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ASYMPTOTIC PROPERTIES OF THE BOOTSTRAP FOR
HEAVY-TAILED DISTRIBUTIONS!

By PETER HALL

Brown University

We establish necessary and sufficient conditions for convergence of the
distribution function of a bootstrapped mean, suitably normalized. It turns
out that for convergence to occur, the sampling distribution must either be
in the domain of attraction of the normal distribution or have slowly
varying tails. In the first case the limit is normal; in the latter, Poisson.
Between these two extremes of light tails and extremely heavy tails, the
bootstrap distribution function of the mean does not converge in probabil-
ity to a nondegenerate limit. However, it may converge in distribution. We
show that when there is no convergence in probability, a small number of
extreme sample values determine behaviour of the bootstrap distribution
function. This result is developed and used to interpret recent work of
Athreya.

. 1. Introduction. Properties of the bootstrap for heavy-tailed distribu-
tions have recently been the subject of attention in statistical literature; see
Athreya [2, 3]. It has been pointed out that the bootstrap is not consistent for
estimating the distribution of the mean when the parent population is from
the domain of attraction of a nonnormal stable law. However, there has been
no precise description of circumstances where the bootstrap estimate of a
distribution function even converges, in particular where it is consistent for
the limiting distribution function of the mean. The aim of the present paper is
to provide such an account. We establish, among other things, the following
results.

1. The bootstrap distribution function of the mean, suitably normalized,
converges in probability to some fixed nondegenerate distribution function
if and only if either (a) the sampling distribution is from the domain of
attraction of the normal law or (b) the sampling distribution has slowly
varying tails and one of the two tails completely dominates the other. Thus,
convergence occurs only in the case of light tails or extremely heavy tails.
For sampling distributions between these two extremes the bootstrap distri-
bution function does not converge in probability. [Theorem 2.1.]

2. In case (a), the limiting distribution is normal. In case (b) it is Poisson with
unit mean. [Theorem 2.1.] Only case (a) is statistically interesting, since in
case (b) the limit of the bootstrap distribution function does not reflect
statistical properties of the distribution of the mean, which is not asymptot-
ically Poisson-distributed. [Remark 2.3.] Therefore, the bootstrap is (weakly)
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consistent if and only if the sampling distribution is from the domain of
attraction of the normal law.

3. There are analogous results in the case of almost sure convergence. In
particular, the bootstrap distribution of the mean converges almost surely
to normality if and only if the sampling distribution has finite variance.
[Proposition 2.1 and Remark 2.7.] This condition is strictly stronger than
the assumption that it be in the domain of attraction of the normal
distribution.

4. The reason the bootstrap fails for intermediate distributions, such as those
in domains of attraction of stable laws, is that in these circumstances the
bootstrap does not correctly model the way in which extreme terms influ-
ence the distribution of a sum. We present a general result, available more
widely than for domains of attraction of stable laws, which describes the
way in which the bootstrap distribution of the mean is determined by a
small number of extreme sample values. [Theorem 2.2 and Remark 2.9.]

5. The bootstrap distribution function does not converge in probability in such
cases because extreme values of the sample do not converge in probability,
even when suitably normalized. [Remark 2.10.] However, those extreme
values may converge in distribution, and then the bootstrap distribution
function converges in distribution. Indeed, it has a weak limit when viewed
as a stochastic process. [Remark 2.12.]

6. These results enable us to give new interpretations of the work of Athreya
[2] on properties of the bootstrap when the sampling distribution is from
the domain of attraction of a stable law. [Remark 2.13.]

So as to present these conclusions economically and succinctly we have
chosen to state our basic results in two main theorems and to discuss their
implications and generalizations in remarks following those theorems. Some of
the remarks comprise corollaries to the theorems; others describe related
results which may be derived with only slight modifications of our proofs.

The following notation is used. Let X, X,,... be independent random
variables with nondegenerate distribution function F, write X for a generic X;
and let 2'={X,,..., X,} be the sample of the first n X;’s. Write 2™* =
{X, ..., X} for a resample drawn randomly (with replacement) from 2" and
let X=n"'L,_,X, and X*=n"'T,_,X* denote the respective sample
means. Put ¢2 =n"'Y,_(X; — X)% The bootstrap distribution function of
the mean, suitably normalized, is

P((X* - A,)/B, <x|Z}, —o<x<ox,

where A, and B, are (arbitrary) measurable functions of elements of 2" We
say that A, and B, are 2 measurable. Convergence in probability is denoted
by —, . We intend the statements “X is in the domain of attraction of ... ”
and “F is in the domain of attraction of ...”” to mean the same thing.

2. Results. We begin by characterizing the class of situations where there
exists a nonrandom, nondegenerate distribution function G such that, for
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some choice of Z“measurable random variables A, and B, and at continuity
points x of G,
(2.1) P{(X*—-A,)/B, <x|Z} -, G(x).
The zero-one law guarantees that no interesting circumstances are excluded by
our insistence that G be nonrandom.

THEOREM 2.1. There exist Z“measurable random variables A, and B,
such that (2.1) holds for a nonrandom, nondegenerate G, if and only if either
1 — Fis slowly varying at +oand P(X < —x)/P(|X] >x) = 0

(2.2)

asx —
or
(2.3) Fis slowly varying at —wand P(X > x)/P(|X| >x) - 0

asx — ®
or
(2.4) F is in the domain of attraction of the normal distribution .

In the circumstance of (2.2), if we take A, = X and nB, = max;_,|X,|, then
G(x) = P(N — 1 <x) where N is liozsson with unit mean. In the circum-
stance of (2.3), if we take A, =X and nB, = max,_,|X;|, then G(x) =
P(1 — N <x), for the same N as before. In the circumstance of (2.4), if we
take A, = X and nB, = (L, _ (X, — X)?}'/2, then G is the standard normal
distribution function.

REMARK 2.1. The only possible limit distributions G, modulo changes of
scale and location, are Poisson with unit mean, negative Poisson with unit
“mean, and normal, as described in Theorem 2.1. This follows from the
convergence of types theorem. Specifically, suppose that there exist Z mea-
surable sequences A, B,, A" and B/, and nondegenerate distribution
functions G and G', such that

P((X*-A,)/B, <x|Z"} -, G(x), P{(X*-A)/Bl <yl2’} >, G'(y)

at continuity points. Choose a subsequence of n values along which the first
convergence in probability is almost sure. Then choose a subsubsequence along
which both convergences are almost sure. Now apply the classical convergence
of types theorem [10, page 40] for any of the probability-1 realizations and
along the subsubsequence, to deduce that G and G' are scale and location
changes of one another. This subsequence argument is used implicitly in
several steps of our proof of Theorem 2.1.

REMARK 2.2. The variable X, or distribution function F, is in the domain
of attraction of the normal distribution if and only if E{X?I(|X| <x)} is a
slowly varying function of x, as x — ». This implies E|X|>¢ < « for each
0 <& < 2[12, pages 83, 84]. In particular it implies finite mean.
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ReEMARK 2.3. Distributions F satisfying (2.2) or (2.3) have no finite mo-
ments: E|X|* = » for all ¢ > 0. They are so heavy-tailed that sums are entirely
dominated by extreme terms, in the sense that

(EI'XL") / (max X)) =, 1

as n - »[8, 9, Section 4.5]. In fact, this property explains how the limit laws
in cases (2.2) and (2.3) come about. There the mean X* is entirely dominated
by appearances of max; _,X; [in case (2.2)] or min, _, X; [in case (2.3)] in &,
and the asymptotic Poisson distribution is simply the limit of the number of
times that this extreme value appears in 2°*. Therefore, when (2.2) or (2.3)
holds, the limit theorem (2.1) does no more than record the limit of the
number of times a certain sample value appears in the resample. The limit
theorem does not reflect statistical properties of the distribution of X, which
does not have an asymptotic Poisson distribution [10, page 132]. Therefore, the
only statistically interesting case is that of the normal law, in circumstance

(2.4).

Remarks 2.4-2.8 record consequences of Theorem 2.1 and also related
results which may be proved in like manner.

REMARK 2.4. Let X be in the domain of attraction of the normal distribu-
tion and assume (without loss of generality) that E(X) = 0. Take b, to be any
sequence of positive numbers satisfying

(2.5) b 2E{X%I(1X| <n'/?,)} - 1

as n — «. Then we may take A, = X and B, = b,/n'/? in (2.1), obtaining a
standard normal limit. This follows from Theorem 2.1 on noting that for the
B, given in that theorem and b, given by (2.5),

nB2/bZ = (nb2) " ¥ (X; - X)’
i=1

n
= (nb,zl)_1 Y X?+0,(1) —>,1
i=1
[10, Section 28]. If E(X?2) = ¢2 < «, then b, — o and we may take A, =X
and B, = o/n'/2

REMARK 2.5. Even in the case E(X?) < « and E(X) = 0 it is not possible
to take A, = 0 in (2.1). This follows from the fact that n'/%(X — EX) does not
converge to zero in probability.

REMARK 2.6. In view of the result described in Remark 2.4, the following is
true: The limit theorem (2.1), with normal G and a nonrandom choice of B,,,
holds if and only if it is available with a random choice of B,,.
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REMARK 2.7. A minor modification of part of our proof of Theorem 2.1
allows us to prove the following. (Let ® denote the standard normal distribu-
tion function.) There exist 2“measurable random variables A,, B, such that

(2.6) P{(X*—-A,)/B, <x|Z} > ®(x), —o<x<on,
if and only if

(2.7) ( max Xﬁ)/( ¥ X?) - 0.

l<i<n i=1

In this result, — may be interpreted as convergence in probability in both
cases or as almost sure convergence in both places. We prove the equivalence
of (2.6) and (2.7) when — is —_ ; to obtain equivalence in the case of almost
sure convergence, simply interpret all convergences in that part of our proof in
a strong rather than a weak sense. Of course, (2.7) with convergence in
probability is equivalent to X being in the domain of attraction of the normal
law (see Theorem 2.1). It may be shown that (2.7) with almost sure conver-
gence is equivalent to E(X?) < « (see Lemma 3.3 in Section 3) and the latter
is equivalent to X being in the normal domain of attraction of the normal law
[12, page 92]. Thus, we have the following result.

ProPOSITION 2.1. There exist 2“measurable random variables A, B, such
that (2.6) holds with convergence in probability [respectively, almost sure
convergence] if and only if X is in the domain of attraction [respectively,
normal domain of attraction] of the normal law, or equivalently, if and only if
E{X2I(|X| < x)} is slowly varying [respectively, E(X?) < »]. In both cases we
may take A, = X and nB,, = {L, _ (X, — X)}V/2

REMARK 2.8. A necessary and sufficient condition for (2.6) to hold for
a nonrandom choice of B,, when convergence in (2.6) is almost sure, is
E(X?) < . In that circumstance we may take A, =X and B, = n~ g,

where o2 = var(X).

One conclusion which may be drawn from Theorem 2.1 is that the bootstrap
fails unless the sampling distribution has either light tails (i.e., is in the
domain of attraction of the normal law) or extremely heavy tails (i.e., has
slowly varying tails). In the remainder of this section we explain what goes on
between these two extremes.

A necessary and sufficient condition for X to be in the domain of attraction

of the normal law is
E{X?I(1X| <x)}/{x*P(X]| > x)} =

assx — o [12, page 84]. In the present investigation we are bound to assume
that this condition fails and so we suppose that

(2.8) E{X2I(X| <x)}/{x?P(X| >x)} <C; <, allx>1
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(which is a little stronger than the failure of the previous condition). We
further assume that
(2.9) lin}) u? limsup P(|X| > ux) /P(|X| > x) = 0.
u-— x—o
These conditions are weaker than the assumption that X be in the domain of

attraction of a nonnormal stable law, which requires among other assumptions
that for some 0 < a < 2 and each u > 0,

(2.10) P(X| > ux)/P(X| >x) > u"“

as x - o,

When the sampling distribution satisfies (2.8) and (2.9), a natural scaling
sequence for a sum of independent random variables is a sequence c, such
that nP(|X| > ¢,) — 1. For example, if X is in the domain of attraction of a
stable law and c, has this property, there exist constants a, such that
nc; (X — a,) converges in distribution to that stable law. We ask only that
nP(|X| > ¢,,) be bounded.

We shall prove that for distributions which lie between the two extremes of
light tails and extremely heavy tails, the bootstrap fails because it does not
correctly model the way in which extreme summands contribute to a sum. In
more detail, let {X,, ;,, 1 <i < n} denote a rearrangement of the sample 2"
such that |X, ;)| > |X, 5| > --- . Let N;* denote the number of times that
X, iy appears in the resample £°*. Then

-
c,t Y (N* — 1)X<n,i)
i=1

equals the total contribution of X, 1,,..., X(, ,, to the normalized sum
< nc; (X* — X). Subtracting this contribution away from the normalized sum

we obtain the quantity

r
= nc;l()_(* _X) - C;I Z (N;* = l)X(n,i)‘
i=1

A

nr

Our next result shows that A, may be rendered arbitrarily small uniformly in
n, simply by choosing r large.

THEOREM 2.2. Assume conditions (2.8) and (2.9) and that nP(|X| > c,) is
bounded. Then for each ¢ > 0,
lim limsup P{P(|A,,| > ¢&|Z") > ¢} = 0.
n— o

r—o

REMARK 2.9. Theorem 2.2 may be interpreted in the following way. Given
€ >0, we may choose a fixed r > 1 so large that for all n > 1,

P{P(lAan > eIQZ”) > e} <e.

Then except for an error smaller than &, the distribution of nc, (X* — X)
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conditional on &" is equivalent to that of

(2.11) Cr:1 > (N;* - 1)X<n,i)'

i=1
Therefore, the size of X* — X is essentially determined by a relatively small
and fixed number of extreme sample values. It now becomes clear that
asymptotic properties of X* — X are readily described in terms of extreme
value theory. The ensuing remarks will develop this argument in several
different directions.

For the remainder of this section we assume that X is in the domain of
attraction of a nonnormal stable law.

REMARK 2.10. Suppose X is in the domain of attraction of a stable law
with exponent «. That is, (2.10) holds and for some 0 < p < 1,

(2.12) P(X>x)/P(X| >x) =»p
as x — o, Define c, so that
(2.13) ' nP(X| >c,) —> 1

as n — . The variables N,* appearing in (2.11) have a multinomial distribu-
tion with probabilities p, = n~! and have a joint distribution not depending on
. Therefore,

r
P(N*<x;,,1<i<r) - [IP(N<x,),
i1

where N is Poisson with unit mean. However, the random variables ¢, 'X,,, ;,
in (2.11) do not converge in probability. This means that the distribution

function
z)

does not converge in probability as n — . It is not difficult to prove from
these observations that the distribution function

G,(x) = P{nc; '(X* - X) <x|2}
does not converge in probability either; indeed, that follows from Theorem 2.1.

However, G, and related functions do converge weakly, as we shall show in
Remarks 2.12 and 2.13.

r
P{C;l ZI(NL* - 1)X<n,i> <x
i=

REMARK 2.11. If the distribution of X satisfies (2.10) and (2.12) and ¢,
satisfies (2.13), then the variables c,'X (n,iy converge weakly. To appreciate
the form of the limit, recall from extreme value theory [9, Section 2.8; 14, 16]
that for each r > 1,

(2.14) (X n, ] € 1K, myl) = (Yr--. Fr)
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in distribution, where Y, ...,Y, have a joint distribution with marginals given
by
- o
(2.15) P(Y;<y) = ¥ (ily') ‘exp(-y™®), y>0.
i=0

Let S,, Sy, ... beindependent random variables, independent also of Y3, Y,, ...
and satisfying

(2.16) P(S;=1)=p=1-P(S;=-1).
In view of the balancing condition (2.12) we may deduce from (2.14) that
(2.17) (7' Xin 1y 1€ Xin py) = (81Y4,..., 8,Y,)

in distribution as n — .
In Remarks 2.12-2.14 we use notation from Remark 2.11.

REMARK 2.12. If Y, has distribution given by (2.15), then E(Y;?) =
I'G - 2a™1)/T'G) and so ;. ,,,E(Y?) < . Using Kolmogorov’s extension
theorem we may construct an infinite sequence Y;,Y,, ..., with finite dimen-
sional distributions satisfying (2.14) for each r > 1 and such that ©, ,¥;? < «
almost surely. Let N;, N,,... and S, S,,... be independent random vari-
ables, independent of Y;,Y,, ..., each N, having the Poisson distribution with
unit mean and each S; having the distribution at (2.16). Since

2

Si’Yi’iZ I:I = Z Yi2<°°;
i=1

 then the (random) distribution function

R )

G(x) =P{ Y (N, - 1)SY, <x
i=1

S Yizl}, —0 < x < o,

is proper and well defined. We know from Remark 2.10 that the (random)
distribution function
G,(x) = P{nc; (X* - X) <x|2'}

does not converge in probability to anything. However, it follows from Theo-
rem 2.2 and result (2.17) that G,(-) » G(-) weakly in D[—A, A] for each
A > 0. In particular,

P{G,(x) <y} - P{G(x) <y}
for each x,y.
ﬁEMARK 2.13. The principal difference between the result in our Remark

2.12 and that proved by Athreya [2] is that Athreya chose to standardize by a
random variable, rather than the constant c¢,. However, we may very easily
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treat Athreya’s problem. Assume p # 0 in (2.12) and put
J, =inf{i > 1: X, ;, > 0}.
Athreya’s limit theorem was proved for G/, defined by
Gi(x) = P{nXan’J’»(X* -X) <x|Z},
instead of for G,. If we define J = inf{i > 1: S; > 0} and put

|2 Bt R

G'(x) = P{Y;l Y (N, - 1S, <=

i=1

S.,Y. izl},

we see from Theorem 2.2 and result (2.17) that G)(-) > G'(-) weakly in
D[—A, A] for each A > 0. In particular,

P{Gi(x) <y} - P{G'(x) <y}

for each x,y. This is a generalization of Athreya’s [2] result to the stochastic
process G/(-), the difference in our exposition being that we have related the
limiting process G'(-) to fluctuations of extremes from the sample Z".

REMARK 2.14. There exist versions of the above results for convergence of
ordinary (as distinct from bootstrap) sums of independent random variables.
Assume the distribution of X satisfies (2.10) and (2.12), and the constants c,,
satisfy (2.13). Then there exist constants @, and a distribution function H of
a stable law with exponent a such that

(2.18) P{nc, (X - a,) <x} » H(x).
Define

r
Y |
A, =nc,'X — nc, ZXm,i),
i=1

which is just the normalized sample mean with contributions of extreme terms
removed. There exist constants a,, such that for each ¢ > 0,

(2.19) lim limsup P(|A,, — a,,| >¢) =0,

r—o n—o

an analogue of Theorem 2.2. We know from Remark 2.11 that
0;1 Z X(n,i) - Z S.Y;
i=1 i=1

in distribution as n — «. There exist constants d, such that

r
(2.20) P|Y S)Y,—d,<x| > H(x), —o<x<ox,

i=1

as r - o, where H is exactly as in (2.18). Results (2.19) and (2.20) are proved
in [1, 11]. See [4-7] for related work.
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3. Proofs. We begin with a lemma on properties of extreme values,
related to work of Smid and Stam [15] but without their assumption of
continuity. Let X,; < --- < X,,,, denote the sample 2" arranged in order of
increasing magnitude.

LemMma 3.1. If for some ¢ > 0 and k > 1,
P(Xn,n—k/Xn,n—k+1 >1- 8) - 07

then X, ,_1/X, n_14+1 >, 0 for each 1 > 1 and 1 — F is slowly varying at
infinity.

Taking logs of the order statistic ratio we may derive an equivalent theorem
for the difference between two order statistics.

Proor. Put x=(1 —¢)"'>1. Then P(X,, ,,;>xX,, ;) — 1. Let
U, < -+ <U,, be the order statistics of a random, uniform (0, 1) n-sample.
Write

flu,v) =n{(k—-DWn -k — 1)1} turr (1 - p)*!

for the density of (U, V) = (U, ,,_;,U, ,_,. ). Since F~'(v) > xF~(u) implies
v > F{xF~ ()}, then

P(Xn,n—k+1 > xXn,n—k)

- folfOlI{F‘l(v) > xF~(u)}f(u,v) dudv
t -1 v v
sfofol[v>F{xF ()} f(u,v) dud
= nl{k!(n -k - 1)!}“1f1un~k~1[1 — FlaF~Y(u)}]" du
0

={1+ 0(1)}nk+1(k!)~1flun_k_l[l - F{xFﬂl(u)}]kdu.
0

For any & > 0, the contribution of the integral over (0,1 — §) to the integral
on the right-hand side equals Olexp{— C(8)n}], where C(8) > 0. Therefore, we
may replace the term u” *~! in the integrand by u", without affecting the
asymptotics: '

P(Xn,n—k+1 > xXn,n—k)’

< (1 +o(D))n** (k) [1un[1 — F{aF Y ()}]" du + o(1).
0
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Take u = 1 — n~!v in the last-written integral, obtaining
P(Xn,n—k+1 > xXn,n—k)
<{1+ o(l)}nk(k!)_lfn(l - n'lv)n[l — F{xF~ (1 - n'lv)}]k dv + o(1)
0

< nk(k!)_lfn[l — F{xF~ (1 - n‘lv)}]ke‘" dv +o(1)
0

< n(k!)_lfnu”[l — F{xF~ (1 - n_lv)}]vk_le_” dv + o(1)
0

<1+o0(1).

Therefore, P(X,, ,_,.; > xX, ,_;) — 1 entails

n 00
kaa(v;n,x)e‘” dv—>f vke " dv,
0 0

where a(v,n, x) = nv ™1 — F{xF~'1 - n~'v)}].
Since a(v, n, x) < 1, then for each z > 0 and ¢ > 0,

A(u,e;n,x) = f”gvka(v,n,x)e_” dv
(3.1) “ .
—>fu gvke_”dv=A(u,s).
Now,

A(u,e;n,x) > eurn(u +6) 7 '[1 - F{xF~}(1 - n=lu)}|e -+
= (euke_“){(l + .~3u'1)_1e'5}nu'1
X[1 - FaF~Y(1 - n"'w)}],

A(u —¢,e;n,x) <eufn(u - s)_l[l — F{xF~ (1 - n"lu)}|e @

= (auke_“){(l —eu'l)_lee}nu'l[l —F{xF~Y(1-n"1u)}].
Put

fi(x) = liminf v[1 — F{xaF~'(1 - v_l)}],

fo(x) = limsupv[1 — F{xF~'(1 - v H}].

v— 0

Then by the results from (3.1) down,
Au, ) /(eute™) 2 {(1 + 2u™) e} fy(),

A(u —e,8) /(sute™) < {(1—eu™t) e~} fy(x).
Fix u > 0 and let ¢ — 0 in these inequalities, deducing that fy(x) < 1 < fy(x).
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Therefore, f,(x) = f,(x) = 1. We claim that this implies
(3.2) {(1-F(xy)}/{1 -F(y)} -1

as y — . Once this result holds for some x > 1, it holds for all x > 1, since F
is increasing and

(1= Fm)b /(1 = F)) = T [{1 - PG}/ = FGa=9)].

Therefore, 1 — F is slowly varying. It is now readily proved that for each
k = 1’ Xn,n~k+1/Xn,n—k _)p 0.
We shall conclude the proof of Lemma 3.1 by showing that (3.2) follows
from the fact that f(x) = fo(x) = 1, that is, from
limv[1 - F{xF~%(1 - v~ 1)}| = 1.

Voo

Since 1 — F is right continuous, then the above result implies
(3.3) {1 - F(xt)}/{1 - F(t)} -1 ast— »through supp F.

Fix 6 > 0. Given s, choose y = y(s) > 1 — F(s — ) so close to 1 — F(s — ) that
x(1 — F)"%y) >s. Then for large s, 1 — F{x(1 — F)"'(y)} = (1 — d)y;,
whence 1 — F(s) > (1 — 8)y. Therefore, 1 — F(s) > (1 — §){1 — F(s — )}. But
1-F(s)<1—F(s—)andsol—F(s)~1—F(s—)as s — o,

Now let ¢ = o« through the complement of supp F and put

=inf{u > ¢t: u € supp F}.
Then t' € supp F and so by (3.3), 1 — F(xt') ~1 — F(¢') as t (or equiva-

lently, ¢') — . Taking s = ¢’ in the result of the last paragraph, we see that
1-F@)~1-F@-)=1—- F(t). Therefore,

1-F(xt)>21—-F(xt') ~1—-F({')~1-F(t-)=1-F(t).

But 1 — F(xt) <1— F(t) and so 1 — F(xt) ~ 1 — F(¢) as t - o through the
complement of supp F. Result (3.2) follows from this conclusion and (3.3). O

Lemma 3.2. If X, , /X,,—>, 1, then X, ,_,/X, ,_4+1 >, 1 for each
k>land{l—F(x)}/{l—F(nx)}—>0asx—>ooforeachO<17<1

Proor. The event X, , /X, , 1,1 <m, X, ,_r+1 =2 is equivalent to
n — k sample values less than or equal to 1y, one sample value equal to y, and
the remaining 2 — 1 sample values greater than or equal to y. Arguing thus
we may show that for each 0 < < 1, there exist constants 0 < C; < Cy < o,
not depending on n or 7, such that

{P(Xn—k/Xn,n—k+1 =1,y < Xn,n—k+1 <Yy + dy)
< Cyn*F(ny)" M1 - F(y —)}* " dF(y)
> CtF(ny)" *{1 - F(y —)}' "1 dF(y).
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Integrating over y we deduce that
(34) P(X,, x <X, . 4s1) = [ n*F(ny)" ™M1~ F(y -)}* " dF(y),

where a, =< b, means that a, /bn and b,/a, are both bounded as n — .
Taking k£ = 1 in (3.4), we see that P(X, ,_; <7X,,) — 0 implies -

nf F(ny)" ' dF(y) - 0.

Noting that the factor n of the integral may trivially be replaced by Cn, for
any C > 0, without affecting this result, we may prove that

A[exp[~A(L ~ F(my)}] dF(y) > 0
as A — « and, hence, that
ﬁ%”diﬂl—Fh‘T“%l—A*ﬂ”)ﬂO

as A > », Therefore, A[1 — F{n 'F~1(1.— A7 't)}] - 0 for each fixed n > 0,
t > 0. In consequence, {1 — F(n~'y)}/{1 — F(y)} - 0as y — o, for each n > 0,
the proof being similar to that used to derive (3.3). It is now a simple matter to
deduce from (3.4) that

P(Xn,n—k < an,n—k+1) -0

for each n > 0 and % > 1, from which it follows that X, ,_,/X, ,_,,; = lin
probability. O

Proor orF THEOREM 2.1. Convergence in distribution to a proper limit will
not occur unless either nB, —, + ©or nB, -, — ». We assume nB, —, + «.
Then

(3.5) n~' Y I(X,| > enB,) -, 0
i=1
for each ¢ > 0. The condition that the variables X*/nB, be infinitesimal in
the sense of Gnedenko and Kolmogorov [10, page 95] is
1m.ax P(IX*| >enB,|Z") -, 0
<i<n

for all ¢ > 0, which reduces to (3.5).

(i) Nonnormal limit. We may deduce from [10, page 124] that if there exists
a proper nondegenerate limit distribution which is not normal, then there
exist nonincreasing, nonnegative functions A; and A, defined on the positive
half-line, satisfying A () = Ay() = 0, not both identically zero, and such that
at’ continuity points x > 0,

n n
Y. P(X* > xnB,|Z") -, A(x), Y. P(X* < —xnB,|Z") =, Ay(x).

i=1

i=1
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These two conditions are, respectively, equivalent to

(36) X I(X,>wmB,) », A(x), L I(X,< —xnB,) >, Ay(x).

i=1 i=1
The left-hand sides in (3.6) are nonnegative integers and so A, A, may take
only nonnegative integer values.

Suppose A; is not identically zero. Then there exist x; > 0 such that

A(x)>1 for x <x; and A(x) =0 for x > x;. By definition of x,, ,m/
(nB,) —, x; as n - ». This amounts only to a definition of B,, requiring
that nB, be asymptotic to a constant multiple of X,,,. Therefore, we may take
nB, X,m, noting that this implies x; = 1.

Next we consider the size of the jump of A; at x;. If the jump is of two
units or more, then X, ,_,/X, -, 1. It then follows from Lemma 3.2 that

Xon-t/ X k1 2p 1 for all £ > 1. This means that if the jump of A, at x,
exceeds one unit, then the jump is infinite. Therefore, the jump at x; must
equal one unit. That is, A(x; +) =0, Ay(x; —) = 1.

Now consider the position x, of the next jump in A;: Ax, +)=1
A(xy—)>2.ThenX, , ,/X,, =, %, which implies P(X,, ,_,/X,,>x) >0
whenever x, <x < x; (= 1). By Lemma 3.1, this entails X, ,_,/X,, -, 0,
so that x, = 0. Therefore, A, satisfies A(x) =1for 0 <x <land A(x)=0
for x > 1.

We claim that since A; does not vanish, A, must. If not, we may apply the
argument above to deduce that for some x, > 0, Ay(x) = 1 for 0 <x < x, and
Ay(x) = 0 for x > x,. Then we have

(37) Xn,n—l Xnn _)p O’ |Xn2|/|Xn1| _)p 0’ Ianl/Xnn _)p Xo- \

Put Z, = |X,| and let an < -+ <Z,, denote the collection Z,,...,Z, ar-
ranged in order of increasing magmtude We may deduce from (3.7) that w1th
probablhty tending to 1, (Z,,,Z, ,_1) = (X,,,1X,D) or (IX,,],X,,) and

Z,n-92/Zy -1, 0. Apphcatlon of Lemma 3.1 (to a sample of |X;|’s rather
than X,’s) now glves Z, . 1/Z,, —, 0, which contradicts |X,,|/X,, =, %,

We may therefore assume that A has the form described two paragraphs
earlier, that A, = 0, and that B, = n‘lX,m. Then by Lemma 3.1, 1 — F is
slowly varying at + and |X,,|/X,,, =, 0, from which it follows that

(3.8) P(X>x)/P(X| >x) > 1

as x — . Conversely, if 1 — F is slowly varying at + and (3.8) holds, then
1X,11/X,, =, 0, whence it follows (if we take B, = n ~1X,,) that A, has the
form descrlbed earlier and A, = 0. Therefore, to complete our treatment of
the case of a nonnormal limit, it suffices to prove that if 1 — F is slowly
varying at + o and (3.8) holds, then

(3.9) P(n(X*-X)/X,, <x|Z} -, P(N-1x<x),

where N is Poisson with unit mean.
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Put Z, = X2, write Z for a generic Z; and let Z,; < -+ < Z,, denote the
collection Z,,...,Z, arranged in order of increasing magnitude. Then
Zyn-1/Zy, =, 0 and so by Lemma 3.1 the function P(Z >y) is slowly
varying at infinity. In consequence,

( i ZL)/Znn _)p 1

i=1

[8] and so

(3.10) (Z z, - znn)/z,m -, 0.
i=1

Denote by %= {Y3,. .., Y,} the sample obtained from 2" on replacing X,, by
zero, and let 2°* = {Y*,...,Y *} be a resample drawn randomly, with replace-
ment, from %. We may take 2'* to equal 2™* when each appearance of X, in
the latter is replaced by zero. Put Y = n~1LY,, Y* = n 1L Y;*. Then

P(n|¥* - V|/X,, > e|2) < e 2X;2n2E{(Y* - ) 2)
—e2X2 Y (Y, - 7)°
i=1

3.11 n
(31D e X2 ) ¥
i=1

IA

= 8;2Z;nl( ZIZL' - Znn) b 0,
i=

- by (8.10). Since B, = n~'X,,,, then
(X*-X)/B,=N*-1+n(Y*-Y)/X,,,

where N* denotes the number of times X,,,, appears in the resample Z7*. As
n — o, N* is asymptotically Poisson-distributed with unit mean. The desired
result (3.9) now follows from (3.11).

(ii) Normal limit. Weeff may deduce from [10, page 128] that there exist
ZFmeasurable sequences A,, B, such that

P((X*—-A,)/B, <x|Z} >, ®(x), —o<x<o,

if and only if there exists an Z‘measurable sequence B, such that for all
e >0, .

L P(B; X7 > 6l 7) =, 0,

B2 ¥ (B((X#)*10X2| < eB,)\ %) - [E(X#1(X# < B Z)]%) =, 1.
i=1
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These two conditions are respectively equivalent to

(3'12) Z I(IXll > SBn) —-)p 07
i=1
n n 2
(3.13) B;2Y X?I(|X; <eB,) — n_lB;2{ Y X I(X; < aBn)} -, 1
i=1 =1

for all € > 0. In view of (3.12), (3.13) may be rewritten as

n n 2
B;%2Y) X?- n‘lB;z( r Xi) -, 1,
i=1

i=1

that is, nB, %62 —, 1. Therefore, (3.12) and (3.13) are together equivalent to
nB,%¢? -, 1 (which simply means that B, should be chosen asymptotic to

n'/?%4) and

Y I(X?>ené?) -, 0
i=1
for all £ > 0. The latter relation is equivalent to

(3.14) ( max X?) y (X, -X)* -, 0.
i-1

l<i<n

Put U, = (max,_, X?)/(X,.,X?. Since L(X; — X)? < ¥. X?, then (3.14)
implies U, —, 0. The converse is clear if E(X?) < . We show next that when
E(X?) = , U, —, 0 implies (3.14). For this it suffices to prove that for some
e >0,

(3.15) {Z (x; - 2)2}/( Y Xf) >e+o0,(1)
i=1 i=1
as n — o, Choose A > 0 so large that P(]X| > A) < 1 and put
S,=n"tY XX, >)), T,=n"1Y I(X)]>2).
i=1 i=1

Then
2

n 2 n
X2 < (n_1 Z |X1|) < {)t +n°t E |X,-|I(|Xi| > )\)} < {)‘ + (SnTn)1/2}2.
i=1 i=1
Therefore,

Y (X, -X)’=nlY X?-X?

i=1 i=1
(3.16) > S, — {A% + 2( S, T,)"*+8,T,}
=S,{1 - A2S;* - 2X(T,/S,)"* - T,}
=S,{1 - P(1X| > 1) +0,(1)},
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since S, —, o and T, —, P(|X| > A). Also,

S, = n~lY X2 - E{X%(X <))+ 0,(1).
i=1
Result (3.15) now follows from (3.16).
At this point we need a portion of Lemma 3.3, due to O’Brien [13]. -

Lemma 3.3. Let Y,Y,,Y,,... be independent and identically distributed
random variables with P(Y > 0) =1 and P(Y > 0) > 0. Put U, =
(max;_, Y)/(Z;_,Y)). Then U, -, 0 if and only if E{XYI(Y <y)} is slowly
varying at © and U, - 0 almost surely if and only if E(Y) < o,

Note that X is in the domain of attraction of the normal law if and only if
E{X?I(|X| < x)} is slowly varying [12, page 84]. This condition is in turn
equivalent to the slow variation of E{X2I(X? < x)} and hence (by Lemma 3.3)
to U, —», 0. We have already shown that the asymptotic normality of the
bootstrap mean is equivalent to U, —, 0, and so also to X being in the
domain of attraction of the normal law.

We have already shown that B2 = ¢? suffices as the scaling constant. A

suitable version of A, is

A, =n"'Y B(X*I(X* <B,)Z) =n"' ¥ X,I(X, <B,).
i=1

i=1
In view of (3.12), this implies A, = X will also do. O

Proor oF THEOREM 2.2. Let Z, be a nonnegative function of the sample
Z. Denote by 2= {Y,,...,Y,} the sample obtained from Z" on replacing X;
by zero whenever |X;| > Z,, and otherwise leaving X, unchanged for1l <i < n.
Put Y=n"'TY, and Y* = n 'L Y;*, where {Y}*,..., Y,*} is a resample drawn
randomly, with replacement, from 2. We claim that for each & > 0 there
exists 8 > 0, depending only on ¢, on lim sup nP(|X| > ¢,) and on the distribu-
tion of X, such that if P(c,'Z, > 8) < § for all large n, then
(3.17) lim sup P{P(nc;lﬂ_’* -Y1>e2) > ¢} <e.

n—0

To verify this claim, observe that

n?E{(Y* - V) 2’} < nE{(Y*) 2} = éxﬁqm <Z).

Therefore by Markov’s inequality, for each u > 0,
P(ne;YiY* - Y] > |2)
<I(c;'2,>u) +1(c;'Z, <u)e 2c;2E{(Y* - )_’)2|92”}

<I(c;'Z,>u) +e7%;2 Y XX, < c,u).
i=1
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In consequence,
P{P(nc;lﬂ_’* -Y > 8|92”) > 8}

(3.18) <P(c;Z,>u) + P{z-:""c,:2 Y X2I(X,| <cpu) > s}
i1

<P(c;'Z,>u) + e 3c;2nE{X2I(X| <c,u)}.
Choose 8 < (1/2)e so small that
Cla‘a{lim sup nP(|X| > cn)} lim sup {62P(|X| > x6) /P(1X| > x)} < (1/2)¢

n—o x—00

and take u =& in (3.18). By hypothesis, the right-hand side of (3.18) is
dominated by
8 +&3%;2nCy(c,8)°P(X| > c,5)
<&+ Cie 3{nP(IX| > c,){8?P(IX| > ¢,8) /P(1X| > c,)}
<8+ (1/2)e +0(1) <&+ o0(1).
This proves (3.17).
Take Z, = Z,(r) to be |X,, ,.1,| and let N denote the number of |X;|’s,
1 < i < n, which exceed éc,,. Then
P(c,'Z,>8)=P(N=r) <r 'E(N) =r 'nP(X| > 8c,),
from which it follows that for each § > 0,
(3.19) lim limsup P{c,'Z,(r) > 8} = 0.

r—©  poow

Note too that for our choice of Z,,
n r n
Z Xr = Z Ni*X<n,i> + E Y,
i=1 i=1 i=1
whenle

ne; (X*—X) =ne,' ¥ (N*—1)X, ;, + ne; (Y* - 7).
i=1
Therefore, A, , = nc, (Y* — ¥). The theorem now follows from (3.17) and
(3.19). O

Acknowledgments. I am grateful to Michael J. Klass for helpful conver-
sations. The referee’s detailed comments have also been most helpful.

REFERENCES

[1} Arov, D. Z. and BoBrov, A. A. (1960). The extreme terms of a sample and their role in the
sum of independent variables. Theory Probab. Appl. 5 377-396.

[2] ATHREYA, K. B. (1987). Bootstrap of the mean in the infinite variance case. Ann. Statist. 15
724-731.



1360 P. HALL

[3] ATHREYA, K. B. (1987). Bootstrap of the mean in the infinite variance case. II. Unpublished.
[4] BingHaM, N. H. and TeuGeLs, J. L. (1981). Conditions implying domains of attraction. In
Proc. Sixth Conf. Probab. Theory (B. Bereanu, S. Grigorescu, M. Iosifescu and T.
Postelnicu, eds.) 23-34. Editura Academiei, Bucharest.
[5] CsOraO, S. (1987). Notes on extreme and self-normalized sums from the domain of attraction
of a stable law. Preprint No. 83 /1987, Math. Inst., Hungar. Acad. Sci.
[6] CsGrGS, M., CsOrGS, S., HorvATH, L. and MasoN, D. M. (1986). Weighted empirical and
quantile processes. Ann. Probab. 14 31-85.
[7] Cs6raO, M., CsOrGO, S., HorvaTH, L. and Mason, D. M. (1986). Normal and stable conver-
gence of integral functions of the empirical distribution function. Ann. Probab. 14
86-118.
[8] DARLING, D. A. (1952). The influence of the maximum term in the addition of independent
random variables. Trans. Amer. Math. Soc. 73 95-107.
[9] GaramBos, J. (1987). The Asymptotic Theory of Extreme Order Statistics, 2nd ed. Krieger,
Malabar, Fla.
[10] GNEDENKO, B. V. and KoLmMoGorov, A. N. (1954). Limit Distributions for Sums of Indepen-
dent Random Variables. Addison-Wesley, Reading, Mass.
[11] HaLL, P. (1978). On the extreme terms of a sample from the domain of attraction of a stable
law. J. London Math. Soc. (2) 18 181-191.
[12] IBraGIMOV, I. A. and LiNNIK, Yu. V. (1971). Independent and Stationary Sequences of
Random Variables. Wolters-Noordhoff, Groningen.
[13] O’BriEN, G. L. (1980). A limit theorem for sample maxima and heavy branches in Galton-
Watson trees. J. Appl. Probab. 17 539-545.
[14] REsnick, S. I. and RuBiNoviTcH, M. (1973). The structure of extremal processes. Adv. in
Appl. Probab. 5 287-307.
[15] Smip, B. and StaMm, A. J. (1975). Convergence in distribution of quotients of order statistics.
Stochastic Process. Appl. 3 287-292.
[16] SmirNov, N. V. (1952). Limit distributions for terms of a variational series. Amer. Math. Soc.
Translation No. 67.

STATISTICS RESEARCH SECTION
SCHOOL OF MATHEMATICAL SCIENCES
MATHEMATICAL SCIENCES BUILDING
AUSTRALIAN NATIONAL UNIVERSITY
G.P.O.Box 4

CANBERRA, A.C.T. 2601

AUSTRALIA



