.12), p > C, with C, = P(Z > 1C}/?)
will follow if we show that

(2.15) 172 L {by(J) — ba(/))* < Cs.

" Therefore we shall establish (2.14) and (2.15).

Summations in formulae such as (2.11) should, strictly speaking, be taken
over a bounded set so as to ensure finiteness. However, the left-hand side of
(2.15) is finite even for an infinite summation. This minor problem evaporates
if we work with the data {X(j), j € ./}, where .~ is a large but bounded set,
until we get to (2.13) and at that point let ./— Z¢.

We shall in fact take ¢, = 0, the identically zero image, and ¢, to be an
image whose Fourier transform is n?5(n6), for an appropriate real-valued,
symmetric function §.

(i) Let A > 0 be a positive function of n and 7, to be specified shortly. Put

5(8) = { A(1+0])™® if 6] > A for each 1,
0 otherwise,

let ¢, = 0 and let ¢, be the image whose Fourier transform is 795(n0). Then

4

[6:00) = () = A [+ [*(1+ Jo1) " do = Cat
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and

T {8.()) =820} = [l7xI?

d
-2 —4
< Cyn?f (L4116 "> TT (1 +16,) *" do
16,/>A, all L =1 )
< C3ndA—(2a+4dv—d)
if we take A = A ~%@~9D and
A= (ndn_z)l/(20+4dv—d)'

(ii) Let #; = 0 and #, be the image whose real-valued, symmetric, nonnega-
tive Fourier transform is n6(n6). Since

[1(0) = £(0)| = =" [5(6) b
0
and

L {6i(J) ~ bs(i)) =7 n [ ""5(8)%x(6,/n)* do,

J

then we must prove that a sequence of 6’s may be chosen so that

0<8(0) <A(1+6) % fore>0,

(2.16) 572 [Ts(0) do = Cy,
0

(2.17) £ ["75(0)"x(8/n)* d6 < C;,
0

where ¢ = n”n2% and s = s(¢) is as defined in Section 1.
Remembering that x(0) = sin{(2m — 1)8,/2} /{(2m — 1)sin(0/2)}, we have

(2.18) ["78(8)°x(6/n)?d8 < Cy [ 6 *sin®((2m — 1)6/2n}5(6)* do.
0 0
For ease of notation we shall replace (2m — 1)§/2n by 6 on the right-hand
side and seek a & vanishing on (0,1) and satisfying 0 < 8(0) < A(1 + 9)7¢,
(2.16) and
£ ["672(sin? 0)5(8)* d0 < C,,
1 .

the latter instead of (2.17).
. Put

1(8) = fl'”'a(o) de, I,(8) = flwe‘z(sin2 6)5(0)2 do.
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We wish to prove that the maximum of I,(8) over &’s which satisfy 0 <
0°6(8) < 1 and I,(8) = &, is of order at least s'/2 as ¢ —» 0. Now,

n—1
. —a rjr+(m/2),,
L(3) = ¥ {( + $)m) " [T P6e5(6) do,
j=1 Jjmr—(mw/2)
n—1 . .
L(3) < ¥ {( = )=}V [T 6 — jm)*65(6)) do.
Jj=1 Jm—(r/2)

Let ¢/(¢) denote the maximum of
[O "27(0) do
over all functions A which satisfy 0 < A(9) < 1 and
fo”/zezA(o)2 do =e¢.

It suffices to prove that the maximum of

n

-1
glj_ad’(ej)

J

over all nonnegative ¢;’s satisfying

(2.19) Y jTHe Ve = ¢,
Jj=1

is of order at least s'/2 as ¢ — 0.

The function (¢) is of order at least £!/3 as ¢ — 0, as may be seen by
* taking A(8) =1 for 0 < 8 < £1/3 and A(9) = 0 for /3 < 6 < 1. Therefore, it
suffices to show that the maximum of

n—1

r—a_1/3
EJ &;
Jj=1

over all nonnegative ¢;’s satisfying (2.19), is of order at least s'/2.
Take ¢; = (j/1)***?/2 for 1 <j <1 and ¢; = 1 for j > I, where [ <n/2.
Then, defining S(A) as at (2.9),

l )

Tl = Z j—2(a+1)ej= l—3(a+2)/2 Zj(2—a)/2 + Z j—2(a+1)
Jj=1 J=1 Jj=l+1
< Cl{l—3(a+2)/2s(l) + l—(2a+1)}’

l n—1

n—1
T2 = Zj—ae}/3 =l—'(a+2)/2 Z j(2—a)/2 + Z j—a
Jj=1 j=1 Jj=i+1

> C,{1~@+D/28(1) + 1=@ D),
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If 1 <a <4then T, < 2C;I7®**D and T, > C,l~ "D, Hence, taking [ to
be of size ¢~1/2* D we deduce that the maximum of T, subject to T, = ¢ is
at least of order ¢~ D/GetD = 51/2 However, this argument fails if
gY@+ 5 o for then it violates our assumption that [ < in. Should
£71/@a+D 5 pn oor, equivalently, n™! > ¢1/22+D_ take [ to equal the integer
part of 37, from which it follows that

T2 > C2n—(a—1) > CB§(a~‘1)/(2a+1) — 0381/2.

Ifa =4then T, < 2C,l %logl and T, > C,l~®log l. Hence, taking [ to be
of size (¢ log £)'/®, we deduce that the maximum of T, subject to T, = ¢ is
at least of order ¢/3[log ¢|2/3 = s'/2. This argument fails if (¢~ log £D'/° > n,
and in that case we take [ to be the integer part of zn, implying that

T, > C3n=2log n = Cs{n=3(log n)""*}(log n)*® = C,£'/3log ¢*/® = C,s'/2.

If @ > 4 then T, < 2C,1"%**?/2 and T, > C,l~®*?/2, Hence, taking [ to
be of size £~2/3%@*+2) we deduce that the maximum of T, subject to T, = ¢ is
at least of order £1/3. This argument fails if £72/3@*+? > n  in which case we
take / to be the integer part of 37, implying that

Ty = Cyn=@+2/2 5 C,£1/3, |
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