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ON APPROXIMATING PROBABILITIES FOR SMALL AND
LARGE DEVIATIONS IN R¢1

By J. RoBiNsoN, T. HOGLUND, L. HoLsT AND M. P. QUINE

University of Sydney, Royal Institute of Technology, Stockholm,
Uppsala University and University of Sydney '

A unified approach to approximations of probabilities for sums of n
independent random vectors in R? is presented based on the Edgeworth
expansion of exponentially shifted vectors together with explicit bounds on
the errors. Weak conditions are given under which the error bounds may be
written as simple order terms in n. These results are used in particular to
examine approximations to conditional probabilities giving a general method
of approximation for these. A number of important special cases are
discussed and examined numerically.

0. Introduction. This paper extends in several ways the unified central
limit theorem of Héglund (1979). We deal with the distribution of the sum S,
of n independent (but not necessarily identically distributed) random vectors
in R? with the first d, <d dimensions being lattice with span 1. The
probability P(S, € x — B) for a Borel set B c R? is approximated by the
Edgeworth expansion of the random variables, exponentially shifted with
respect to an arbitrary parameter 6. Taking 6 = 0 is shown to yield the usual
Edgeworth approximations. Choosing 6 = 6 to make the mean of the exponen-
tially shifted sum equal to x corresponds to a choice of a saddlepoint of the
standardized complex cumulant generating function and yields in many cases
very accurate approximations of both densities and tail probabilities connected
with both large and small deviations.

Approximations for densities which hold under rather strong conditions
have been obtained by Barndorff-Nielsen and Cox (1979), extending the meth-
ods of Daniels (1954) for continuous random variables and Blackwell and
Hodges (1959) for lattice random variables. We use methods related to those of
Stone (1965, 1967) and also von Bahr (1967a, b) and Efron and Truax (1968)
to obtain approximations under relatively weak conditions. These results
extend those of Robinson (1982) for a particular case. They can also be used to
give Edgeworth and saddlepoint approximations in a number of special cases
considered in the literature (in particular, the case of conditional probabilities),
where in general only limit theorems or Edgeworth approximations were
obtained; these include Erdés and Rényi (1959), Holst (1979), Morris (1975),
Quine (1985), Quine and Robinson (1984) and Robinson (1978).

The principal theorem is stated and proved in Section 1 giving a general
approximation for P(S, € x — B) based on the Edgeworth expansion and an
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explicit bound for the error. In Section 2, sufficient conditions are given so that
the theorem yields local and integral Edgeworth expansions and saddlepoint
approximations with errors of the appropriate order. Ratios of these are used
to obtain approximations for conditional probabilities. Section 3 discusses
some one- and two-dimensional cases and Section 4 discusses numerical
techniques which can be used to implement the approximations in practice,
illustrating the methods with reference to examples including an occupancy
problem and some problems on the conditional distributions of some linear
combinations of independent random variables which yield approximations to
some nonparametric test statistics.

1. The principal result. In Section 1.1 we give the formal approxima-
tion and in Section 1.2 we derive an explicit bound for the error.

1.1. The approximation. Let X,,..., X, be independent random vectors
in RY, let S, = L7_,x; and let u, be the probaiblity measure of S,. Write
(1.1) k,(0) = log Ee® 5»,

where 0 - S, denotes the inner product of 6 and S, and let 0, = {6: «,(8) < «}.
Then certainly 0 € ©,. Put

(1.2) Hno(dy) = e™<@%0y, (dy),

- the probability measure of the associated random variable S, ,, which is the
sum of the independent associated variables X, ..., X,,. Assume «,(6) has
two derivatives (defined formally if § = 0 only), and let
(1.3) m ,(6) = «;,(6)

- and
(1.4) V.(6) = «;(6)

be the mean vector and covariance matrix of u,,. We will assume that for
6 € int(®,), V,(8) is positive definite. For any Borel set B c R let

where a@ + B = {x: x — a € B}. Then v,, has mean 0 and covariance matrix
V,(6).

For any Borel set B ¢ R?,
(1.6) (2 = B) = [xa(x ~ y)n.(dy),

where yg(u) = 1if u € B and 0 otherwise. Thus

(7 a(x = B) = &% [xp(x = y)e ™", (dy)

= eK,,(G)—G'xI(O’ B, IU),
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where w = x — m,(0) and
(18) 1(0, B,w) = [xa(w = u)e”®™n,,(du).

In the sequel we will assume that the first d, variables are lattice with span
1 and that B = {y: y = (0,y,), y; € B, € R?1}, where we use the subscripts 0
to denote the first d, variables and 1 to denote the last d, = d — d variables.
So, for the first d, variables, all results in this section are local.

We will approximate I(8, B, w) by

(1.9) e;_3(0, B,w) = ,[RleB(w —u)e” ™ Ve, (u,v,,) du,,

if d; >0 and e,_5(0, B,w) = e,_3(w,v,,) if d; =0, where e,(u,v,,) is the
formal Edgeworth expansion for v,, of order k. Formulas for this expansion
are given in Bhattacharya and Ranga Rao (1976), Section 7, and in Barndorff-
Nielsen and Cox (1979); however, we give the result here in a convenient
notation for the examples given later. Let v represent a d-vector of nonnega-
tive integers .and let «* be the vth cumulant of Y,*(8) = V,(8)~1/2Y,(9),
where Y,(6) is a random vector with probability measure v, ,. Usually it will be
convenient to take V,(0)~'/2 as a lower triangular matrix. Further, write
H, (x)e(x) = (—1D™p™(x), where ¢(x) = (2m) 2exp(— 3x2), so H,(x) is
the usual Hermite—Chebyshev polynomial of degree m. Then we can write

k
(1.10) e(y,vn0) = (1 + X an(y*))(%)‘d/z det V,,(6) ~/%e /20",
=1

where y* = V,(6)~'/?y, |y** = y* - y* and

*

l 1 Klikn e KV n
(111) @,y = ¥ — XL X" —"2"H,(y¢) -+~ H(33),
me1 m! vl !

where ©* denotes the sum over all m-tuples of positive integers (j,,..., j,,)
satisfying j; + -+ +j,, =, L** denotes the sum over all m-tuples
i, ..., v,), with v, = (vy;,...,vy,), satisfying (v, + -+ +yy; =Jj, +2, i =

1,...,m),and I, =v,; + - +v,,,, h =1,...,d. The use of standardized
variables in (1.10) and (1.11) allows a convenient general expression agreeing,
in particular, with the formulas of Barndorff-Nielsen and Cox (1979) for the
first two terms.

Note that if x = m () has a solution 8§ = §, = 6 (x) and if B, is a fixed
compact set, then, taking s = 3, we obtain for w,(x — B) the saddlepoint
approximation

exn®=0x(90)~9/2(det V,(8)) " vol( B,).

Special cases of higher-order approximations are given in Section 3.
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1.2. The error bound. First we approximate the convolution of 1(6, B, w)
with a smoothing density over the last ¢, variables. Let

(1.12) V(9,B,T,w) = fz(e, B,w — u)K,(du)
and
(1.18) e,-5(0, B,T,w) = [e,_3(6,B,w — u)Kr(du),
where, writing u; = (uyy,...,%4),

d,
(1.14) k(uy) = TT(1 ~ cos uy) /mu],

K(B) = [ T%k(Tu,)du, for d;, > 0 and K(B) = 1, otherwise. Then the
characteristic function of this probability measure is

d,

(1.15) Kp(¢) = i=l_[1(1_ €1/T), —T<¢u<T,i=1,...,dy,
0, otherwise.

So

(1.16) V(8, B, T, ) = Kr(£) R0, 5(£)7,0(£),

where x, p(u) = xp(u)e® ™, X, p is the Fourier transform of this function, if it
exists, and ?,, is the characteristic function of v,,. If d; = 0 then B = {0} and
Xo, (1) = 1if u = 0, 0 otherwise. X, p exists if

(1.17) %0,8(0) = [xa(u)e’ " duy <.

This is so if vol(B;) < » and also for some sets B such that 6 - u <0 for
u € B. Also ¥, 5(0) = 0 if vol(B,) = 0 for d; > 0.

We will approximate 7,,(¢() and use the inversion theorem for Fourier
transforms. In the sequel C, ¢ will denote constants which may be different on
each occurrence. From Theorem 9.11 of Bhattacharya and Ranga Rao (1976),
and using their notation, if v,, is the measure of a sum of n independent
random vectors with finite sth moments,

(118) ﬁno(g) = é\s—3(§7 Vnﬂ) + Rs—2(§’ Vnﬂ)’

where

|Rs—2(§a Vno)l < Cns(o)n_(s_z)/2[|Vn(0)1/2§|s +|Vn(0)1/2§ 3(s—2)]

X e_‘f'Vn(o)g/‘i,

(1.19)
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for |V, (6)1/2%¢) < Cn(8)~/*n~2/25 where
n s
(1.20) 1,(0) = n¢=2/2 ¥ E|V,(6)"A(X;, — EX,)]| -
Jj=1

Note that if 6 € int(®,), then certainly these moments are finite, although
n,(0) may depend on n and may not be uniformly bounded. Also, from
Theorem 8.9 of Bhattacharya and Ranga Rao (1976), we have

(1.21) |5,0(£)| < e=¢ V@4
for

(1.22) |V.(8)'/%¢| < §13,(0) "
and so for

|[V(0)2€] < 3ma(0) "'nM2 < 31,,(0) 7,

where
(1.23) -l3n(0) = sup ), E|t ) Vn(e)_l/z(on - Eon)la-
lEl=1j=1
Further, if
uo(T) = sup{[9,4(£)|: |V,(0) /%] > 3mg(0) 'n/2, I&] <,
(1.24)

i=1,...,dg, |&| <T,i=dy+ 1,...,d>,

where we note that q,, = q,,,(T') does not depend on T if d; = 0, then, since
|V(6, B,T,w) —e,_3(6, B,T,w)|

(1.25)

= @) e R (€) R0, () 30sE) — &,-o(E10)] ],

where the integral is over (—m,w) for &,,...,§,; and over (-T,T) for
4,415+ +» £4» we have the following result.

LEMMA 1.
A(8,B,T) = sup|V(0,B,T,w) —e,_3(0, B,T,w)|

w

(1.26) .
< CRp, 5(0) [ n,(6)(det V,,(8))"*n =272 + Thq,(T)].
;i‘he theorem will follow immediately from this and the following smoothing

lemma whose proof is given in Appendix A; related smoothing lemmas appear
in Bhattacharya and Ranga Rao (1976) and von Bahr (1967a).
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LemMa 2. If |0) < C and & =c/T, where K;(S(e)) =1—-a > 2/3, for
S(e) ={y: y =(0,y,) € R% |y,| <eé}, then writing 8(8, B,w) = I(8, B,w) —
e,_30,B,w), B, ={x +y: x €B, y € S(¢e)} and B_, = (B°),)°, we have

sup|8(6, B,w)| < (1 — 3a) '{max(A(6, B,,T),A(0, B_,,T))

(1.27) )
+(1+ a)ef 5(v,0) X, BZE\B_ZE(O)},

where

e o(v,,) = sup|e,_s(u,v,,)| < C(det V,(6))™*(1 + n,(8)n=1/2).

TueoreM 1. If 0] < C, x € Z% X R% and & = ¢/T,
|pa(x — B) — ex=%%¢,_4(6, B,x — m,(6))]
< e ®=0%(det V,(0))/?
X C| R, 5, (0)(n,(0)n=C~D72 + (det V,(6))/*T%q,,,(T))

+Xo, BZE\B_%(O)] .

(1.28)

2. General conditions and expansions. This section gives conditions
under which the bound of the theorem may be used to give simple order terms
for asymptotic approximations.

2.1. Direct Edgeworth expansions. Consider the case 6 = 0, and consider
a triangular array {X,,,..., X,,} of independent random vectors in R? with
S, = £ ,X,,, with the same notation as in Section 1 for X,,..., X,,, applied
to X,,,,...,X,,,and

ES,=0, Cov(S,)=V,=V,(0).
We will consider the following conditions:
(E.1) There exists a positive-definite matrix V such that
n~v, >V asn—

(E.2) n,0) <C.
(E.3) q,,(n®* 3% <Cn* orif d, =0, q,o < Cn™*, where

A=d(s—3)/2+(s—-2)/2+d/2.
, Let #(¢) be the class of Borel sets B ¢ R? such that
(2.1) vol((B,);) <Cvol(B;) and vol ((B,\B_,),) < Cesur(B,),

where vol and sur are volume and surface area; for notational convenience we
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will take vol(B;) = 1 and sur(B;) =0 if d; = 0 and sur(B;) =1 if d; = 1.
Then, using the fact that 2, 5(0) = vol(B,), and taking T = n®~3/2 in Theo-
rem 1, we obtain the following local result.

COROLLARY 2.1. If B € #(n~~3/2) and conditions (E.1), (E.2) and (E.3)
hold, then

(2.2) w,(x —B) — '/l;@dIXx—B(u)es—3(u’/“‘l‘n) du,

= (sur(B;)n'/2 + vol(B,))0(n=9/2-(=2/2),

To obtain an integral version of this result, we may use the device in
Corollary 3.3 of Skovgaard (1986) to obtain the following corollary.

CoOROLLARY 2.2. If (E.1), (E.2) and (E.3) hold

23) iox = B) = [ xe-n(u)e,o(u,p,) duy

= O((log n)n=d0/2-(s=2/2)

RemMark 1. If X, X,,... areiid, EX; = 0, Cov(X,) = V, which is positive
definite, if E|X;|° < « and if
(2.4) |Eet* %1 <1 -8 forsomed > 0,c <t <Cn®3/2
then conditions (E.1), (E.2) and (E.3) are easily shown to be satisfied and the
corollaries above hold under these conditions. If in addition X; has an
integrable characteristic function and f, is the density of u, with respect to
the direct product of the counting measure on Z%° and the Lebesgue measure
on R, then, taking B = S(n~¢"2/2) and T = n~¢~?/2 in Theorem 1, we
have

WP = [ e n(w)e, o(u, i) duy | = vol( B)O(n4/2-07272),

since X, p, \ p_,(0) < C vol(B,) and ¥, 5,(0) < C vol(B,). Dividing both sides
here by vol( B;) and using the fact that f,, has bounded derivatives for n > 2,
we can see that '

(2.5) | (%) — e,_g(x,1,)| = O(n=¢/2-(=2/2)

Remark 2. If d =d, =1 and B is any finite interval, then |g, z(£)| <
2/|£|; so using this bound in (1.25) we can replace the bound on the right in
(1.26) by

Cmu(0)n~C=272 + q,,(T)log(Trn"*/*n5(6))].

For B a half-line, we may bound the difference in B N (—n,n) as above and
bound it in (—7n,n)° by O(n~¢~?/2) using a Chebyshev inequality. Thus
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under conditions (E.1)-(E.3), Corollary 2.2 holds with log n replaced by 1.
When d > 1 it is possible to improve the bound in (2.3) using the methods of
von Bahr (1967a).

REMARK 3. We could include some more general cases in the nonidentically
distributed situation by defining a standardizing sequence p, — © as n — ®
and adjusting (E.1)-(E.3) appropriately. For example, if X;, are indeperident
Bernoulli random variables with p, = i, then it is necessary to take p, =
log n.

REMARK 4. Suppose we wish to obtain an asymptotic approximation to
(2.6) P(8S,, €x,— By|S,, =x,) = P(S, €x — B)/P(S,, = x,)
for |xo| < Cn'/2. Under the conditions of Corollary 2.1, both elements in this
ratio have expansions of the form given in (2.1), so an approximation is given
by

/ es—3(u’lu’n)/es—3(x0’l’l'0n) dul?
x,—B;
where u,, is the probability measure of S,. If we replace V, /2 by A, where
A is a lower triangular matrix such that ATA =V, and u* = Au, then u}
depends only on u, while u*; depends on both %, and u,. So the integrand is
approximated by
1/2 . s—3 s—3
(2m) "/ (det V1) Ce /2 1 4+ T Qi u*)) ( 1+ ¥ Q(x¢ )
=1 =1
where u# = x¢ and Q%(xg) is defined as in (1.11) by restricting attention to
S,, and V! is the d, X d, lower right-hand submatrix of V,, ..

. 2.2, Saddlepoint approximations. The other choice of 6 of most interest is
6, = 0,(x), the value of 6 at which

(2.7 k,(0) — 60 -x
is minimized; that is the solution of
(2.8) m,(6,) = ki(6,) ==

This corresponds to a saddlepoint in the complex cumulant generating func-

tion and permits us to obtain approximation theorems with relative error

O(n~¢~2/2) throughout an appropriate range of x values in many cases.
First we will give some general conditions.

(S.1) There exists a convex, compact K C int(®,) for all 7, such that int(K)
is nonempty. )

(S.2) There exist positive-definite matrices V(6) such that as n — ,
(2.9) n~V (68) -» V(8), uniformly for 6 € K.

(8.3) 1,(6) < C for all 6 € K.

(S.4) q,,(n® ¥2) < Cn™* for all € K, or if d; =0, q,, < Cn~*, where
A=d(s—3)/2+(s—2)/2+d/2
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Remark 5. If X, X,,... are iid with probability measure p which is not
concentrated on an affine subspace of R?, then n~ 1k, () = k(6) = log Ee® %,
which is strictly convex on int(®), where here ® = @,. The conditions above
are all satisfied if

(2.10) |Eexp((0 +it) - X;)/Eexp(0 - X;)| <1 -3,

for 6 € int(®), some § > 0, and ¢ < |¢| < Cn~3/2,

Under conditions (S.1)-(S.4), for n~'x € K* = {n"'«/(0): 6 € K}, (2.8) has
a unique solution, én, say, since (S.2) ensures that n~ 'k, () is strictly convex
for all # € K and n large enough, so n~'k’(6) is a one-to-one map from K to
K *¥. Now we can obtain the following result.

CoROLLARY 2.3. If conditions (S.1)-(S.4) hold, if B is convex and included
in a compact neighborhood of 0 and if n™'x € K*, then

(% — B)
(211) = ‘ekn<én>—én'x[es_3(e‘n, B,0)
+ (sur(B;)n'/2 + vol( B,))O(n=2/2-(-2/2)],
If, in addition, sup({|y|: y € B} < Cn~=¢~%/2 then
tn(x = B)

exn(én)—é,,-x

s—3
2[vol(Bl) 1+ Y an(o))
=1

212)  (2m) 7 [det V]
+ (sur( B;)n'/2 + vol( Bl))O(n‘(s‘z)/z)],

where an(u) are defined as in (1.11) with the cumulants calculated at 6, and
we write V, for V,(6,).

ReMARK 6. If in addition to the conditions of Remark 5, X, has an
integrable characteristic function, then, as in Remark 1, we can see that

(2.13) fo(x) = e,_3(x,v,)(1 + O(n~¢~2/2)),

For B convex but not necessarily compact, we can use the method of
SKovgaard (1986) to obtain a result as in (2.4) where the term (sur(B,)n'/? +
vol(B,)) is replaced by 1 and the order term is O((log n)n~90/2-(s=2/2)
However, in the important special case when d; = 1 and B = (-, 0], this can
be improved.
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COROLLARY 2.4. Ifd, =1, B, =(—x,0], n"'x € K* and x, > ES,,, and
if conditions (S.1)-(S.4) hold, then

/J'n({O} X [x,oo)) = eK"(é")_é"‘x[es_:;(én, B,O)

2.14 A
(2.14) +(67 + n'/2)0(n=d/2-6=2/2)],

Proor. Take & = cn™¢~9/2 Since x, > ES,,, 6,, > 0, so
G5, 50(0) = [ e s dus, = Gt < i)
2e
and similarly X4 p, \p_,(0) < Ce. So the result follows immediately from
Theorem 1. O

RemARK 7. Consider approximations for P(S;, € x, — B,|S,, = %), using
approximations for the numerator and denominator of P(S, € x — B)/
P(S, = x,) obtained from Corollary 2.3. If k{,(6) denotes the vector of partial
derivatives of «,(6) with respect to 6, only, then under the conditions

(S.1)-(S.4),we can choose 6§, as in (2.8) and let d,, be the unique solution of
(2.15) K5n(6) = x4
Then if 6, = (0, 6,,), the approximation is
eKn<én)—é,,~x—,<,,(é,,)+éo,,-er 3(é‘n, B, 0)
(2m) ~%"*[det Voo, | *(1 + £i2{01n(0))

where QOln(O) is defined as in (1.11) on R% with cumulants calculated at 6,
and V,,,, is the upper left-hand d, X d, submatrix of V, (6,,).

3. One- and two-dimensional examples.

3.1. One-dimensional lattice approximations. Consider the case d, =1,
d, =0, B={0}, e = 0, and suppose X, X;, X,,... are iid. As in Remark 5,
(S.1)-(8.3) are satisfied. The requirement that X has span 1 ensures |q,,| <

e~" for 6 € K, n > 1, so that (8. 4) is also satisfied. For a local result, if x is
such that 0 €K, where 0 solves m (0 ) = x, taking s = 6, and bearing in

mind (1.10), one obtains, writing 6 for §, and Vn for V,(6),

W(0)—6m (6
(3.1) ma({x}) = ng;%,/;)TZ)[l + @,(0) + O(n‘z)]

where @,,(0) = (3k}, — 5k%2)/24, a result originally obtained by Blackwell
and Hodges (1959).
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For a tail result, take m () = x, w =y — x to get

pa([2,2) = X w,({3})
y=x
(3~2) eK,,(é)—é(w+x)‘}n—1/2¢(an—1/2)
0

X [1 + QAln(an_l/z) + QA2n(an_1/2) + O(n_3/2)] .
Now for x > 0,e *=1—-x+ O(x?) as x > 0, so for 2 > 0,
1
2v,

|
T

Z wk+ze—éw+0(n—2)’

0

o o
(33) Z wke—éw—w2/2‘7n — Z wke—éw _
w=0 w=0 w

and using this in (3.2) gives

eK,,(é)—éx
po([x,®)) = " -
(27V,)(1 — &%)
(3~4) A A
x[1+ §(xf, — 5k32/3) — $m5(6) /V,
kg (8) /2072 + 0(n"D)],
where

2

(85) my(0) =e?/(1—e7"), my(0)=e’(1+e")/(1-e""),

again as obtained by Blackwell and Hodges (1959).

In practice, the approximation (3.3) [and hence (3.4)] is not very good for
moderate values of n (e.g., 20 or 50), whereas the local result (3.1) gives a good
approximation. However, good approximations can be obtained for tail proba-
bilities either by adding up (3.1) [which involves solving a lot of equations
m (6) = x] or by calculating from (3.2). This point is discussed further in
Section 4.

3.2. The one-dimensional integral result. For ease of notation, we will
restrict attention in this section to the case of iid random variables, so d; = 1,
d, = 0 and we will consider B = (—x, 0]. The results in the direct Edgeworth
case when 6 = 0 are well known so we will consider only the saddlepoint
approximation.

The assumptions which are required to ensure that conditions (S.1)-(S.4)
hold are discussed in Remark 5 of Section 2.2. These‘are that «(8) = log Ee®X:
< o in an open neighborhood of 0 and that (2.10) (with the restriction to
d = 1) holds. For the rest of this section we will assume that (2.10) holds; let
X4, X3, - - - be the associated random variables and write

(3.6) EX,, = m(0) = «'(6), var( X,,) = V,(0)/n = k"(6).
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From Corollary 2.4 we obtain, writing 6 for én,
(8.7) pu(x — B) = e8¢ _.(§,B,0) + (n¥/2 + §~1)O(n=C-D/2)].

Here we have
® R R s—3 . .
=1

_ -1/2_gw, 2 (F _-u2/2
(3.8) (2m) "% fév,,we

s—3
14 Y 0,0 - évn1/2>) v
=1

s—3
_ fr(OMnl/z)(l s pln(év;ﬂ)),

=1
where
(3.9) () = (2m) V22 [Te 2 dy
A
and

(3.10) (M) P, ()) = (277)_1/2e)‘2/2fwe'”2/2Q,n(v — ) dv.

Here @,,(x) is a linear combination of Hermite—Chebyshev polynomials H,(u)
with coefficients depending on the standardized cumulants of S, ; We will
show in Appendix B that
r(M)pa(A) = (2m) /%72 [H,(v - 1)e /2 da
A

(3.11) - |
+(_)‘)k7(/\) + (27'1')_1/2 Y Hj(O)(_/\)k—j—l.
Jj=0

So P, ,()) is the same linear combination of p,(A) as Q,(w) is of Hy(u). In
particular,

(8.12) PL(A) = k,ps(1) /6,
(3.13) By (A) = kd.pa(X) /24 + k$2p5(1) /72,

where «, = nk®(6)/V3/? and kj, = nk®(0)/V2.

3.3. Conditional lattice approximations. Take d, =0, d, =2, B = {0},
e=0, X}, X,,... iid with EXj, = 0. Note that the natural notation X; =
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(X,;, X;;) used here differs from that used elsewhere. As in Section 3.1,
g0l <e™ " for 6 €K, n>1.If § =6, = m; (x) € K, the theorem gives,
with s = 6,
eK"(é)—o‘-m,,(é)
)= ——
/‘Ln({ }) Zw(detvn)lﬂ
(3.14) X .

X [1 + an(w*) + Q2n(w*) + Q3n(w*) + O(n—Z)]’
where w* is the standardized variable w* = Vn_ 2 and w = x — mn(én); in
particular taking w = 0 gives a local bivariate result. Choosing x = EX;; = 0
in (3.2) gives

1 «
(8.15) pon({0}) = —,—‘175[1 + Qg2,(0) + O(n72)],
( ™ OOn)
where V= Vo, (0) and Q,,(0) = (8%, — 5k%)/24, the &’s being the stan-
dardized cumulants of Xy, + -+ +X,,.
Thus, with § = m (0, x,),
e"n(6)—8:m (6)

P(Sy, = x1|S,, = 0} = —
(3.16) (27 det V, / Vo,
X [1 + Q5,(0) = Qz,(0) + O(n~%)].
In the same way, with the same 6, incorporating Q3n(v*) in the order term,
P(8;, = 4|8y, = 0)

© eK"(én)—éln(vl +x1)—%v*12

(3.17) =Yy — ,
v —0 (27 det V,L/VOO,L)V2

X [1 + an(v*) + Q2n(v*) - Q02n(0) + O(n_3/2)]’
where v* = (0,v,/ {/V,!!), and V! is the lower right-hand element of 7
giving

)1/2

PURORIIN

P(S,, = %,/S,, = 0) = _ .
= (2 det V,/Vio, ) 2(1 — e~0n)

x[1 = 3m3(6,) VI + @, (0)m(6,)/1/VE
+G5,(0) = Q2,(0) + O(n=%2)].

The approximations implicit in (3.17) and (3.18) are subject to the same
difficulties described at the end of Section 3.1; this point is amplified in Sec-
tion 4.3.

(3.18)

3.4. The one-dimensional integral conditional result. Suppose X, X, ...
are iid random vectors in R? with d, = 1,d, = 1, B; = (—»,0]and x, > ES,,.
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For the case 6 = 0, from Remarks 1 and 2 of Section 2.1, we obtain the
following result:

e}

(3.19) P(8y, 2 x1|S,, = xo) = Lles—a(u,P«n)/esfs(xo,ll«()n)dul

+ O(n~-G-2/2),

The integral in this case is easily calculated as an expansion in Hermite—
Chebyshev polynomials.

The assumptions required to ensure that (S.1)-(S.4) hold are discussed in
Remark 5 of Section 2.2. Under these conditions, we have, writing 6 for én,
from Corollary 2.4,

eKn(BA)f ()onofélxl

(2m) " Vo2

n

P(Sln = x1|SOn = xO) =

(3.20) x[es_3(é,B,O)/

s—3
1+ % Qo,n(O))
=1

+(n% + 16,7 1)O( nS/Z)l.

Here
e,_5(6, B,0) = (27 det V1/2) "
. R . s—3 .
(3.21) x [ et iR 1+ X Qu(0, ul)) du,
: =1

s—3
— (2m) V{6V )(1 + T B (670 )),
=1
where 7(A) is defined in Section 3.2 and here
(322)  1(M)B,(A) = (2m) V% /2 [(e7"2q,, (0,0 — 1) dv.
A

It is worthwhile noting that, for example,

1 3 3
an(ul,o) = a7 . K(’E—i,i)nHa—i(uJHi(O)
(3.23) izl

1
E(K3<3nH3( uy) — 3k, Hy( u1))



SMALL AND LARGE DEVIATIONS 741

SO
(3.24) PAln(A) = %(K{ilkOnpS(é Vnu) - 3K§1nP1(é anl ))

These formulas are obtained from (1.10) and (1.11) and are used in Section 4
to obtain numerical results. The details of their use will be deferred to that
section.

3.5. Linear combinations. Consider Z,Z,, Z,, ... iid integer-valued ran-
dom variables with span 1 having
(8.25) «(u) =log E(e*?), k'(0) =E(Z) = a, k"(0) = Var(Z) > 0.
Let a4,...,a, be real numbers with
(3.26) a+ - +a,=0, ai+ - +a=n.
Set X, =(Z,,a,Z,)and S, =X, + -+ +X, with

n

(3.27) k,(0) =log E(e?5S") = Y (8, + 6,a,)
k=1

finite for 6 € ©,,.

In this section approximations for P(S,, =r, S;, >¢) are given when
r=an,t/Vn >c > 0. Note that E(S,,) = r, E(S,,) = 0. First some lemmas
will be proved.

Consider associated random variables Z,,,..., Z,, with

log E(e*“?r) = k(u + 0, + 0,a,) — k(8, + 0,a;),

and the corresponding X,,,..., X,, and S,,,. We have

(328)  m(6) = E(8,0) = X K (8 + 6,00,
k=1
(3.29) V.(8) = Cov(S,) = 3 x"(8, + Olak)( ' a:).
k=1 a, a;
In particular, for 6 = 0,
(3.30) B(S,) = (g),  Cov(S,) = n((l) (I))Var(Z).

Introduce the distribution function F,(x) = #{k: a, < x}/n having mean 0
and variance 1. We will let n — », so we are in fact considering double arrays
of a’s, but for notational convenience this will not be indicated by an extra
index. Note that the distribution of the Z’s does not depend on n. We assume

(A1) F,>F asn— o, de=1, fxzdF=1.

In most applications this is sufficiently general; the “a-scores’ are given by
sonie distribution F with mean 0 and variance 1. The following regularity
condition is also assumed.
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(A.2) There exists a convex, compact K C int(®,) for all n, with 0 € int(K)
and

(a) hul0) = —,(0) = [(8, + 6,2) dF, ~ h(6)
= [K(8, + 6,x) dF,

(b) h(8) > h(8) = [(1)w(8, + 0,x) dF,

(c) hi(6) > h'(8) = f(i ;2),«'(00 + 6,x) dF,

as n — o, for all § € K.

Note that h/(8) = m,(0)/n and h’(8) = V,(0)/n.

LemMma 3.1.  If (A.1) and (A.2) hold, then

@) h,, h are strictly convex in K,
(i) K¥ = k' (K), K* = h'(K) are compact sets,
(iii) A7(0) = (r/n,0) — A'(0) € int(K} N K*),
@iv) k', h' are one-to-one,
(v) det((1/n)V,(0)) — deth"(8) > 0, n = =, 6 € K.

Proor. (i) Since Var(Z) > 0 we have «"(8) > 0. Hence, as F is nondegen-
erate, it follows that there is strict inequality in the Cauchy—Schwarz inequal-

ity:
2
(ij"(ao + 60,x) dF) < fx2l<”(00 + 0,x) dF[K"(oO +0,x) dF.

Thus h"(0) is a positive-definite matrix when 6 € K, and A is strictly convex.
Strict convexity of h, is proved analogously. (ii)—(iv) follow from the continu-
ity of k', h', the strict convexity of & ,, h and as 0 € int(K). In Lemma 3.1(v)
just note that A ,, h are strictly convex and

1
h;(8) = —V,(6) = h'(6). u)
LEmma 3.2. If
(A.3) n ' Y o [T« (6, + 6,a,)| < C,
k=1

forall 8 € K, j =0,2,4,6, where [1* denotes a product over a set of values of
1, satisfying l; even, l,>2, ¥, =6, and if (A.1) and (A.2) hold, then
n¢(8) < C, for 6 € K.
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Proor. For n large enough we need simply notice that using Lemma
3.1(v) and the functional relation of moments and cumulants we can find 74(6)
by a linear combination of the quantities on the left in the condition (A.3). O

REMARK. Similarly any 7,(0), for even s, can be bounded. For odd s note
that 7,(8) is bounded when 7, (8) is bounded.

LemMA 3.3. If (A.1)-(A.3) hold, then
(8.31)  q,o(T) < sup{|5,,(£)I: é2 + €2 > C, |&| <, |&] < T},
for some C > 0 and all 6 € K.

PrOOF. m4(6) is bounded according to Lemma 3.2 and the remark above.
Hence by Lemma 3.1(v) it follows that there exists a C > 0 such that

{£:]Va(0)"%¢] > §ms(0) "'n'2)  {e: 85 + 67 > €},
which proves the assertion. O

For M > 0 and ¢ > 0 consider the set of a, with |a,| <M. Consider a
condition due to Albers, Bickel and van Zwet (1976). Let y(M, ¢) denote the
Lebesgue measure A of the {-neighborhood of this set, that is,

y(M,{) = Mx: 3lx — a,| <{, e, < M}.

LeEmmA 34. If
(A.4) positive numbers C, 8, M exist with
n
n~tY a% <C, y(M,) = 8n{, forsome{>n"3%logn,
k=1

then there exist positive numbers b, B, ¢* depending on n and a4,...,a, only
through c,C, 8, M such that for all 6 € K,

sup{|5,o(€)|: €0l <, |€1] < bn, &3 + £2 > ¢} < Bn~c"lg",

Proor. Consider the characteristic function

fing(€) = E(e*Sm0) = exp( Y (k(8g + 01y + (& + £1a,)) — k(6 + 0,a,))|
k=1
Hence

n

150 )] = 12,0(&)] = TTIE(exp((60 + 610, +il£o + £1,))Z = (00 + 010,)))

n
I1
k=1

Z, Pjor exp(i(&, + £1a,)7)|,
Jj
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where
Pjor = exp((8y + 0,a,)j — (8, + 0,a,))P(Z =j).
With the symmetrized distribution
Pjor = Zz: DiorPj+1,0k>
we get
n
B = [Il(§p;0k cos((£y + £104).)

Since the Z’s have span 1, it follows that there exists an integer r > 1 such
that the n-fold convolution of p?%,, has positive mass on 1 for n > r. We may
assume without loss of generality that r = 1. If |a,| < M there exists 0 <
¢ < % with ¢’ < p$,, <1 — ¢ for all n. For all 6 € K we have
1 n 1 n
¢ < —var( Y akzko) =— Y a%k"(0y+ 0,a,) <C
n k=1 np

according to Lemma 3.1(v). Using this, a slight modification of the proof on
page 114 in Albers, Bickel and van Zwet (1976), gives

n
Pue(€)l < kljll(l + 2p%,.(cos(£y + £,a,) — 1)) < n=c"logn
for all 0 € K, |£y| <, |é;] < bn and E2+¢62>¢>0. 0

In order to approximate P(S,, =r, Sy, > t) we will use Theorem 1 with
0 = 0, given by the saddlepoint, that is the solution of

E(Sno) = mn(o) = (r7t)y
provided there is a solution.
LEmMma 2.5. If (A1) and (A.2) hold and (r/n,t/n) € K}, then

() there exists a unique 6, € K with m (6,) = (r,1),
(i) fort/n=B8>0,c <6,, <C,
(iii) for t/n*/? =y >0, c <n'/?4,, <C.

REMARK. As 0 € int(K) and m ,(0) = (r,0), there exists a solution (5” eK
for ¢ sufficiently small. ’

Proor. (i) follows immediately from the definition of K*. As

E(S,,,) = Z a,x'(6p) =0 for 6= (00,0),
k=1

a n
—E(S,,,) = Y. aik"(8y + 6,a,) > 0,
a0 o1
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we have E(S,,,) > 0 if and only if 6, > 0. From this and (A.2), (ii) and (iii)
easily follow. O

The preceding lemmas show that (A.1)-(A.4) imply (S.1)-(S.4). Thus the
following result is a consequence of Corollary 2.4.

ProposiTioN 3.6. If (A.1)-(A.4) hold, t/n'/2>c >0, and (r/n,t/n) €
K*, then

|P(So, =7, Sy, 2 8) — exn@n=0owr=bute ({0} x (—,0],0)|

< Cn—3/2e%n0)~b0,r =1yt

4. Applications and numerical methods.

4.1. Examples. In this section some specific examples will be discussed. In
the first three subsections we consider linear combinations where the probabil-
ities of interest are of the form

élzk=r) =P(f 6.2, 2t Y zk=r)/p(f Zk:,),

n
P(Z a,Z, >t
k=1 k=1

k=1

We can approximate this by approximating the numerator and denominator

separately. In the fourth subsection we consider paired comparisons where

conditioning is not required, then we consider an occupancy problem obtaining

an approximation for a conditional probability and finally a vacancy problem
“where we condition with respect to a continuous variable.

4.1.1. Sempling without replacement. Let the Z’s be iid Bernoulli dis-
tributed with mean 0 < a = r/n < 1, that is,
P(Z=1)=1-P(Z=0) =a.

The conditional distribution of S,, = X}_,a,Z, given S,, = X}_1Z,=r
is the same as that of a simple random sample of size r drawn without
replacement from the numbers a,,...,a,. We have

k(u) =log(ae* + 1 — a).

Assuming that (A.1) holds, then it is easy to verify that (A.2) and (A.3) also
hold for any compact set K C R% For 0 <a < land ¢/n = 8 > 0 not too large
theré exists a solution 6 = 6, to

E(Sn()) = mn(a) = (r’t)’
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which in this case is

el /(qefottor + 1 —qa) =r,
1

M=

k

n
Y aa,efotter/(aefot % + 1 —a) =t.
k=1

Under assumption (A.4) Proposition 3.6 provides an approximation for
P(S,, =r, Sy, = t). As S,, is binomial with parameters n and r/n,

P(Sg, =r) = (})r(n=r)"""/n",

which is easily calculated directly or by Stirling’s formula.

Assumption (A.4) involves one moment condition, that is the boundedness
of n~'X?_,a%, and one condition on the “discreteness” of the a’s. The
Wilcoxon statistic corresponds to taking a, = (k — (n + 1)/2)(12/(n* — 1))V/2,
which satisfies (A.4), so Proposition 3.6 can be used. On the other hand for n
evenand a; = ' =a,,,=—1,0a,,5,,= "' =a, =1, corresponding to
the median test the “discreteness” condition is not satisfied. In this case
Proposition 3.6 is not applicable but an approximation with s = 3 can be
obtained or we could use a lattice approximation.

4.1.2. Sampling with replacement. Let the Z’s be Poisson distributed
with mean a = r/n > 0. The conditional distribution of the Z’s given their
sum S, = r is a multinomial distribution. Hence the conditional distribution
of S,, given S,, = r is the same as that of a simple random sample drawn
with replacement from a,,...,a,. Here

k(u) =a(e* —1).
Assuming that

fe‘“‘ dF, — fe‘“‘ dF, n — o,

for all u, then it is easy to verify that (A.1)-(A.3) hold for any compact set
K c R2 For t/n = B > 0 not too large the equations for determining 6 = 6,,
n
a Z eoo+01ak =r,
k=1
n
a) azefottior=¢
k=1

have a unique solution. Approximations for P(S,, > ¢|S,, = r) can be ob-
tained as in the case with sampling without replacement. S;, is a statistic
obtained from a bootstrap sample of ai,...,a,. This result could also be
obtained by considering r iid samples from F,.
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4.1.3. The geometric distribution. Let the Z’s be geometric, that is,
P(Z=j)=pq/, j=0,1,2,...,
withg=1-p,a=E(Z)=¢q/p,0<p <1, and
k(u) = log p — log(1 — ge*),
which is finite for ¥ < —log q. Hence «,(0) is finite only in the sector
{(80,6,): (—logg — 8y)/a;., <6, <(—logq — 00)/@p: n}s
where

a;.,= min a, <0, a,.,= max a, > 0.
l<k<n 1<k<n

Assume that there exist constants &, < 0 < b, such that for all n,
b;<a..,<0<a,.,<b,.

This implies that the supports of F, are contained in a bounded fixed interval.
Assuming that F,, — F then it follows that (A.1)-(A.3) are all satisfied for any
K contained in the sector

{(80,60,): (—logq —6,) /b, <6, < (—loggq — 6,)/b,}.

Approximations can be obtained as in the other examples provided 8 = ¢/n > 0

is not too large.
We note that the conditional distribution of the Z’s given their sum

Sy, = r can be written

1
P(Zl =Jl’~-~’Zn =Jn|SOn =r) = (—n_-l-Tl)’
r
for j, + - +j,=r, j,=0,1,.... The same distribution occurs in connec-

tion with the nonparametric two-sample problem. In this case r,n — 1 are the
sample sizes of the first and second sample from the same continuous distribu-
tion.

The distribution above also occurs in connection with Pélya sampling from
an urn containing initially n balls, all of different colors. A drawn ball is
replaced together with one more of the same color. The probability of getting

Jis-++sJn of the different colors in r drawings is 1/(" ot

4.1.4. Randomized paired comparisons. Let Z,,...,Z, be defined as in
Section 4.1.1 with « = 3. Then the distribution of S, =X?_,a,Z, is of
interest. For example, if a, = &, this is the one-sample Wilcoxon statistic. To
obtain results for this, we can use the approximations of Section 3.2 if we show
the conditions of Sections 2.1 and 2.3 hold. Similar considerations to those of
Section 4.1 will yield an expansion as in (3.8) with s = 5. This is used in
Section 4.3 to obtain numerical results for the one-sample Wilcoxon statistic
with n = 10.
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4.1.5. An empty cell statistic. As an example of the approximations in
Section 3.3 consider the following occupancy scheme. Let X, + a be Poisson
with mean « = r/n, and X,; = I(X,; = ), so that the conditional distribu-
tion of S,, given S,, = 0 is that of the number of empty cells when r balls
are distributed uniformly at random into n cells. In this case

k,(0) = n[log(e® + e®* — 1) — a(1 + 6,)].

4.1.6. A covering problem. In each of the conditional probabilities consid-
ered before, the conditioning has been taken with respect to a lattice variable.
However, the results permit a wider application both to conditioning with
respect to a variable with a density or to conditioning with respect to the event
that a variable lies in some small interval. We will illustrate the first of these
by considering the distribution of the vacancy after placing a number of
intervals randomly on (0, 1).

Let U,,..., U, be spacings of n — 1 independent uniform random variables
on (0, 1). For a given number a, € (0, 1), the vacancy V, is defined by

nv, = nz (U;—a,),= Z (nU; — @),
i=1

i=1

where (x), = x if x > 0, 0 otherwise, and na, = a, a constant. If Z, Z,, Z,, . ..
are iid exponential with mean 1, then the distribution of nV, is the same as
the conditional distribution of S, = L?_(Z;, — a), given S,, = X7_,Z; = n.
For this case

k() = Ee®Z+0uZ-a)
= (1 — 01)_1(1 — e_a(l_ol)) + (1 -0, — 02)_13_“(1‘91)’

for 6, + 6, < 1.

We can solve (2.15) using this (), and use the results of Remark (7) to
obtain an approximation for P(V, > e~® + x|L?_,Z; = n). This will be exactly
of the form given in (3.20), although that equation was derived for condition-
ing with respect to a lattice random variable.

4.2. A general computing method using MACSYMA. MACSYMA is a
symbolic operator program which enables general calculation of derivatives
and algebraic manipulations together with numerical calculations. It can be
used to give a general program to calculate the asymptotic approximations
used here using a variety of forms for «,(8). This has been done in the
univariate and bivariate cases to obtain a number of examples.

The general program consists essentially of three ‘“blocks” or subroutines:

“A. A block for obtaining partial derivatives of K, (0).
B. An algorithm for iterative solution 8 of x/(0) = x using «.(6) and «,(9),
obtained numerically.
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TaBLE 1
Relative errors of tail probabilities as percentages

A B C D E
a b a b a b a b e f
c d c d c d c d g d
0.0001 —-18 -30 -8 -31 5 -8 2 8
—292 993 102 308 150 800 5 200
0.0005 1 -4 3 -11 0 —-12 -1 4
-30 319 41 83 57 175 1 90
0.0010 -6 —-35 0 4 2 —-11 0 -10
34 190 -13 230 28 53 37 101
0.0050 -6 -21 -1 -3 0 -10 -1 -10 -3 7
4 47 4 88 6 4 16 38 2 46
0.0100 -1 —-12 0 -2 0 -6 0 -9
2 28 4 57 2 -5 8 14
0.0500 0 -8 0 -1 0 -7 0 -5 -9 13
0 -2 2 16 -1 -13 1 0 3 36
0.1000 1 -5 0 -1 0 -5 0 -4
0 -4 1 9 -1 -10 0 —4
0.2000 0 -4 0 0 0 -4 -1 -3 -178 30
0 -4 0 4 -1 -7 -1 -3 0 23

2Saddlepoint s = 5.

bSaddlepoint s = 3.

°Edgeworth s = 5.

4Normal approximation.

°Discrete saddlepoint (3.18) s = 6.
fDiscrete saddlepoint (3.18) s = 4
Discrete saddlepoint (3.17).

C. A block giving:

(a) Formulas for Hermite—Chebyshev polynomials, H,(y), for p,(A) of Sec-
tion 3.2 and for 7,(8) of Section 3.1.

(b) Formulas for @;, from (1.11) in terms of standardized cumulants.

(¢) Formulas for approximations as used in (3.8), (3.17)-(3.9) and (3.21)
and (8.22); these cover the cases given in Section 3.5 and, in particular, the
special cases described in Section 4.1.

These “blocks” are now used for the calculation. We input the function
k,(6) and use block A to obtain derivatives of «,(V~'/2), for arbitrary V. We
now input parameters (such as n, a;,...,a )and using V = I, obtain 6 from
block B using the first two derlvatlves of k,(0). Then 0 is used to obtain
V = V,(6) and derivatives of ,(V~1/26) are evaluated at 6. Finally, block C is
used to obtain the approximations.

4.3. Numerical approximations. The approximations were calculated and
compared with the exact probabilities in a number of cases. To illustrate the
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accuracy of the methods, Table 1 gives the relative error as a percentage for
probabilities as close as possible to a set of selected values from 0.0001 to 0.2.
We calculated these values for the following cases:

A. One-sample Wilcoxon statistic, n = 10 (Section 4.1.4).

B. Two-sample Wilcoxon statistic with two samples of sizes 8,8, from
negative binomial, n = 9, p = 9/17 (Section 4.1.3).

C. As in case B, from binomial with n = 16, p = % (Section 4.1.1).

D. Bootstrap sample using Wilcoxon scores, from Poisson with parameter 1
and n = 10 (Section 4.1.2).

E. Empty cell statistic, n = 20, « = 1 (Section 4.1.5).

Table 1 gives results for both saddlepoint and Edgeworth approximations with
s = 3 and s = 5 (in the lattice case as in case E, these can be taken to be s = 4
and s = 6).

Inspection of Table 1 shows that the saddlepoint approximation with s = 5,
that is, with an error of order n~3/% gives excellent results throughout the
range in all cases, except case E, which is discussed below. In the examples
given and in a number of others calculated but not given here, these approxi-
mations have relative errors which are remarkably small. This contrasts with
the much larger relative errors in the tails for both the normal approximation
and the Edgeworth expansion with s = 5, and is generally a noticeable im-
provement on the saddlepoint approximation with s = 3. It is, of course,
expected that the improvement in the extreme tails will be significant, but it is
of interest that the saddlepoint method gives results at least as good as the
Edgeworth throughout the range. It is worthwhile comparing the results in
cases B and C with those of Stone (1969), who used a less accurate large
deviation result (for example B) and found that it generally gave poor results.

In case E, the empty cell statistic, the methods of Section 3.3 are used. The
saddlepoint technique based on (3.19), which uses an expansion of the expo-
nential terms, gives good approximations in the extreme tails but fails in less
extreme regions. However, if (3.18) is used the approximations are accurate
throughout the range. We also calculated local results and obtained tail
probabilities by summing these, as suggested by the methods of Daniels
(1954). These give results even more accurate than (g) in the table, however,
the calculations required for each tail probability are extensive.

APPENDIX A
Proor oF LEMMA 2. For y € S(e),
5(0, B, w —y) = [xp, (0 =y = w)e" @ v, (du) ~ e, y(u,v,) duy)

> e %78(0, B,w) — ef—s(l’no)eelol)?o,BZS\B(O)~
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Thus

[ 8(6,B,,w - y)k(Ty,)T* dy,
S(e)
> 8(6, B, w)[ e " Yk(Ty,)T% dy,
S(e)

-(1- a)eslole:—s(Vno)/\A’o, 325\3(0)
=38(6,B,w)(1 —a)k — (1 - a)eE|0|e;<—3(Vn0)/\’>0,BZS\B(O)’
where e °1% < k < el Also, for y & S(e),
(o, B,w-y) = 8(0,B,w —y) — es"‘—3(”no)/\A’o,BE\B(0)

> —sup|8(0, B, z)| — e 3(v,0) X, st\B(O)-

Multiplying by k(Ty,)T%, integrating over S(¢)°, combining this with the
integral over S(e) and taking the supremum over w gives

A(6,B,,T) > (1 — a)xksupd(8, B,w) — asup|d(0, B, z)|
w z

—[(1 = a)e ™ + a]er 4(v,6) %o, B, \ 5(0)-

Thus if we choose & small enough to make (1 — a)x > 1 — 2a and
(1 —a) <1,

(1 - 2a)supéd(6, B,w) < {A(O, B_,T) + asup|8(0, B, z)|
w z
+(1+ a)e:—s(vno)fo,BZS\B(O)}-
Similarly, we can show that
—(1 - 2a)inf §(6, B,w) < {A(O, B_,,T) + asup|é(6, B, z)|
w z
+(1+ a)es*—a("no)/?o,3\3_25(0)>~
Combining these, we obtain (1.27).

APPENDIX B

ProOF OF (3.11). Since (—1)*H,(u)e(u) = ¢ (u), it is easy to show that
Hy(u) =uH,_,(u) — H;_(u).
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So
f:on(v —N)e /2 dy
= [(H,_y(v- ML (—e2) dy
A dv
- Af;Hk_l(v —A)e " /2dy — [AmHk’_l(v —Ne 2 dy
= Hy_y(0)e™/2 = A ["Hy (v~ A)e™"/2dv
IZ H, ,(0)(=0)" "™/ + (=) [ e/ dv.
That is,

k—1 .
(M) pr(A) = (_/\)k’r(/\) + (277)_1/2 Y Hj(o)(—)t)k_J_l_
Jj=0
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