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Let {X,, £ > 0} be an R%valued, symmetric, right Markov process with

stationary transition density. Let {X,, ¢ > 0} denote the version of X,
“killed” at an exponential random time, independent of X,. Associated
with X, is a Green’s function g(x,y), which we assume satisfies 0 <
g(x,x) <o for all x and a local time {L,, x € R9). It follows from an
isomorphism theorem of Dynkin that L, has continuous sample paths
whenever {G(x), x € R?}, a Gaussian process with covariance g(x, y), does.
In this paper we use Dynkin’s theorem to show that L, satisfies the central
limit theorem in the space of continuous functions on R¢ if and only if
G(x) has continuous sample paths. This result strengthens a result of
Adler and Epstein on the construction of the free field by means of a
central limit theorem involving the local time, in the case when the local
time is a point indexed process. In order to apply Dynkin’s theorem the
following result is obtained: The square of a continuous Gaussian process
satisfies the central limit theorem in the space of continuous functions.

1. Introduction. The relationship between a Gaussian random field (the
free field) and the local time of a symmetric Markov process has been observed
by many authors starting with Symanzik [13]. It has been studied by Dynkin
in great detail; see [6] and the references therein. Wolpert [15], treating
Brownian motion in R2, and later Adler and Epstein [1], treating a wide class
- of R%valued Markov processes, have pointed out that a central limit theorem
(CLT) for the local times of a Markov process gives a ‘‘ physical”’ explanation of
how the associated Gaussian random field comes about. Whereas in the theory
that most of these papers deal with the local time exists only as a random
distribution, we shall restrict ourselves to the still interesting case in which
the local time is defined as a point indexed process with finite variance. We
shall then use an isomorphism theorem of Dynkin [6] to show that a stronger
CLT holds than the one obtained in [15] and [1]. Our result is valid without
any conditions beyond the most elementary ones that are necessary for the
local time to be defined and the CLT to make sense.

Let {X,, ¢t > 0} be an R4valued, symmetric, right Markov process with
stationary symmetric transition density p,(x,y) = p{(y, x). Let ¢ be an expo-
nential random variable with mean 1, independent of X, which we treat as a
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death time for X, and let A be the ‘“‘cemetery’ state for X so that the “killed
version”’ of X is given by the process

s (X, t<é,
Xf‘{A, t>¢.

The killed process X', is still a Markov process, with transition density
e ‘p(x,y), x,y € R? and Green’s function

(1.1) gtny)=£?f%4%y)w-

We shall assume throughout that 0 < g(x, x) < « for all x.
For each x, € R? we define the probability P, on the space of paths of X,
augmented by A, possessing the finite-dimensional distributions

P (X, €B,,...,X, €B,)

(1.2) = e " (X0 X1) Pryot (%1, %2) « - Pyymty_(Xp—15 %3)

1

g(xo’”xo) fBl o '[Bk
Xg(xy,%y) dxy, . .. dxq,
for 0 <t; < --- <t¢,, and Borel sets By,..., B,. As pointed out in [5], Section
3, properly formulated P, (‘) can be interpreted as P( 1X, = x,, X’Sr Xg), SO
that P, describes a process starting and finishing (after an exponential killing
tlme) at X [Note that at time ¢ the path takes the value A. Therefore,
P, (X, €R%..., X, €R?% = Prob(¢ > t,1X, = xp, X,-= x,).]

We shall be 1nterested in the local time process {Lx, x € R of the killed
version X of X,, which can be formally expressed as

(1.3) %=LMﬂmﬁ,

where 6, is the delta function centered at x. This definition can be made
rigorous by taking L, as the Radon-Nikodym derivative of the occupation
measure

w(A4) = [L(X(®)dt,

where we follow the convention that for all Borel sets A € R?, I,(X,) = 0 for
t > £ Another approach is to approximate §, by some density function and
then pass to the limit as is done in [6]. In this paper we will mainly be
concerned with the case when {L,, x € R} has continuous sample paths
almost surely. '

This is the version of Dynkin’s theorem which we will use. Let {G(x),
x € R?} be a mean-zero Gaussian process with covariance g(x,y) as given in
(1.1). Let (Q, 1) denote the probability space of this process. The measure 7 is
determined by {g(x,y), (x,y) € R X R%. Let L ={L,, x € R% denote the
local time process defined in (1.3). This process is defined on a probability
space (Qy, P, ), where P, is given in (1.2). We denote by E, and pro
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expectation with respect to the measures 7 and P, , respectively. The isomor-
phism theorem is as follows.

TueorREM 1.1 (Dynkin). Let F be any positive functional on the space of
functions from R? to R and let n, = G*(x)/2. Then

G2(x0)

(1.4) EW(F(ﬂ)m

) = EprxO(F(n +L)).

Equivalently, the process m.(w) with the measure [G*(x,)/g(x,, xo)lm(dw)
and n(w) + L (w,) with the measure w(dw)P,(dw,) are equal in distribu-
tion.

Since the local time exists as long as 0 < g(x, x) < =, it is an immediate
consequence of this theorem that it has a continuous version whenever {G(x),
x € R% has a version with continuous sample paths. The continuity of Gauss-
ian processes is well understood (see, e.g., [9], [7] and [14]) and is completely
determined by the Green’s function g(x,y). Thus one can obtain conditions
for the continuity of L in terms of g(x, y). Of course, we must add that in the
case when {X(¢), t € R? is Brownian motion or a Lévy process, g(x,x) is
finite only when d = 1.

Suppose that L has a version with continuous sample paths which we will
again denote by L ={L,, x € R%. Let {LJ7., ={L,,, x € R%7_, be iid.
copies of L. Let {¢;)7_; be a Rademacher sequence, [i.e., a sequence of i.i.d.
random variables satisfying P(e; = 1) = P(¢; = —1) = 1/2], independent of
{L,}"_;. Consider the normed sums

]_ n
(1.5a) S,=8,(x)=—) &L, ;, x € RY,
n -1
and
1 n
(1.5b) S;=8/(x)=—=2Y, (L,,—EL,), x€R<
Vn (24 ’

Let K c R? be compact. We say that L satisfies the CLT on C(K), the space
of continuous functions on K, if the finite-dimensional distributions of S,, or
equivalently of S; converge weakly and if the meagures induced by S, or
equivalently by S; on C(K) are tight. If L satisfies the CLT on C(K) for all
compact K ¢ R? we say that L satisfies the CLT on C(R?).

One can check by Theorem 1.1, or from the definition of local time, that

28(x0,%)8(x,y)8(%,5)
g(xm xo)

(1.6) ES,(x)S8,(y) =
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and similarly that

28(x9,x)8(x,5)8(x,y) _ gz(xo’ x)g%(x9,y)

(1.7) ES)(x)S,(y) = 2(%g, %) g%(xg, x0)

Since sup, , < x g(x,y) <  for all compact sets K C R? we see by the stan-
dard CLT on finite-dimensional spaces that the finite-dimensional distribu-
tions of S, and S, converge weakly to those of the Gaussian processes

V2g(x,,2)G(x)
vg(xmxo) ’

Z(x) = x € RY,

and

' _ g(xo’x) _ g(xo’x) g(xo,x)
Z'(x) = M(E(G(-’C) ———g(xo:xo) G(xo)| + —_—_g(xo:xo) G(xg) )

x € R¢.

Now suppose that L satisfies the CLT on C(R?). This implies, by defini-
tion, that the Gaussian processes {Z(x), x € R% and {Z'(x), x € R“} have
continuous sample paths. Therefore, an obvious necessary condition for L to
satisfy the CLT on C(R9) is that {G(x), x € R} is a continuous Gaussian
process. The main result of this paper is that this condition is also sufficient.

TueoreM 1.2. Let L ={L,, x € R?} be the local time for the killed,
symmetric, right Markov process X,, as described above, with Green’s function
g(x,y). Then L satisfies the CLT on C(R?) if and only if {G(x), x € R%), the
mean-zero Gaussian process with covariance g(x,y), has continuous sample
paths.

The fact that the measures induced by S, (S,,) are tight on C(K) for all
compact sets K ¢ R? whenever {G(x), x € R% has continuous sample paths
gives a more meaningful construction of the free field [i.e., of {G(x), x € R%}]
by the local time of X, than to say that S,, (S) satisfies the CLT for x € X,
where X is a finite subset of R?.

It is also noteworthy that the local time process L always satisfies the CLT
on C(R?) as long as there exists a continuous limiting Gaussian process to
which it can converge. This is reminiscent of the results of Barlow and Hawkes
([4] and [3]), which imply, in particular, that the local.time of a symmetry Lévy
process has jointly continuous sample paths if and only if the Green’s function
of the Lévy process is the covariance of a continuous stationary Gaussian
process. .

It suffices, for the proof of Theorem 1.2, to show that {n.(w),
[G2(x,)/8(xy, X))} satisfies the CLT whenever {G(x), x € R%} is continuous.
But, as we shall see, this follows easily from the fact that {n.(w), 7} satisfies
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the CLT. To be more precise, the main ingredient in the proof of Theorem 1.2
is the following theorem.

THEOREM 1.3. Let {X(¢), t € T}, where T is some index set, be a real
centered continuous Gaussian process. Then the continuous stochastic process
{X2(t), t € T} satisfies the CLT in C(T) the space of continuous functions
onT.

This theorem is contained in Corollary 2.6 which is an immediate corollary
of Theorem 2.3. Theorem 2.3 and some more general results on the CLT for
products of Gaussian processes are obtained in Section 2. To prove Theorem
1.2, we relate the CLT for the local time to the CLT for the square of the
associated Gaussian process by (2.32), which is an immediate consequence of
Theorem 1.1. The main work in this paper is to obtain Theorem 1.3 and its
direct consequence Corollary 2.8.

2. A central limit theorem for products of Gaussian processes. Let
{G(¢), t € T} be.a real-valued centered continuous Gaussian process. In consid-
ering this process we will always take the topology on T to be given by the
pseudodistance d;, where

(2.1) dg(s,t) = (E|G(s) - G()2)"?, Vs,teT.

When (T, d) is compact we will sometimes consider G as a random variable
with values in (C(T, dg), || - |l.), the Banach space of continuous functions on
(T, dg), where || - ||, denotes the supremum norm.

DeFiNITION 2.1. Let (T,d) be a compact metric space and C(T,d) =
(C(T,d),| " |lo)- Let Z ={Z(2), t € T} be a stochastic process such that Z
C(T, d). We say that Z satisfies the central limit theorem in C(T', d) [written
Z € CLT(C(T, d))] if

(2.2) w12y, (2, - EZ)
j=1

converges in distribution in C(T, d), where {Z;}7_, are i.i.d. copies of Z.

Note that if (2.2) does converge in distribution in C(T, d) then the limit is,
necessarily, a centered C(T, d)-valued Gaussian random variable G with

(2.3) EG(s)G(t) = cov(Z(s), Z(¢)), Vs,teT.

The metric d that appears in the expression Z € C(T, d) is not unique. One
can always take

d =d(s,t) = (E|Z(s) - Z(t)]?)"?,
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which, necessarily, must exist by (2.3) and which is equal to d (s, t), defined in
(2.1), the corresponding metric of the limiting Gaussian process.
We will use several equivalent formulations for Z € CLT(C(T, d)).

PROPOSITION 2.2 (see, e.g., [8], Theorem 2.14). Let Z ={Z(¢), t € T} €
C(T,d) and let {Z;};_, be i.i.d. copies of Z. Let {&;};_, be a Rademacher
sequence and {g;}7_, a sequence of i.i.d. normal random variables with mean
0 and variance 1, such that the three sequences are independent of each other.
The following are equivalent:

(i) Z € CLT(C(T, d));

(i) n~Y2L7_1e,Z; converges in distribution in C(T, d);
(iii) n~ Y 22"_ 1&; ZJ converges in distribution in C(T, d);
Gv) (T, d) is totally bounded and

lim supn~'%E
620 n

n
)y &;Z;
j=1

3

where for real-valued functions f(¢) and g(¢), t € (T, d), we define

lglls = sup lg(s) —g(t)];
{s,teT:d(s,t)<8}

(v) (T, d) is totally bounded and

lim supn~1%E
620 n

n
Y 8Z;
j=1

5
The next theorem is the main result of this section.

TuroreM 2.3. Let (X(w), Y(v)), (u,v) € U X V} be an R?-valued centered
continuous Gaussian process. Assume that (U X V, d) is compact, where

d((u1, 1), (5,05)) = (EIX(u,)Y(v;) — X(u,)Y(v5)12)"”
Then XY c CLT(C(U X V, d)).

Note that to simplify the notation we write XY for X ® Y, where X ®
Y(u,v) = X(2)Y(v) since the noncommutivity of the tensor product does not
affect anything that follows.

The following lemmas, which will be used in the proof of Theorem 2.3, are
interesting in their own right. The first one is a form of ‘“decoupling” lemma.
Because we are dealing with Gaussian random variables the ‘“decoupling” is
quite simple. The general topic of decoupling random variables was initiated in
[11]; see also [16].

LemMMA 2.4. Let (X,Y) = {(X(u), Y(v)), (u,v) € U X V} be an R*valued
centered bounded Gaussian process. Let {(X,, Y)¥'_i, (X}, Y-, be
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- independent copies of (X,Y) and let {¢;}!_, be a Rademacher sequence such

that the three sequences are independent of each other. Then

n
-1/2 ’
n leijYj

j=

(24) E <||[EX?|Y?|EY?)Y? + 2E

o

n
-1/2
n"2Y e XY,
j=1

oo

Proor. Note that

(2.5) (X,Y) =Q(X+X',Y—Y/),
V2 V2
where “ =, "’ denotes equality in distribution. This follows from the fact that
E[(X(u) + X' (u))(Y(v) - Y(v))] =0, V(u,v) eUXV.
Using (2.5), we see that

E\n "2} XY/
Jj=1 ©
1 n
= SE|n 2L (X, + X)(Y, - YY)
j:l =
(2.6)
= 5B Eay|n ZIEJ(XJ)/} + XY, - XYy~ XjYy)
iz -
1 —1/2 s
2 3En L (XY, - EXY)|
J= ©

where E, x vy, (Ex y,) denotes expectation with respect to the sequences
{ej)r-; and {(X;, YV, X}, Y} ), and we bring E y y, inside |- |, to

obtain the final inequality in (2.6). The last term in (2.6)

s

1 1
(2.7) > —E ~ SIEXY|..E

T2

n
-1/2
n 2lejxj1;
iz

n
n~zy g
Jj=1

oo

which gives us (2.4) by the Schwarz inequality. O

LemMma 2.5. Let U ={U(s), s € S}and V={V(¢),t €T}, S and T count-
able, be independent stochastic processes. Let {U}'_, and {V}_; be i.i.d.
copies of U and V and let {g;}7_, be a sequence of i.i.d. normal random
variables with mean 0 and variance 1, such that the three sequences are
independent of each other. Then

E +E

oo

(2.8) E <8

oo

> gUy, X glVil.U; L gIU;1LY;
j=1 j=1 J=1
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If, in addition to the above, U and V are mean-zero Gaussian processes, then

< 16(E|UI2EIV]|2)"™.

[

(2.9) E

w2 L B UV,

Proor. We will use the following comparison result of Fernique [7], Corol-
lary 2.13, which is based on Slepian’s lemma: Let X be a countable index set
and {G(x), x € X} and {G4(x), x € X} be mean-zero Gaussian processes such
that

(2.10)  E|Gy(x) — G(y)* < E|Gy(x) — G,(»)I*, Vx,y€X,

and such that 0 is in the range of G (-, ») for almost all w € Q. [(G{, Q, &) is
the probability space supporting G,]. Then

(2.11) Esup|G(x)| < 2Esup|Gy(x)|.
xeX xeX
Now, fix s, € S and set
U(s) =U(s) - Ul(s,), Vse8,j=1,...,n,

and consider

(2.12) H(s,t) = Y g T(s)V(t), V(s,t)eSxT.

j=1

Obviously, H(sg,¢) = 0 for all # € T. As usual let E, denote expectation with
respect to the sequence {g;}7_;. We have
U — 2
E|H(s\,t,) = H(sy, ta)[* = L |Ti(s)Vi(2) = () V(1)
j=1

< 2( ¥ TG0Vt - V()|
j=1

(2.13) +

o

V[0 - e

=< 8( P ||l]j||°2°|V](t1) - Vj(t2)|2
j=1

b3 VT (s - 17,.(32»2).
=1

j=
Define

Y(s) =2v2 ¥ g,IUl.V;(s), VseS,
j=1
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and
Z(t) =22 ¥ gIVil.U;j(¢), ViteT,
Jj=1

where {g/}7_, is a sequence of normal random variables with mean 0 and
variance 1 independent of everything else. Then by Fernique’s comparison
result with

G(s,t) = H(s,t), V(s,t)eSXT,

and
Gy(s,t) =Y(s) +Z(t), V(s,t)eSXT,
we see that
(2.14) E, sup |H(s,t) < 2(E§sup|Y(s)|+-E@supLZ(tn).

(s,)eSXT seS teT

It follows from (2.14) that

Y g,U;(s0)V,(0)

Jj=1

< E sup
teT

5, L a0y

+ 2(E sup|Y(s)| + E supIZ(t)l)

seS

and since

Y &lU;lV;(¢)

Jj=1

Y g,U(s0)Vi(t)

Jj=1

< 2E, sup

E, sup
teT

teT

by the comparison result of Fernique, we get (2.8).

Now assume that U is a Gaussian process. Recall that {U}};Ll is indepen-
dent of {V}7_; and {g;}7_,. Let E; denote expectation with respect to the
probability space generated by {U;}7_;. Note that for fixed sequences {V}}7_,
and {g j};'o= 1

n

Z ViU,

n 1/2
= ( ) g,-zll"}llﬁ) E|U]|.
j=1

Therefore,

n

Z i1VilleU;

n 1/2
= E( ) gj2||Vj||ozo) E|UJl
© Jj=1

(2.15)
< nYE|V|2)*E|U|.,
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and similarly for the last term in (2.8). This and the Schwarz inequality give
(2.9). O

Proor or THEOREM 2.3. Let {¢,}7_; be a sequence of Rademacher functions
independent of all the other other variables. Then for any sequence of func-

tions {p,;()}7_,,

n n
E| Y 8;¢;| =E.E, £;8iP)
Jj=1 o j=1 »
(2.16) . .
>E| Y Sj(E|g|)¢j =y2/mE x £;¢;j
Jj=1 ® Jj=1 ®

Therefore, by (2.16), (2.4) and (2.9) we have

1/2

< (1 + 1627 )(E| X |2E|Y|2)">.

o

(2.17) E

n
-1/2
n leijY}
. J=

This shows that XY satisfies the ‘“bounded CLT”, i.e., that the left side of
(2.17) is uniformly bounded in n. Note that, since XY is continuous and
(U X V,d) is compact, it is enough to take the supremum of XY over a
countable set as is required by the hypothesis of Lemma 2.5. This will always
be the case in what follows. We will continue to use Lemma 2.5 in this way
without further comment.

In order to show that XY € CLT(C(U X V, d)) we will approximate XY by
finite-dimensional random vectors in C(U X V, d). This we can do by using a
Karhunen-Loéve expansion for the R2-valued Gaussian process {(X(u), Y(v)),
(u,v) € U X V} (see [2], Theorem 6.8). We write

(2.18) (X(u),Y(v)) = X gulon(u), 4p(v)), (u,v) €UXYV,
k=1
where {¢,(v));_1, ¥, (v)f;_,) are continuous functions on U, (V). Let

Xn(u) = Z gren(u), uelU,
k=N

Yy(v) = ¥ gut(v), veV.
k=N .

Note that (X — X\ XY — Yy ) has finite-dimensional range in C(U X V, d) and
hence satisfies the CLT by classical considerations. Now let {(X — X );}"_; and
{(Y — Yy),J°-; be iid. copies of (X —Xy) and (Y —Yy) and {Xy 5,
and {Yy ;J7_; be i.i.d. copies of X and Yy. Define X, = (X — Xj), + Xy ; and
Y, = (Y= Yy), + Yy,i=1,...,0
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We have

i=1

o

E”m_l/z i & XY, — (X - Xy) (Y - Yy),]

_ E”m/ Y e[ XY — (X, — Xy (Y, — Yy )]
i=1

o

+ E

[

m
(2.19) < EHm'l/z Y & Xy, Y,
i=1

m
(m—uz P &Yy X,
i=1

o

+ E

m
’m—uz Y e Xy Yy,

i=1

[

< (1 + 16V )(E| Xy 2E|Y|2)"
+(1 + 16V )| (EIYyIZEIXI2)

where at the.last stage we use (2.17).

Since both E||Xy||2 and E||Yy|2 go to 0 as N —  we see that the first
expectation in (2.19) goes to 0 as N — o uniformly in m. It now follows from
[12], Theorem 3.1, that XY satisfies the CLT. See also [10], Lemma 1.2,
Chapter 4. (In “Proof of Lemma 1.2” in [10] replace X by Y,.)

1/2 1 /2]
)

+ (E| XyI2E|YyI2)

COROLLARY 2.6. Let {X(¢), t € T} be a real-valued centered continuous
Gaussian process. Then X" € CLT(C(T, d)) for all integers n > 1.

Proor. The case n = 2 follows from Theorem 2.3. For n > 2 one can
prove this by induction using the fact that

X-X X+X’)"

V2 V2

and proceeding as in the proof of Lemmas 2.4 and 2.5. O

X’X” =9(

REMARK 2.7. It seems clear that Theorem 2.3 can be extended in a similar
fashion as Corollary 2.6. Thus, if {(X(u,),..., X, (v,,), (uy,...,u,,) €
U, X --- xU,} is an R™-valued centered continuous Gaussian process, it
ought to follow that X1 X}z --- X» € CLT(C(U, X --- X U,,,d)) for d ap-
propriately defined. However, we have not tried to write out a proof of this
statement and will leave it to the interested reader. .

In order to use Theorem 1.1 to prove Theorem 1.2 we need a CLT for a
stochastic process that is the square of a Gaussian process with a change of
measure. Let {X(¢), ¢ € T} be a real-valued centered continuous Gaussian
process as defined in the beginning of this section. Consider the stochastic
process {X2(t), t € T} and let 7 denote the measure induced on C(T,d) by
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this process. For ¢, € T' we define the measure m, on C(T, d) by

X2(¢y)
(220) d’ITto = m d’IT
T 0

and let E,_ denote expectation with respect to the measure . [To avoid
trivialities, we will assume that E_X2(¢,) # 0.] We define the (obviously
continuous) stochastic process Z2 = {Z2(¢), t € T} to be the process given by
the measure 7, on C(T). It is clear that for all measurable functions f on
C(T) we have

X2(¢,)

wm/’(}fz},

(2.21) E, f(Z?) =E

where E_ denotes expectation with respect to the measure , .
The next result is a corollary of Theorem 2.3.

COROLLARY 2.8. Let Z2 = {Z%t), t € T} be the continuous stochastic pro-
cess defined by (2.20) and (2.21). Then Z% € CLT(C(T, d)), where d = d(s, t)
can be taken to be any of the equivalent metrics

(2.22) (E, 27(s) - 2(0) ", (BJXi(s) —XI(0)P), =12

Proor. Note that

(2.23) I 7glls <1 Fllxllglls + gl £1l55

where || ||; is defined in Proposition 2.2(iv). To show that Z% € CLT(C(T, d)),
it is enough, by Proposition 2.2, to show that

n
-1/2 Z €ij2

j=1

(2.24) lim supE_ E

6o n

-0
8

n ij(tO) _
Alssi) -

W(2) = X(¢) — r(8) X (%),

or equivalently, by (2.21), that

n
-1/2 2
n~l2 3y & X;

Jj=1

(2.25) lim supE_E,

8§—>o n

Define

where
E, X(t)X(¢)
") = "F X%1,)

We see that W is 7 independent of X(¢y). As usual let {W,}7_, and {X}7_; be



1138 R. J. ADLER, M. B. MARCUS AND J. ZINN

i.i.d. copies of W and X, respectively, and set

XJZ(tO) .
= oo Jj=1,...,n.
ETer (tO)
Then
n n
EE[[n /2 ¥ e HBJ
j=1 s/=1
[ n 2 n
= Eﬂ'Et—‘ n_1/2 Z EJ(WI + rXJ(tO)) ﬁj
| j=1 s/=1
(2.26) [ n [ n n
<E_E, n-1/2 Z z-:jW;.z + 2E_E, rn~1/2 Z erj(tO)W} H'BJ'
| Jj=1 5 | Jj=1 s/=1
n n
+. Eﬂ-Es r2n_1/2 Z Eijz(to) I_IBJ
j=1 5/=1
=1+ IT + III.

Note that W is a Gaussian process and so by Theorem 2.3, W?2 satisfies the
CLT. The fact that

(2.27) lim sup(I) =0
50 n

follows from Proposition 2.2(iv).
Furthermore, by the same argument we used prior to (2.15),

[ ” n
II = 2E, 4, Ew||m 2 L €, X;(t,)W;| T18;
! i=1 -

B

J

1/2 n
1

S| =

<2E,_ X(,O)EW r(

(2.28) s
1

= 2E7Tt0 (_ Z XJ2(t0)) Eﬂ'”rwllﬁ
n;_y

j=

1/2
1 r
=< 2(”r||ooE77-”W”3 + ”rlléEﬂ-”W”oo)l:E#,o (; 4 ij(tO))J ’
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where
1 n 1 7 n
E,,to(; ) Xf(to)) - E, (; X ij(to)) IJIBJ}
(2.29) - . J
_ E_X%(2,) B .
T B X, SEX).

Since lim;_,, E_|[W||; = 0 and lim _, , ||7|; = 0, we see from (2.28) and (2.29)
that

(2.30) lim sup (II) = 0.
8-0 n

Finally, since {X jz(to)}jf’=1 is a sequence of real-valued random variables, we
have

n
Inﬂmmg+ﬂﬂzgﬁmﬂgwa%,mn
Jj=1

) 2 E#XG(tO) 1z
= |Ir|l5 m
= V15| r|2E, X2(t,)

and so

(2.31) lim sup (III) = 0.

8—-0 n
Combining (2.27), (2.30) and (2.31), we get (2.24). This completes the proof of
Corollary 2.8. O

Proor oF THEOREM 1.2. Let {L;}7_, and {n;}7_, be i.i.d. copies of L and 7

as given in Theorem 1.1 and let {& j};‘; , be a Rademacher sequence independent

of L and 7. It follows from Theorem 1.1 and the triangle inequality that

n
lim supE||n~'? ) ¢,L;
§—oo n Jj=1 5
n n t
(2.32) < lim supE E.,||n" "% } &n; I_[ "7,( 0)
d—ox n Jj=1 = wnj(to)
n
+ lim supE E,||n"'2 ) &m;] |.
§—>o n Jj=1 5

Wé¢ showed in the proof of Corollary 2.8 that the first term on the right of the
inequality in (2.32) is equal to 0. That the last term in (2.32) is equal to 0
follows from Proposition 2.2(iv). Thus the first term in (2.32) equals 0 and,
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again by Proposition 2.2, this implies that L satisfies the CLT on all compact
sets of R? (and hence, by definition, on R%). O
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