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LOCAL LIMIT THEOREMS FOR SUMS OF FINITE RANGE
POTENTIALS OF A GIBBSIAN RANDOM FIELD

By F. Gorze anD C. Hipp

University of Bielefeld and University of Hamburg

Local limit theorems are derived for sums of finite range Z-valued
potential functions of an iid random field. The resulting approximations
turn out to be mixtures of standard normal densities for lattice distribu-
tions supported by residue classes of integers. The mixing weights are equal
to the probability that the sum of potential functions lies in such a residue
class and are nonasymptotic and computable. For finite range potential
functions of a stationary Gibbsian random field with bounded and finite
range interactions, conditions are given under which the global central
limit theorem implies the classical local limit theorem.

1. Introduction and summary. In this paper we shall investigate m-
dependent random fields generated by application of Z-valued finite range
potential or “window” functions to a real-valued iid random field, say, Y;
j € 79, d > 1. With distances in the lattice Z¢ measured by

e — yll = sup{|x; —y;|: 1 <i <d},
define for a fixed subset @ # V < Z¢ of diameter at most m, m > 0, and for a
fixed measurable window hy: RV — Z,
(1.1) XV'e2h, (Y, kej+V), jez?

J

Obviously, X J.V, j € 7%, is a strict-sense stationary m-dependent random field.
Especially for d =1 and V ={0,..., m} we shall consider m-dependent se-
quences defined by

(1.2) XJZhV(Y./’Y/+1’.."¥/+M)’ jEZ.

Recently Aaronson, Gilat, Keane and de Valk (1989) have shown that a
representation of type (1.2) is not possible for an arbitrary m-dependent and
strict-sense stationary sequence of 0-1 variables X, X,,... . We do not know
whether our results remain valid in the general m-dependent case, i.e., when
the representation (1.2) is not possible. :

Let D,={0,...,m}¢ and 7, denote a nonempty collection of essentially
different ‘“windows” V such that

(1.3) i) @=+Vczd VcD,,
' (i) V,vvey,, V£V =jj+V+V forevery;ec 7%

In order to simplify the notation let 7" denote the collection of translates of 7,
ie, V={V+j: Ve ¥, je€7%. Define accordingly hy.j=hy for every
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Ve,jecz%Let Ay2(1,..., N} denote the d-dimensional cube in Z 4 of
side length N > 1. We are lnterested in approximations for the point probabili-
ties of the sum Sy defined as

(1.4) Sy2 Y (XV:Ve v, VcAy)

To illustrate this notation, consider the d-dimensional Ising window as an
example of a one-dependent field, where

Vo={Vi...,.Val, V., ={0,¢)},
e, = vth unit vector in Z%, and hy(Y,, Y, ) 2 lyy,_y, ), and where
P{Y,= +1} =P{Y,= -1} =3
Another example would be the ““‘d-cube window’” defined by
7,2 (D}

and a measurable function k, =k on R”-.
In the 1ndependent case, where m = 0 and 7 necessarily consists of the set

{0} only, X, = h(Y) Jj€ Zd, is an iid random field and Sy =X ;c4,X;. In
this case standard condltlons ensure that
(1.5) sup|P{Sy = p} — ¥n(p)| = o(|AxI"1"?),

P

where |Ay| = N? denotes the number of elements of Ay and where
Yn(p) = Var(SN)_1/2qo(x(N,p)),
x(N, p) = Var(Sy)~/*(p — ESy),

and ¢ denotes the standard normal density. These conditions are

(1.6) EX? <
and
(1.7) X, hasspan 1

[see Bhattacharya and Ranga Rao (1986), page 231, Theorem 22.1].

Let B denote the (discrete) support of X,. The span of X, is deﬁned as the
smallest positive element of the additive group generated by B — B 2 {b, — by
by, b, € B}. In order to simplify the notation assume that

(1.8) P{X, = 0} > 0.

Then (1.7) is satisfied iff ged{a: P{X, = a} > 0} = 1.

Relation (1.5) is the standard local limit theotem which, under certain
assumptions, can be derived also for weakly dependent random fields [see
Heinrich (1988) and Riauba (1986)]. This relation, however, may be violated
even in the case of an m-dependent sequence. To illustrate this, we emphasize
two obvious consequences of (1.5) which may not hold in the m-dependent
case with m > 1: The point probabilities P{S, = p} are of order [Ay| '/? and



812 F. GOTZE AND C. HIPP

they are approximable by a continuous function of x(N, p), i.e.,
(1.9) limsup suplAN|1/2|[P’{SN =p} —P{Sy=p +k}| =0,

for every integer k. Furthermore closely connected with the continuity is the
fact that Sy does not have a preference for odd or even integers p, more
generally, for any integer & > 2,

(1.10) hlrln[F”{SNErmod k} = 1/k,
for every 0 < r < k — 1. In the m-dependent case (m > 1) the residue classes
in (1.10) may have unequal weights. We shall prove (1.5) with ¢y (p) replaced
by
(1.11) ‘ZN(P) 2 kP{Sy = p mod k}yy(p),
where £ is a positive integer determined as follows. For notational convenience
write Yy, for (Y;: j € V), Ve 7%
Define
D& {jez|jl<m},
(1.12) D,2{jeD:j,=0forsomev,1 <v<d} and
R2Y {(hy(Yy): Ve ¥, VcD}.
Conditioned on Y}, j & D,, the random variable R depends on Y}, j € D\ D,.
Let k(Y;, j &€ D ) denote the span of the conditional d1str1but10n of R, given
Y, j & D,. Deﬁne the intrinsic span k by
(1.13) k 2 max{l € N: k(Y;, j € D,) €lZas.}.
In the above-mentioned Ising window we have in the case d = 2,
DO = {07 €1,€9, — €1, — ez}
and
R = l(Y(o,0)=Y(o,1)} + 1(Y(0,0)=Y(1,0)) + l(Y(0,0)=Y(—1,0)) + l(Y(0,0)=Y(0,—1)}
+ l(Y(0,1)=Y(1,1)) + l(Y(0,1)=Y(—1,1)} + 1(Y(1,0)=Y(1,1)) + 1(Y(1,0)=Y(1,—1)}
+ l(Y(—1,0)=Y(—1,1)) + l(Y(—l,0)=Y(—1,—1)) + l(Y(o,—1)=Y(—1,—1)} + Qv —1y=Ya, -1}
and finally
D\D,={(1,1),(1,-1),(-1,1),(-1, - D}.
If for j € D\ D, the values for Y; are fixed and equal to 1, then R attains the
values {0, 3, 4, 5, 6 7,8,9,12} whlch yields & = 1 in this example.

Using the above quantities the following result generahzes (1.5) to the m-
dependent case.

THEOREM 1.14. Assume that
’ (i) for every Ve 7, Plhy(Y,, l € V) € 7} = 1,

(ii) for every V€ %, E|h(Y,, l € V)|? < o0,
(i) lim y|Ay|* Var(Sy) = o2 > 0.



LOCAL LIMIT THEOREMS 813

Then
sup |P(Sy = p} — In(p)| = o(|AxI"12),
P
where
‘ZN(P) = wN(p)lﬁN(P)
with

Un(p) =AxI" 207 0(x)
and k is defined in (1.13) and
x =|Ay|"V?%0"(p — ESy)

as well as
wy(p) =2 kP{Sy = p mod k}.

It remains to demonstrate that the case of unequal weights may indeed
occur for some window functions. Consider the following example.

ExampPLE 1.15. In the one-dimensional case choose a particular window in
(1.2) which leads to the one-dependent sequence

X84, Jen Y0,
Then
Sy=4(Y, + - +Yy_) + Yy - Y.
Let p 2 P{Y,=0}. Then we obtain P{Sy =% mod4} = (p%+ (1 — p)?

p(1 —p),0, p(1 —p)) for & =0,1,2, 3, respectively. This type of example gen-
eralizes to higher-dimensional windows.

The following result describes the weights wy(p) more precisely in terms of
the distribution of random variables depending on m and the window func-
tions only. Define for N > m and j € Z% the d-vector j(N) via

J(N)2j —kN ifkN<j, <(k+1)N,keZ,
which induces a torus identification on A,. Let
7, 28{(V:Ve ¥, VcAy,,,,V1<v<d3Ik, 1€V, k,<Nandl, > N}
and
Hy2 Y {hy(Yynyl€V):VeET,}

Notice that the distribution of Hy does not depend on N > m. We shall write
H for H,, , ;. ‘
Let us illustrate this notation in the Ising window: For N > 2 we have

%m={jN+‘lv7v= la--'yd}a



814 F. GOTZE AND C. HIPP

where jy = (N,..., N). The random variable H, equals

d
Hy = 21 YLy, Vi vne)?
-

which has the same distribution as

d
H= Z 1(Y0=Ye,,}'

v=1
For d = 2 we have
P{H=p}=(%%%)
for p =0,1,2.

THEOREM 1.16. Under the assumptions of Theorem 1.14 we have:

(1) For N > m there exist numbers cy €{0,...,k — 1} such that Sy =
(-1)%Hy + ¢y mod & a.s.
(i) N, N, >m with N; =N, mod k implies cy = cy,. Therefore the
weights wy(p) depend on the residue class of N modulo k only.
(iii) Under the assumptions (i)-(iii) of Theorem 1.14 the local central limit
theorem, i.e.,

lim | A |2 sup|P{SN =p} — l/’N(P)l =0
n—o P
holds if and only if either k = 1 or k > 2 and

1
P{H = p mod k} =

% forp=0,...,k — 1.

ReEMARK 1.17. For the one-dimensional case (d = 1) and one-dependence
(m = 1) with 7; = {{0, 1}} we have H £ h(Y,,Y,) and, mod %,

_ [Ney/2, N even,

N = {(N —8)c,/2 +¢5, N odd,
where

co=h(Y,Y,) + h(Y,,Y;) mod*£k
and

cg=h(Y,Y,) + h(Y,,Y;) + h(Y;,Y;) mod#k as.
In addition,
3cy, = 2¢3 mod k.
Algernatively, let @ € Z/2 be defined by
a £ arg(E exp[i27h(Y,,Y,) /k]) - k/2m.

Then ¢, = 2a.
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For m =1, d > 1 and only one type of “cube window function” h(Y;:
J € D,) we can choose H = h(Y;: j € D,) but the computation of cy yields
much more complex formulas.

REMaARk 1.18. Although the local CLT does not hold, the CLT and a
Berry-Esseen rate of convergence (O(|Ay|"'/?)) are valid: After integrating
the ‘“nonstandard” density #(p), the effect of the weights wy(p) # 1 will be
a local variation of range k|A |~ /2 and size O(|A 5|~ '/2) around the standard
normal d.f.

If Sy is the sum of iid lattice random variables and if U is independent of
Sy and has a Fourier transform with support [ -, 7], then Sy + U hasa d.f.
with valid Edgeworth expansion. When the local CLT does hold with weights
different from one we obtain nonstandard terms starting at order O(|A | /?)
in addition to the usual Edgeworth expansion for P{Sy + U < a}. Compare
Gétze and Hipp (1989).

REMark 1.19. Computing the higher-order approximations in the local
CLT, e.g., in the case of Example 1.15, shows that in higher orders we obtain
additional interaction terms rather than a pure weighted mixture of
Edgeworth expansions on residue classes: For arbitrary N, g > 1 we have

P{Sy =4q} =p®P{Y, + -~ +Yy=q} + (1 _P)2P{Y2 “+Yy=q - 1}.

The next result is a local limit theorem for sums of potential functions of a
Gibbsian random field. Consider a collection 7, of window functions satisfying
(1.3) and a corresponding collection gy, V € 7, of window functions with
values in (—w,»). Let 7" be the corresponding set of translates. Define for
finite K c 79, xeRK y € RZ\NK

Dp(x,y) 2 Y {gv(wy): Ve 7, VNK + T},
where
A x} ifl eK,
Wi {y, ifl & K.
Let Z,, j € 7°, 4 denote a stationary Gibbsian random field such that for finite

Kc Zd and y € R“\X the conditional distribution of Z, given Z,=y,Jj€
7%\ K, has a density proportional to

x — exp| Pg(x,y)],

with respect to a product probability measure Q¥ defined on (RX, #X).

ObvViously Z,, [ € Z%, are no longer independent. They are conditionally
independent, i.e., for finite K, K, € Z¢ with distance d(K,, K,) > 2m, Zg,
and Zg, are stochastically independent, given Zg g,
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Furthermore, let Y}, j € 74, denote an iid random field such that Y, has
distribution @ on (R, #). For any finite K € Z¢ and A € %% the equivalence

P{Yy€A} =0 iff P{Zy A} =0
holds. We shall assume that the distribution @ of Y; has finite support
T £ {a € R: P{Y; = a} > 0}.
In this case, the equivalence reads
P{(Zy€A) =0 iff ANTX=0.

In particular, P{Z, € T} = 1.

Consider now a second collection of windows 7] satisfying (1.3), a set of
translates 7’* and a corresponding collection hy, V€ 7], hy,; = hy, of
window functions. To simplify the notation, we shall identify 7, and 7] as
well as the corresponding sets of translates 7" and 7 *. Define, as above,

Sy & Y (hy(Zy): Ve 7, VcAy).
In this situation, we define the intrinsic span % of the problem as follows: For
ye TP let
R(y) = ¥ {hv(yy): V€ 7,V cD}.
For y, €T, j € D\ D,, define k(y;, j € D\ D,) as the span of the values
R(w), w € TP, with w; = y; for j € D\ D, fixed. Now define
k2 max{l € Z: k(y;, j € D\ D,) € 1Z for all y € TP\Po}.

For our discrete @, this span coincides with the intrinsic span defined for
independent random fields Y;, j € 7.

THEOREM 1.20. Assume that the central limit theorem holds for (Sy), i.e.,
there exist uyy € R, N € N, and o > 0 such that for arbitrary r € R,
1

r
HmP{Sy — uwn < /2y — ~%%/2 e
imP{Sy — uy < roN%/%} ‘/2_f_°°e x

Assume, furthermore, that d < 2 or that for some y,y' € T? with Y=Y
J # 0, we have R(y) + R(y'). Let k be the intrinsic span defined above. If
k =1, then

(1.21) sup |P{Sy = p} — en(p)| = o(N7¢/2),
p

where .
on(p) = N4 2p(a 7 'N"*%(p — uy)).

“This theorem improves Theorem 2 of Dobrushin and Tirozzi (1976), page
182, in which (1.21) is derived under the assumption that the central limit
theorem holds for (Sy), and that the following condition B is satisfied:
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There exists a finite nonvoid cube V,, ¢ Z¢ such that for any 2z € TZd, the
conditional distribution of L{h(Zy), Ve 7, VNV, + O} given Z, =z, |
7%\ V,, has span 1.

Notice that in this condition the span must equal 1 for all conditioning
vectors z, while our & = 1 is satisfied, e.g., when the span of a similar quantity
equals 1 for one conditioning z. Notice, however, that we consider finite

potentials only.
That our condition ‘“k = 1’’ is weaker than condition B can be seen in the
following example in which condition B is not satisfied, while £ = 1 holds.

ExampLE 1.22. Consider the case m =1, d =2, 7, = {{(0,0),(0, 1)},
{(0,0),(1, 0)}}, and the functions h = h,V € 7,, with h(x,y) = 1if x = y and
h(x,y) = 0 elsewhere. The intrinsic span % equals 1 in this example: The
values of R at the three points with y;, = 0, j € D/D,,, and

Y0,1=Y0,-1=Y1,0=Y-1,0~ 1, Y0,0 =0,

y—1,0:y1,0=y0,—1=17 y0,1=y0,0=0,
and

Yo,0 =Yo0,-1= 1, y—1,0=y1,0=y0,1=0y
are 0, 3 and 7, respectively.

We now show that condition B is not gatisﬁed. Let V,, be an arbitrary finite
nonvoid subset of 72, and for y € {0, 1}*" write

W= {hy(yy):VE 7,VnV, + 3}

For j ¢ V, let y; € {0,1} be fixed. Then W, as a function of y;, j € V,, has
span 2. To see this, fix j, € V,, choose and fix y; € {0, 1}, j € V;\ {j,}, and let
w; be the value of W when y; =i, i =0,1. Then w, — w, is even which is
easily seen by inspection. Notice that w, — w, only depends on y;, j € D + j,,
J # Jo- Since j, € V, was arbitrary, we obtain that for fixed y, € {0,1}, j & V,
the function W, as a function of y;,j € V;, has all values in a + 27, where,
e.g., a is the value for W when y; =0, j € V,. So W, as a function of y;,
J € V,, has span 2. This implies that condition B is not satisfied.

For related results of the type “global CLT implies local CLT” for spe-
cial translation invariant two-point potential functions, see the papers of
Campanino, Capocaccia and Tirozzi (1979a, b).

2. Lemmas and proofs. For A c Z? define
Sy, 2 Y {hy(Yy): Ve 7, VcA}.
With this notation, our formerly defined R equals S;,. The following six

lemmas are special cases of Lemmas 2.1 to 2.4, 2.12 and 3.1 in Gé6tze and Hipp
(1989). —

LEMMA 2.1. Under assumptions (i) and (iii) of Theorem 1.14, the condi-
tional variance of Sp, given Y;, j # 0, cannot be 0 almost everywhere.
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As in Gotze and Hipp (1983), consider conditional characteristic functions,
given certain Y. Let
u(t) £ E|E(exp(itSp)|Y;: j # 0)|
and
v(t) £ E|E(exp(itSp)|Y;: j € D\ D,)|.
Notice that u(¢) and v(¢) coincide for d = 1.

LemMA 2.2. Under assumptions (ii) and (iii) of Theorem 1.14 there exist
positive constants &, a such that for all t, € R with u(¢y) = 1 and t € R with
|t — ¢ty < &, we have

u(t) < exp(—a(t - to)z).
Proor. In the proof given in Gotze and Hipp (1989) the additional assump-
tion
VVe, Elhy(Y,leV)] <o

is used. In the following we shall give a proof for the case that only second-order
moments are finite.

For y = (y;) € RPN write o*(y) for the conditional variance of S, given
Y, =y, j€D\{0}. If 0*(y) > 0, then there exists &(y) > 0 such that for
|t} < e(y) we have

| E(exp(itSp)IY; = y;, j € D\{0})] < 1 - e(3)¢>.

Choosing &(y) as large as possible, we can achieve that y — &(y) is measurable
and positive on {oc?(y) > 0}. Then we can find a positive constant § such that

P{e(Y;: j € D\{0}) = 8} > 5.
Hence
u(t) <1 -6+ 8(1 — 8t?) < exp(—8%t?).

Since the left-hand side remains unchanged if we substitute ¢ by ¢ — ¢, with
u(ty) = 1, this proves the lemma. O

LEmMMA 2.3. When v(¢) < 1, then there exists j, € D such that
E|E(exp(itSD)|Y}: J %j0)| < 1.
LEMMA 2.4. There exists a positive constant 3 de‘pending on d and m only
sych that forallt €« R and N € N,
|E exp(itSy)| < u(t) PN,

Here [a] denotes the integral part of the number a.
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The proof of this lemma uses the fact that for a maximal subset A* C Ay
such that

JEA*=>j+DcCcAyandj,j €A* j+j,imply(j+D)n(j +D)=0

the sum Sy, conditioned on Y}, j € Ay \ A% is a sum of |A* independent
random variables.

LEmmA 2.5. u(t) <p <1 implies |E explitSyll < 8(p)N for some 0 <
8(p) < 1 not depending on N.

It can be shown via Lemma 2.3 that v(¢) < 1 implies that there is at least
one segment, say S, of size m% “N*, k > 1, of the m-boundary skeleton of A N
on which

exp[ i¢{sum of window functions depending on S only}]

is not constant and can be proven to be exponentially small by the method
outlined after Lemma 2.4.

LEMMA 2.6. u(¢y)) = 1 implies explit,Sy] = explit,(—1)?Hy + cy)] a.s.,
where ¢y is a constant.

Proor. This result is Lemma 3.1 of Gotze and Hipp (1989). Therefore we
shall give only a sketch of the proof. Also some of the proofs of our results will
use the following notions for cyclic “boundaries.” Define for I c {1,...,d},
l<i<d,and a =0,1,

B, ,2{j€Ayim: N=(1—a)m <j; <N +am)
and
T2 (Ve 7:VNAy+3,VCAyN,,,,VNB; .+ Bforalla=0,1,i €I}.
Notice that by definition
TN Ip= T
Define
H(Z) 2 Y {(hy(YynyjeV):Vew),

for any subset »/C 7. Obviously H is an additive set function. Let T, £ H(7;).
Then

d
(Ve 7:VcAy} = %\( U Zm)
p=1

implies by the inclusion-exclusion principle

(2:7) Sy=X (-7,
where the sum extends over all subsets I c{1,...,d}. Notice that Hy =
T, .

a,..., d}
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Since T, represents the sum of window functions over an essentially
(d — |I)-dimensional ‘“torus strip”’ we obtain

(2.8) exp[it,T;] = const. a.s. for all |I| < d provided v(#,) = 1.

In order to prove (2.8) consider first the case I = &. Here we use the fact that
v(¢y) = 1 implies u(¢,) = 1. Together with the stationarity and independence
of the random field Y}, j € 74, this immediately implies that the sum over this
d-dimensional torus field is constant modulo 27 /¢,.

For |I| > 0 we have to define a quantity similar to v(¢) for cubes of Y; at the
“I-boundary” of Ay, say, v;(¢), and show as for I = & that v,;(¢,) = 1 implies
(2.8). Finally, v,(¢,) < 1 for d > |I| > 0 would imply—similarly as in the proof
of Lemma 2.4—that |E expli¢,T,] converges to 0 exponentially in N in
contradiction to (2.8) for I = .

Define

2
'yN é Sup{E|hv(Xv)| 1(|hV(XV)|<|AN|l/2): VE %}.

For the expansion of the characteristic functions of m-dependent summands
we need the following result.

LeEmMMA 2.9. Suppose that conditions (1)-(iii) of Theorem 1.14 hold. Let
oy 2 Var(Sy)'? and fy be the characteristic function (Fourier transform) of
Sy Then we have for every |t| < exyn'/% en 10,

' fN(to-ﬁl)exp[—ito-gl ESN] - exp[—t2/2”
< cyy{min(|t, 1) + (1¢1* + [£|°)exp[ -2 /4] } + p™N"(1t]? + 1£1°),
where 0 < p < 1 and ¢, a > 0 are constants.

A proof can be obtained via Tikhomirov’s differential equation method for
fi(ton?) [see Tikhomirov (1980)] and is a special case of the expansion result
of Heinrich (1989), Lemmas 1 and 2, adapted for the case of second moments
by means of truncation of hy at |Ay|'/? and using

| () = £ ()] < vy min(1, |An]2t)),

where [3¥(¢) denotes the c.f. of the sum over the truncated window functions.

Proor oF THEOREM 1.14. By definition of %k in (1.13) and from (1.8) we
obtain

(t, € R: v(ty) = 1} = 277 /k.

Define the Fourier transform

gn(t) & feXp[itx]di(x) dx.
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Furthermore, define j, to be the integer j of smallest absolute value such that
|t — jh| < h/2, where h £ 27 /k. Let

g#(t) £ (Eexplij,hSy])gn(t —Jj.h).

Since
P(Sy = = — / exp| —1 d

we will split the periodicity interval [—m, w] of fy(¢) into the intervals
LE{t:t—hll<h/2} 0 [-m, 7],

for integers [ = —|k/2],...,lk/2], where [x]| denotes the largest integer
smaller than x. Then we have by change of variables

1
o7 gx(Dexpl—itp) de
(2.10) z E@N——[gN(t — lh)exp[—i(t — Ih)p] dt

_ E(ZI ®1lv)(l/’N(P) + O(NX)),

where K > 0 is arbitrarily large and where the random variable ©, £
explih(Sy — p)lis a kth root of unity.

In the last relation of (2.10) we employed Theorem 1.14(iii) using the
inequality

(2.11) |gn(t)| < exp[ —ca?|Aylt?],

for some absolute constant ¢ > 0. Finally, E ZIG)N kElg _, = wy(p). No-
tice that the summation ¥, used here and in (2.10) extends over [ =
—lk/2],. .,lk/2] for k odd and over [ = —|k/2|,...,lk/2] — 1 for k even.
Hence (//N is approximately the Fourier inversion of g% and we obtain by
means of (2.10) and (2.11)

1 =
o) 11n(0) = gii(®)|dt + O(N¥)

IA

sup |P(Sy =p) — ¥n(p)]

(2.12) °*

L J,+ O(NT¥),
l

say, where J, denotes the integral over one of the k*intervals I, on the r.h.s.
of (2.10). (For k even combine the intervals I_, ,, and I, ,, of length h/2 by
periodicity into one interval.) .Furthermore, let for some &> 0 and puy =
(exyn)~ /21 as defined in Lemma 2.9

I, =1, VI,V l;,
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where
Iy & {t: )¢ — Ih| < | AN %un},
Lip 2 {t: 1Ayl Puy <t — lh| < ¢},
I;&{t:e<|t—1h|<h/2}
and let
Jy,q9=1,2,3,
denote the corresponding integrals over these intervals such that
(2.13) J =dy +dJy t+dJg.
In order to estimate <J;; we decompose fy(¢) as follows:
(2.14) fy(t) = Eexp[i(t — Ih)Sy]exp[ilhSy].

The relation v(lk) = 1 implies that explilhSy] is equivalent to a o(Y;, j &
D, + j,)-measurable function for every j, such that j, + D C Ay. Since Y; are
iid, this implies that exp[ilhSy] is even equivalent to a o(Y;, j € C, n)-
measurable function, where

C.nE{/j€Ay:Tv=(1y,...,Uy) €Ay,
v,=1lorv,=N,i=1,...,d,|v —j|| <m}
denotes an m-neighborhood of the vertices of the cube A . Let
A2 Y (hy(Yy: VeV, VCAN, VN C, v+ T}

Then Sy — Ay and exp[ilhSy ] are independent. For ¢ € I;; we have by (2.14),
lexp(x)] < 1 + O(jx) and E|Ay| <c,, for some constant c,, not depending
on N,

fn(t) = Eexp[i(t —h)(Sy - AN)]EeXp[ithN] + O(IANI_I/zlJ'N)'

Hence

Jy < j |E exp[i(¢ — h)Sy] — gn(t — Ih)|dt + O(|Ax| W
(2.15) I

= O(|AN|_1/2)’

by change of variables ¢t — [h — ¢’ and application of Lemma 2.9.
Notice that v({k) = 1 implies u(lh) = 1. From Lemmas 2.2 and 2.4, (2.11)
and (2.14), we obtain for some constants c;, ¢y, ¢35 > 0,

Jyp < clj; exp[—a(t - lh)2] <cq exp[—e3|AN|‘2u§de].
12
Hence

(2.16) fI Jip dt = O(uy|Ay|™"exp[ —c,uy]) = o(|AnI~%).
12
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Finally, we have by
p =2 sup{lv(t)|:e <|t —lh|<h/2} <1

and Lemma 2.5
s < [ 8%(p) dt = o(|AyI"?).
Iis

This together with (2.16), (2.15), (2.13) and (2.12) proves the approximation
result of Theorem 1.14. O

Proor oF THEOREM 1.16. (i) Since ¢, with v(¢,) = 1 satisfies ¢, = 27j/k =
jh for some j € Z we obtain from (2.8) for every ‘“torus” sum T;: T} =c;
mod % a.s. if |I| < d, where ¢; denotes a constant. From (2.7) we obtain

(2.17) Sy= Y (-D)"e; + (-1)?Hy modk as.,
|I|l<d

which proves part (3).
(ii) Let us compute c; inductively for an arbitrary rectangle
Ry, . n, 2 {1, Ni} X {1,  Ng} X oo X {10, Ng}

Treees

in Z¢ with N; > 2m + 1 instead of the cube Ay. For |I]| < d assume w.l.o.g.
that 1 & I. We shall consider the two rectangles R, = R Ny Ny and R, =

.....

RN1—1 ,,,,, n, Define the “torus field” Y;* on R, by Y* = Y n), . juwa,
jeze, where
(V) = Jir if0 <j;, <N,
Ji — N;, elsewhere,

and write Y;** for the corresponding torus field on R,. Let T;(Ry), T;(R),
respectlvely, c;(R)),c;(R,), denote the corresponding torus sums and con-
stants for these rectangles. We claim that ¢;(R;) — c¢;(R,) is independent of
N, provided that N; > 2m + 2. This follows from the fact that

c;/(Ry) —c;(Ry) = Z hy(Yy) — Z hy(Yy*) mod &,

where in the first sum the summation extends over V € 7 intersecting R,
and satisfying
V c Ri 2 R Ni+m

and
(2.18) Viel3d iV IPeV:N,—m<I{® <N, and N, <I® <N, + m;

in+the second sum the summation extends over V € 7 intersecting R, and
satisfying VCc Ry £ R Ny-1+m,..., Ny+m @nd relation (2.18) with N; replaced by
N, — 1. All the terms corresponding to V with VCR, cancel out, and
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therefore
c;(R,) - CI(RO)
(2.19) = ) {hy(Y¥): VCR{and VN By, + &)

-2 {hy(Yy*): VCcR;and VN By, #+ @} mod k,

where B, denotes the subspace {j; > a} in Z% It is easy to see that the

number and the types of summands on the r.h.s. of (2.19) do not depend on N,

provided we exclude “‘overlapping effects” by assuming N, >2m + 2. From

the iid assumption on Y, we obtain that the r.h.s. of (2.19) must have identical

distribution for N; > 2m + 1 which is constant mod % thus proving our claim.
Iteration of this procedure yields

(2.20) ¢;(R;) = (N, —2m)(c;(R3) - ¢;(Ry)) + ¢;(R,) modE,

with Ry £ Ry, v, n,and R3 £ Ry, n, ., In order to make the r.h.s.
of (2.20) independent of N,,..., N, we apply the same procedure to the
rectangles R, and R and the other coordinates in {1,...,d} \ I and obtain

(2.21) c;(Ay) =Y (N-2m -1)*(N - 2m)BcaB mod %,

where the summation extends over 0 <a + 8 <d — |I| and c,p are integer
constants depending on sums over functions of Y* je 74, and rectangles
Ropiey,... 2m+ep €5 €1{0,1}, and suitable torus identifications. Hence c; de-
pends mod £ on the residue class of N mod £ only thus proving part (ii) via
relation (2.17).

(iii) Suppose that the local limit theorem holds. Let p, denote an integer
which is closest to ESy and is congruent to p modulo %. Then the local CLT
implies lim ., wy(p) = 1. Since wy(p) does depend on the residue class of
N mod £ only this implies wy(p) = 1 for every p € Z or P(H = p) = 1/k for
every p € Z. The converse implication is obvious. O

.....

Proor oF REMARK 1.17. For m =d =1 and h;; £ h(Y,,Y;) we obtain
Hy=hy, and Sy =cy — hy; mod k, where the constant cy equals Ty £
hig + hgg + -+ +hy, mod k. From (2.20) we obtain that for N > 3,

(2.22) cy=(N—-2)(hyy+hyg+hg) — (N —38)(h;y+ hy) mod k.

(Notice that h,, + hy =8, — Hy =c,.) Since hyy + hyy + hy, and hyy +
hgy + hgy, have the same distribution and are constant mod % they have to be
equal mod k. When N is even we may write (N — 2)/2 sums of the (N — 2)
sums in (2.22) in the reversed order and obtain from the fact that A, it R
i # j, has the same distribution as A, + Ay,

cn=(N—=2)/2(hyy + hy; + hgg + hgy + hgy + hyg) — (N = 3)(hyy + hy)
=N/2¢c, mod k.
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Thus

(2.23) (N -3)cy/2 + ¢35, N odd.
From (2.22) and (2.23), applied for N = 4, we obtain
3¢y = 2cg. .
For ¢, =27/k and N even Sy + hy; can be split into two parts of N/2
summands each such that

{N02/2, N even,
cy =

N/2 N/2-1
Eexp|it, ). hoji1,2j| = exp[itocy ] E exp _ito( ) hojoje1 + hn||s
Jj=0 J=1

which implies
explitoey] = (E explitoh,]/E exp[—it0h12])N & exp[itoa]N,
acs{l,...,k -1},
which implies Na € Z and ¢y = Na mod k for N even. This means, e.g.,
hi; + hy =2a modk. Hence a €7Z/2. For N odd write Sy =Sy +

hyneithnins — Anner T AN tO reduce the computation of ¢, to the
case of N even. This together with (2.23) proves Remark 1.17. O

Proor orF THEOREM 1.20. Define the Fourier transforms
fn(t) £ Eexp[itSy]

and
gn(t) 2 Eexplita 'N~4/*(Sy — wa)]-
Then
P{SN =p} = (27TiUNd/2)_1faNd:2/: exp(_ito_—lN—d/2(p _ /-LN))gN(t) dt.
—aN® “7
Furthermore,
on(P) = (2Wi0Nd/2)_1faNd:i: exp(—ito IN"4/%(p — py))e " /2 dt
- —aN® “m

+o(N~4/2), \

The global central limit theorem implies that for all M > 0,

lim sup |gN(t) - e‘t2/2| =0.

N =M
Hence it suffices to show that
(2.24) im lim [V gy(t)|dt =0

| wm i)y a0

Let Sy, AC 7%, be the sum defined at the start of Section 2. We shall first
show that there exists y,y' € TP with y; =y}, j # 0, and R(y) # R(y"). For
d > 3 this was assumed in Theorem 1.20. For d = 1 this follows from u(¢) =
v(¢) and our assumption % = 1. Consider the case d = 2 now and assume that
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no such pair y, y' exists. Then for N > m the ‘“torus sum”
Si=2X {hv(Zyny:1€eV): VeV, VCAN,,, VN Ay + )

equals a constant, say, cy. (For this we use the equivalence of the random
fields Z,, l € Ay, and Y, | € Ay.) This implies that for these N the sum Sy
equals ¢y plus a sum of O(N) “boundary” terms which are uniformly
bounded. Hence for these N the random variable N~!S, is restricted to an
interval of the kind

[N“ley —M,N ey + M|
and therefore N~ (S, — up) cannot be asymptotically normal.

For t € R, let f, be the conditional characteristic function of R(Z;: [ € D),
given Z;, j # 0. The random variable f, depends on Z,;, [ € D \ {0}, only. For
t € R let h, be the conditional expectation of |f,|, given Z,, [ ¢ D. We shall
show that there exists & > 0 such that for z € T2\? and |¢| < ¢,

(2.25) h(z) <1— &t
Fix the above y € TP. Then there exists § > 0 such that for |¢| < §,

| fi(y: 1€ D\{0})] <1 - &¢2.

For z € TZ\P the conditional probability of {Z, =y, I € D\{0}}, given
Z, = z;,1 € 7%\ D, is positive, and it depends on z;, 1 € 2D, only. Hence there
is a positive lower bound, say, a, for these conditional probabilities. For
arbitrary z € TZ\? and |¢| < § we obtain

h(2) <1—a+a(l-6t2) =1-adt?

which is (2.25).
With the help of (2.25) we shall prove that for |¢| < ¢ and some positive &,
(2.26) Fy(t) < exp(—g, N9?).

To this aim we choose a maximal subset A of A, with the following
properties:

@ j,j €A, j+j=1j-JlIl>3m;
(i) jeA=j+DcCA,.

The set A contains at least cN? elements, where ¢ > 0 depends on m and d
only. For ¢t € R we have

| Fn(2)] =|EE(eXP(itSN)|Zj3 J € A)I

(ii)
<E

E( [T exp(itS;, p)IZ,: | & A)"":i'E

JEA

QE(exp(itsﬂD)m: ! #j)l
je

o =ETT|E(exp(itS; p)iZ: 1 #)|-
JEA

The relation marked with “‘c.i.”” follows from conditional independence. Notice
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that
W, 2| E(exp(itS;. p)|Z;: L #J)]
depends on Z;: [ € j + D, only. Let
By={le€7%1¢j+Dforall j € A}.
Given Z,, | € By, the random variables W; are independent. Hence -
ETIW, - EE( [1W)z:le BN) —ET]E(W)Z,:1<By).
JEA JEA JjEA
Stationarity of Z,, [ € Z¢, conditional independence, and (2.25) imply that
E(W)|Z;:1 € By)=E(W,|Z;: 1l &) + D) <1 —et?
and therefore
| fu()] < (1 — et2)™" < exp( —ceN¥t2).

This is (2.26).
The proof of (2.24) will be complete if we show that

. O'Nd/z‘rr _
Alrlglmngd/z |gn(2)|dt = 0.

This will be done proving that for |¢| > ¢,

(2.27) | fw(®)] < o™,

where p < 1 does not depend on N. Our assumption “% = 1" implies that for -
some p < 1, some j* € D, and some z € TPV and for ¢; < ¢ <,

|E exp(itSp|Z;, = z;, L € D\ {j*})| < p-

As in the above proof fog (2.25) we conclude that for some p; <1 and all
g, <t<mandall z€ TP,

(2.28) E(|E(exp(itSp)|Z;: L #j*)||1Z, = 2,, L & 2D) <p,.

For j* # 0 the proof for (2.28) is similar to the one given above. For j* + 0 we
construct a maximal subset B of A, with the following properties:

@ j,j €B, j#j =1j—Jl>3m;

(ii)jeB=j+DcCAy;

(iii)jeB,Ve ¥,)VcAyand j+j*€V=VcCj+D.
Property (iii) can be achieved by choosing j € B close to the boundary of Ay
in the direction j*. In the case d = 3, m = 1 and j* = (-1, 1,0), we may take
as elements of B the points (2, N — 1,2k), £ = 1,2,...,(N — 1)/2. The set B
contains at least ¢N elements, with ¢ > 0 not depending on N. As above we
obtain ’

| fn(t)| < E l_!B|E(exp(itSj+D)|Zl: L#j+j*)|-
JE



828 F. GOTZE AND C. HIPP

Again let
By={l€7%1¢j+2Dforall j € B}.
Given Z,, | € B, the random variables
W, =|E(exp(itS;, p)|Z,: 1 # j + j*)|

are independent. Hence

| fu()] < EE( ﬂgqul: le BN) =ET]1E(W/|Z,:1 ¢j + 2D).
JG

JEB
Stationarity and (2.28) imply
which is (2.27). O

REMARK 2.29. Our condition ‘b = 1" is weaker than condition B of
Dobrushin and Tirozzi. If & # 1 then for some 0 < ¢ < 27, the random
variable exp(itS}) does not depend on Z,. Let

By stationarity, exp(itW) does not depend on Z,, [ € V,,, and then exp(itW),
conditioned on Z;, [ ¢ V,, is a constant. In this situation, condition B is
violated.
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