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ERGODICITY FOR SPIN SYSTEMS WITH STIRRINGS!

By PaBLO A. FERRARI

Universidade de Sdo Paulo

We study a class of particle systems which includes finite-range spin
systems and combinations of those systems with stirring processes. We give
sufficient conditions for ergodicity of the processes. The method is based on
a graphical representation of the system and construction of a “generalized
dual process.”

1. Introduction. A spin-flip system is a Markov process in the state
space X = {—1, 1}2°. At each site of Z¢ is located a spin taking the values +1
or — 1. Each site, after an exponentially distributed random time, is updated
by a rule that depends on the configuration in the site’s neighborhood. Such
processes have been used to study the Gibbs states associated with some
potential. Reversible spin-flip systems having as invariant measure a Gibbs
state related to some potential are called stochastic Ising models.

A particle system is “‘ergodic” if (a) there exists a unique invariant measure
and (b) starting from any initial measure, the process converges to that
invariant measure. Ergodicity for an attractive Ising model is equivalent to
absence of phase transition for the related Gibbs state. Indeed, the study of
Gibbs states allowed the proof of ergodicity of attractive short-range one-
dimensional Ising models and the absence of ergodicity for nearest-neighbor
two-dimensional Ising models, two of the most important results on the
stochastic Ising model.

A criterion for the ergodicity of spin systems has been given by Dobrushin
[4]. Dobrushin established that M < ¢ is a sufficient condition for the ergodic-
ity of a spin-flip system, where M represents the maximal influence of other
sites on the spin-flip rate at any site, and ¢ is in some sense the minimum
spin-flip rate at any site. This approach was also studied by Gray and Griffeath
[11], Sullivan [19] and Holley and Stroock [14, 15]. A review can be found in
Liggett [17]. Recent related results are obtained by Aizenman and Holley [1].

In this paper we exploit a ‘“‘generalized graphical representation” of the
systems to obtain some results for spin systems and combinations of spin
systems with stirring processes. In Theorem 2.5, we show that M < 2¢ is a
sufficient condition for the ergodicity of the one-dimensional nearest-neighbor
Ising model. The result is interesting because no attractiveness conditions are
imposed. In the attractive case, Gray [7] proved that any one-dimensional
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nearest-neighbor Ising model is ergodic. We note in Fact 4.9 and Remark 4.10,
that Gray’s result can be easily extended to ‘“anti-attractive’ systems.

Our approach applies to spin-flip stirring processes [2]. These processes are
also called ‘“Glauber-Kawasaky’’ dynamics or ‘‘reaction-diffusion processes.”
They combine the spin-flip dynamics described above with “‘stirring dynamics.”
These processes arise when one wants to derive hydrodynamical equations of
the reaction—diffusion type [2]. The stirring dynamics can be described infor-
mally by saying that each pair of sites x,y € Z¢, after an exponentially
distributed random time with parameter p(x,y), exchanges their spins. The
function p(x,y) is assumed symmetric; i.e., p(x,y) = p(y, x). This process is
also known as ‘‘symmetric simple exclusion” [17]. In Theorem 2.1 we give a
sufficient condition for the ergodicity of spin-flip stirring processes that de-
pends only on the flip rates. Our condition is an inequality:

(1.1) (K-m)(r—1) <2m,

where K (respectively, m) is the maximum (minimum) spin-flip rate and r is
the (maximum) number of sites determining the spin-flip rate at any given
site. In the absence of stirring dynamics, our condition implies Dobrushin’s
condition M < e.

The method also applies when various spin-flip processes are combined. We
consider spin-flip systems with generators L; and respective K;, m; and r;,
and study the process with generator L = ¥ ; L;. We show in Theorem 2.2 that
L(K;,—m)r,—1) <2L,m, is a sufficient condition for ergodicity even if
(1.1) does not hold for some of the processes. Moreover, we prove that the
addition of a “‘voter model” generator to L does not affect the condition for
ergodicity.

Finally, we consider the unique invariant measure of a spin-flip stirring
process in the regime (K — m)(r — 1) < 2m and prove that, when the rate of
stirring increases to =, this invariant measure approaches a product measure.

The proofs of our theorems make use of a ‘“generalized dual process.” The
method consists of constructing a graphical realization of the process and then
studying a reverse-time process as is done in the usual duality theory. The
difference is that our generalized dual processes are not Markovian. We
overcome this difficulty by dominating the dual structure with Markov pro-
cesses such as branching processes and one-dimensional random walks. For
reviews of graphical methods and duality see Griffeath [12], Durrett [5] and
Liggett [17]; generalized duality for attractive systems can be found in Gray
[8]. The idea of generalized duality that we exploit here appeared first in De
Masi, Ferrari and Lebowitz [2]. The comparison of the dual with subcritical
branching processes to get a criterion for ergodicity was used by Holley and
Stroock [16].

Our technique can also be applied to discrete-time processes (probabilistic
automata). This topic will be discussed in [6]. Using different techniques, Gray
[9] proves ergodicity for certain discrete-time majority-vote models in one
dimension.
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In the next section we introduce our processes and state the theorems. In
Section 3 we construct the generalized graphical representation and prove
Theorems 2.1 and 2.2. In Section 4 we prove one-dimensional results, while in
Section 5 we study the behavior of the invariant measures when the rate of
stirring goes to .

2. Definitions and rdesults. A spin system is a Markov process on the
state space X = {—1,1}*" with pregenerator defined on cylinder functions,
given by (the subscript “g”’ below is for Glauber dynamics)

(2.1) Lf(o) = X e(x,0)[f(o) = f(a)],
xez¢

where the configuration ¢* € X is given by

(2.2) o*(z) = {

and the rates c(x, o) are nonnegative functions depending on ¢ only through a
finite set R, C Z? of sites depending on x: ie., o(y) = ¢&(y) for all y € R,
implies c(x, o) = c(x, ¢). Furthermore, to guarantee the existence of the pro-
cess, we assume [17]

(2.3) M= sup ), sup|c(x,0) —c(x,0%)| < =.

xe7%y#x O

o(z2) if z # x,
—o(z) ifz=x,

A “stirring process” (or symmetric simple exclusion process) is a Markov
process on X with pregenerator (the subscript ‘s’ below is for stirring)

(2.4) L, f(o)= X X p(x,)[f(e®) —f(a)],
xe2% yez¢
where o* is defined by
o(z) ifz+x,y,
(2.5) oc%(z) ={o(x) ifz=y,
a(y) ifz=x.

The function p(x,y) is assumed symmetric; ie., p(x,y) = p(y,x) for all
%,y € Z% and uniformly integrable in «x; i.e.,

(2.6) sup ) p(x,y) <.
x y
Now fix a nonnegative constant a and define the generator
(2.7 L=L,+aL,.

The conditions imposed on p and c¢ [in (2.3) and (2.6)] are sufficient to
guarantee the existence of a Markov process o, € X such that for all nonnega-
tive a, the semigroup S(¢) with generator L satisfies S(¢)f(o) = E, f(0)),
where f is a continuous function and E, is the expectation with respect to the
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process o, when the initial configuration is o. The standard reference for
existence problems is Liggett [17]. A process with generator L given by (2.7) is
called a “spin-flip stirring process.”

A process is “ergodic” if (a) there exists a unique invariant measure u for
the process and (b) for any measure v on X, lim,_, vS(¢) = u. The limit is
understood as the weak limit of the sequence of measures vS(¢). This is
equivalent to vS(¢)f - uf, when ¢ - «, for any cylinder function f. A
process is ‘“‘exponentially ergodic” if for any cylinder function f, there exist
positive constants a; = a(f), a;, such that for any initial measure v,
wS@) f — nfl <aje . Let f, be a cylinder function depending on the finite
set of coordinates A. In the theorems below we consider a;(f,) = CIA|ll f4ll,
where C is a positive constant depending on the rates of the process, |A| is the
number of elements of A and | f|l = sup, f(n). For a spin-flip process as
defined in (2.1), define

m = inf{c(x,0): x € Z, 0 € X},
(2.8) K = sup{c(x,0):x € Z,0 €X},

r = max|R,|,
x€EZ

where |R| is the number of elements of the set R. Informally, m represents

the minimal rate of spin flip, K the maximal rate and r the maximum number

of sites on which the flip rate depends.

THEOREM 2.1. Let o, be a process with generator L given by (2.7). Assume
m > 0. If L, satisfies the condition

(2.9) (r—=1)(K-m)<2m,

then the process a, is exponentially ergodic. If equality holds in (2.9), then the
process is ergodic.

ReMARK 2.10. In order to compare the condition that Theorem 2.1 gives
for usual spin systems (¢ = 0) and Dobrushin’s criterion, define

(2.11) e = inf[c(x,0) + c(x,0%)].

The value M, defined in (2.3) represents, intuitively, the effect of other sites on
the spin-flip rate of a given site and ¢ is, in some sense, the minimum flip rate.
Dobrushin’s criterion says that M < ¢ is sufficient for ergodicity of the process
[17]. The condition (r — 1)(K — m) < 2m implies M < ¢ because 2m < ¢ and
M < (K- mXr—- 1.

Our next result is a generalization of Theorem 2.1. Let L, be a spin-flip
generator whose rates are defined by

e(x,0) = X {v(x,3)[1 + o(x)a(y)] +3(x,)[1 - o(x)o ()]},
Yy
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where the functions v and U are uniformly summable. A process with such
rates is a combination of the “voter model” and the “anti-voter model” [17].

THEOREM 2.2. Let L,=Y!_|L,, where L, are spin-flip generators as
defined in (2.1), with correspondmgK m; and r;, as defined in (2.8). Assume
r,m;>0.If

(2.12) Z(ri—l)(Ki—mi) <2Z m;,

then the process with generator L, + aL, + bL, is exponentially ergodic. If
equality holds in (2.12), then the process is ergodlc

REMARK 2.13. Sometimes it is possible to decompose a spin-flip generator
with rates depending on r sites, into a sum of generators with rates depending
on fewer sites. When this is possible, the above condition for ergodicity may be
weaker than the one given by Theorem 2.1, and even than Dobrushin’s
condition M < ¢. Next we present an example along these lines.

ExampLE 2.14 (One-dimensional nearest-neighbor Glauber-stirring dynam-
ics [2D. Let u be the Gibbs state with nearest-neighbor interaction, defined
by

u(o(x) = €(x),x € Flo(x) = £&(x), x & F)

(2.15) =Z‘1(§)exp{BZ f(x)f(y)}’
X,y

where B is a parameter (the ‘“inverse temperature’’) and the sum runs over
the set {(x,y) € 72 x € Fc Z, y € Z, |x — y| = 1}. The normalizing constant
Z(¢) makes u a probability. Let L, be a spin-flip generator with rates
satisfying the following condition:

c(x,0) _ exp{B[o*(x — 1)a*(x) + o*(x)o*(x + 1)]}
c(x,0%) exp{Blo(x — )o(x) + o(x)o(x + 1)]}

Then u is reversible for the spin-flip process with generator L,. This process
is called a Glauber dynamics or a stochastic Ising model. Deﬁne

A(x) = {ceXio(x - 1) #o(x) £ o(x + 1)},
(2.17) Ay(x) = {ceXio(x - 1) #o(x + 1)},
Ay(x) = {ceX:io(x—1) = o(x) = o(x + 1)}.

For each fixed x, {A/(x)}; is a partltlon of X and c(x, o) is constant in A,(x),
i1 =1,2,3. Hence the generator L, can be rewritten as follows:

(2.18) Lf(o) = X Z Ao e A} f(a®) = f(o)],

x€Zi=1

(2.16)

where 1{-} is the indicator function of the set {-} and the constants A, are
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given by

(2.19) A;=c(x,0) forsome o€ Ax).

Notice that (2.16) only imposes that A,/A; = e*?, leaving free A,. This is
justified because A, is the rate for jumping between configurations with the
same “energy.”’ Fixing the total rate A := A; + A, + A5, we have a one-parame-
ter family of processes L, with reversible measure n. Sometimes one can use

properties of one of the processes to derive results concerning the others. See
Chapter 3 of [17] for examples in this direction.

COROLLARY 2.3. Let o, be a spin-flip stirring process with generator L =
L, + aL,, where L, is given by (2.18). Assume min{A;, A5, Ag} > 0. If
then o, is exponentially ergodic. If equality holds in (2.20), then the process is

ergodic.

REMARK 2.21. Notice that (2.20) is equivalent, in this context, to
Dobrushin’s condition M < e.

Corollary 2.3 gives a partial answer to a question raised in [2]. In that
paper, a process with generator L, + aL, was considered, where the stlrrmg

part L, is the nearest- nelghbor simple exclus1on process [p(x, x + 1) =  and
plx, y) =0if y #x + 1in (2.4)] and L, is given by (2.18) with rates
(2:22) M=+, A=1-9%  A=(1-9)

where y = tanh 8, g > 0. In this case, Corollary 2.3 implies that a sufficient
condition for ergodicity of the process is y < 3. On the other hand, this
process is related to a reaction-diffusion equation via the hydrodynamical
limit. In order to define the latter, let S (¢) be the semigroup corresponding to
the generator L, + aL, and let {»*} be a family of product measures with
density v*(n((ra'/2]) = uy(r), r € R, where [-]is the integer part and u, is a
smooth function. Define now u (r,t) = v*S,(t)o((ra'/?]). In [2] it was proved
that the hydrodynamical limit lim, ,, u (r,t) exists and equals u(r,?), the
solution of the equation

du 82u
9t ore

where F(u) = v,L,0(0) = —2(1 — 2y)u — 2y”u®. Here v, is a product mea-
sure with magnetlzatlon v,0(0) = u. The above reactlon—dlﬁ'usmn equatlon
admits a unique statlonary solution for y < % and three solutions for y > 3.
The question posed in the introduction of [2] was whether the existence of
more than one stationary state can be seen at a microscopic level (a < »). Our
result is unsatisfactory because it establishes the ergodicity of the process in
the region y < 3, where there exists only one stationary solution for the
macroscopic equation.

+ F(u), u(r,0) =uy(r),
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For one-dimensional spin systems (without the stirring part), it is possible
to get better results, as shown by the following example.

ExampLE 2.23 (One-dimensional nearest-neighbors spin systems). Con-
sider the previous example with a = 0 (a spin system). The nearest-neighbor
condition yields a factor of 2: Condition (2.24) is equivalent to M < 2¢ in this
context.

THEOREM 2.4. Let o, be a one-dimensional spin system with generator
given by (2.18). Assume min{\A, Ay, A5} > 0. Then, if

(2.24) max{|A, — Agl, A; — Agl} < min{2A,, A; + A},

the process is exponentially ergodic. Equality in (2.24) implies that the process
is ergodic.

3. Generalized dual processes. Consider the spin-flip rates c(x, o) of
(2.1), depending on the finite set R, . Write

(3.1 c(x,0) = X A(x)1{o € A;(x)},

JEJ
where A;, (x) > A;(x) > 0 and A;(x) are cylinder sets of X depending on the
set R, C 7% such that c(x,o) = A;i(x) for all o € Aj(x). For each x the
family {A;(x)}; is a partition of X. The set of labels J C N is finite. The
generator L, is written as

L) = £ T 4o € 4@ o) - (o))
xezdje
(3.2 = T (EX@E 1o e 4 f(o) - ()]
xezd \jedJ lzj

Fao(2) T 1{o € A(2)}[ F(o%) —f(a)]),

>0
where Xj(x) = A,(x) = A;_(x), j = 1. Observe that since ¥, (1{o € A(x)} =
1, the last line of (3.2) can be written as a noise:

(3.32) 2ho[z[ F(o= 7Y = F()] + 5[ F(e*1) = F()]],
where the configurations o* *! and ¢* ~! are defined by

+1 ifz=x
x, +1 — ’
(3.3b) 7 (2) {a(z) otherwise.

Next we construct the graphical representation of our process. This is
basically the construction given in [2], with the addition of Bernoulli random
variables related to the noise (3.3).
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Graphical construction of the process with generator L = L, + aL.

1. The Glauber dynamics. With each coordinate x, associate Poisson point
processes (Ppp’s) with rates A(x) = max j{/_\ ;(x)} and 2A,(x), respectively. A
realization of a Ppp is an increasing sequence of times. At each of these times
we say that there is a mark of the corresponding Ppp. Each mark correspond-
1ng to the process with rate A(x) is marked j, j > 0, with probablhty ()t (x) —

1(x))//\(x) Each mark of the Ppp with rate 2A,(x) is marked 8. Notlce
that the j-marks of site x are distributed according to a Ppp of rate A;(x) —
;—1(x). Analogously, the 6-marks of site x form a Ppp of rate 2A4(x).

2 The stirring dynamics. At each pair of sites (x, y) associate a Ppp with
parameter ap(x, y). At each mark of this process put a double arrow linking
sites x and y.

All these marked Ppp are mutually independent. Call (Q, F, P), [respec-
tively, (Q,F, P),] the probability space induced by the spin- ﬂ1p (stlrrmg)
family of marked Ppp. Consider also a family of independent variables {B,

x € 7%, n > 1}, with Bernoulli distribution

(34) P(Bx,n = 1) =P(Bx,n = _1) = %'

Let (Q,F, P), be the probability space associated to those random variables.
Call (Q,F, P) the direct product of the three probability spaces just defined.
Discard the null event corresponding to the occurrence of two marks simulta-
neously at any given time.

Given a configuration o € Q of marked Ppp, construct o, (=o0,,) as
follows: Suppose that the configuration at time 7~ is o,- and a mark of w is
present at site x, at time 7. There are three possibilities.

1(a). A j-mark. In this case, if the configuration o,- belongs to at least one of
the sets A,(x), ! >j, then flip the spin at x, so that oy = (op-)"
Otherwise nothing happens.

1(b). A é-mark. Assuming that this is the nth §-mark involved with site x,
then or(x) = B, . In other words, the spin at x at tlme T is changed to
1 with probablhty and to —1 with probability 3, independent of
everything.

2. A double arrow linking x and y. In this case the contents of sites x and y
are interchanged; i.e., o7 = (op-)™7.

Let 0<T, < -+ <T,_; <t be the successive marks involving site x in
the time interval [0, ¢]. Let Ty =0 and T, = ¢. Then we define o,(x) = op(x),
for s € [T}, T,, ). It can be proven that thls is well-defined by apprommatlng
the infinite volume process by processes constructed in finite boxes A, 1Z¢.
Furthermore, it is easy to see that the process constructed as above has
generator L.

Construction of the generalized dual process. Suppose that, for a given
time interval [0, ¢], we have a realization of the marked Ppp described above.
We reverse the time direction calling § = ¢ — s and for any finite set D c ¢
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we construct a space-time branching structure contained in Z¢ x [0, ] with
base (D, 0), and top (D;, ). Now write ¢ for £, but remember that we are going
back in time. We proceed by induction. Suppose that the spatial projection of
the structure at time s is D,. Let T be the first Poisson mark after s involving
some site of D,. There are the following possibilities.

1(a). A j-mark involving site x € D,-. In this case, the point (x, T') is marked
J and the set D, will be D-U R,.

1(b). A é-mark involving site x € D,-. In this case, the point (x, T') is marked
6 and the set D, will be Dp-\{x}.

2(a). A double arrow involving site x € Dp- and y & Dp-. In this case, the
points (x,T) and (y,T) are marked with s and the set D, will be
Dr-U{y}\ {x}.

2(b). A double arrow involving sites x,y € Dy-. In this case points (x, T') and
(y,T) are marked with s and Dy = Dp-.

According to this construction, for each finite set D and time ¢, we are
defining a map from the probability space ({2, F, P) into the space of all
possible marked branching structures on Z¢ x [0, ¢],

(8.5a) DR, (w,D,t) = (N,(ty, %4, ¥ Jss Da)s k=1,..., N),

where N is the number of marks in the interval [0,?), ¢, is the time of
occurrence of the kth mark, x, is the site involved with the kth mark, y, is
the other site involved with the 2th mark, if this mark is an s-mark (if not
Yi = X3), Jjj is the type of the kth mark (8, s or j, 1 <j < |J]) and finally, D,
is the set of sites in the spatial projection of the structure between times ¢,
and ¢, ;. The duality equation is

(3.5b) o/(D) =H(DY ,,B,0), Pas,

where B := {B, ,} is the sequence of independent Bernoulli random variables
with distribution (3.4). These are the variables that one has to use to compute
or(x) when a §-mark appears at x at time 7. We do not have a formula for H
but it is computable for each realization w, because it is easy to know the value
of o, on D once we know D[O +p the independent random variables B, ; and
d,. The central idea of this dual construction is this: When the dual process
meets a §-mark at site x, at time 7, it is not necessary to go further in time to
know the value of o,(x), because it is determined at that point by an
independent Bernoulli random variable with parameter 1/2. The idea of
representing the noise with Bernoulli random variables was used by Griffeath
[12] to prove ergodicity of cancelative processes.

ProoF oF THEOREM 2.1. The proof follows from the construction of the
dual structure. The main observation is the following: If the spatla.l projection
of the dual structure started at time ¢ = 0 is empty at time 0 = 7, i.e., DP =g,
then o,(D) does not depend on o, = o. This implies that a suﬁic1ent condltlon
for the exponential ergodicity of the process is that, for all finite D, there exist
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positive constants c, a, such that

(3.6) P(DP + @) < cIDle~ ",

We observe now that |[DP| can be coupled to a usual branching process
R”' € N, such that |[D”| < R\™ for all ¢ with probability 1. In this branching
process, at rate A + 2m, where A = sup, A(x) = K — m, each branch dies and
is replaced by either » new branches with probability A /(A + 2m) or 0 new
branches with probability 2m /(A + 2m). The initial state of the branching
process is R\P'= |D|. A sufficient condition for (3.6) is that the average

number of branches created at each branching be less than 1 (cf., for example,
[13]). This happens when

Ar
A+2m

which is equivalent to (2.9). Equality in (3.7) also implies lim, _,, P(DP = @) =
1, which implies ergodicity. This completes the proof of Theorem 2.1. O

(3.7) <1,

Proor or THEOREM 2.2. (a) Consider first b = 0. For each generator L; we
construct (2, F, P), as in the proof of Theorem 2.1 and define

(Q’F’P) = (Q:F:P)s X H(Q’F’P)g,i X H(Q’F’P)O,i'

A typical w € Q has marks of type §;, (i, j), s, etc. The construction of the
process and its generalized dual follows the lines of the previous construction.
The branching process R!P' dominating |DP| is, in this case, the following:
At rate 6 .= X (K; — m;) + £,2m,, each branch dies and, with probability
(K; — m;)/8, creates r; new branches. The condition for this process to die
exponentially fast is

Lr(K;—m;)
<1,
rr[(K; —m;) +2m;]

while equality implies that the branching process will die with probability 1.

(b) Now assume b # 0. The process with generator L, is a linear combina-
tion of the voter and the anti-voter model. Each of these processes admits a
(coalescing) graphical representation. Take, for instance, the voter model. At
each ordered pair of sites (x, y) associate a Ppp with parameter v(x, y). At each
mark of this Ppp put an oriented arrow going from y to x. At site x at time T,
if an arrow starting at y and ending at x is present, then site x adopts the
spin of site y; i.e., op = (07-)* 7, where

o(z) ifz#x,

ot (2) = {a(y) if z=x.

If there is an arrow from x to y, then site y adopts the spin of site x; i.e.,
op = (op-F %

Duality. When an arrow starting at y and ending at x € D,- is present,
mark points (x,T) and (y, T) with v. Dy- will be Dp-\{x} U {y}.
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For the anti-voter model do the same, substituting U for v and using the
following definition of o* ~7:
a(z) if z # x,
—-o(y) ifz=x.

a*Y(2) = {

Now it is clear that both the voter and the anti-voter model marks cannot
increase the number of elements of the dominating branching process R,. This
completes the proof of Theorem 2.2. O

4. The one-dimensional case. In this section we prove Corollary 2.3
and Theorem 2.4.

Proor or THEOREM 2.4. We divide the set of parameters {A; > 0, A, > 0,
A3 > 0: min; A; > 0} into five regions.

Case 1. 0 <A, — Az <Ay — A, Rewrite the generator of the one-dimen-
sional process of (2.18) as )

L f(o) = X (A3l f(a®) = f(a)]

xez
(4.1) +(Az — A3) o € Ay(x)}[ f(o*) — f(0)]
+(A — Ag)1{o € A(x)}[ f(o*) = f(o)])
=223L, + (A; = A3) L, + (A; + A5 — 245) L,
where, using (3.3),

(42) L,f(o) = ¥ (5[ F(e®") = f(o)] + 5[ F(o=71) = f()]),

x€Z
(43) L,f(s) = 22(1{0 € Ay(x)} + 2.1{o € Ay(x)})[ f(o*) - f(a)],
(44) L;f(o) = Zzl{UGAi(x)}[f(a") —-f(o)], i=1,2,3.

The assumption 0 < A; + A; — 21, guarantees that the last member in (4.1) is
the sum of three generators. The process with generator L, is a noise: At rate
1, the spin at x chooses a new value between +1 and —1 with probability %
independent of everything. The process with generator L, is a nearest-neigh-
bor voter model: When the number of neighbors of x with different spin is 1,
the spin-flip rate is 1 and when that number is 2, the rate is 2. Finally, the
process with generator L, is a majority-vote model: at rate 1, the spin at x
looks to its nearest neighbors; if both of them have the opposite spin, the spin
at x flips aligning the three spins. If not, nothing happens. More details on
these processes can be found in [17], [12] and [9].

The generalized dual is a process of traveling particles in Z; behaving as
coalescing random walks at rate A, — A5; branching to empty nearest-neighbor
sites at rate A; + A; — 21, and dying at rate 2A;. The number of particles of
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this process is dominated by a nearest-neighbor random walk in N with rates
2[A; + A3 — 2A5 + Ay — Ag] and 2[2A;5 + A, — Ag] for right and left jumps,
respectively. The origin is an absorbing point. This process goes to the origin
exponentially fast if

This proves Theorem 2.4 in Case 1.

REMARKS 4.6. (1) Actually, (4.1) to (4.4) imply that, under the conditions of
case 1, any nearest-neighbor one-dimensional Glauber dynamics has a dual
process in the usual sense. Its dual will be a combination of the dual of the
voter model (coalescing random walks), the dual of the noise process (4.2)
(death of particles) and the dual of the majority-vote model. The last model
was studied by Gray [9]. (2) Choosing A, = (A; + A3)/2, the one-dimensional
attractive nearest-neighbor Glauber dynamics with generator L, of (4.1) is
just a voter model with noise. The exponential ergodicity for this model is
immediate for any B, as the dual branching contains only §-marks. In fact, this
model (without stirrings) was the one studied by Glauber. However, notice
that the hydrodynamical equation given by this model has a linear term
instead of the cubic term obtained from (2.22); thus in this case there is only
one stationary solution also for the macroscopic equation. (3) Taking A, = A4
in (4.1), the Glauber dynamics is just a majority-vote model with noise.

CasE 2. 0 <Ay — Ay < Ay — A, Using (4.2) to (4.4), write

2

’\1_/\3

(4.7)  L,=2\L, + ( )L,, + (,\2 - L,.

Analogously to the first case, we get exponential ergodicity when A, — A5 —
(A; = A3/2 < 2A5. In this case, this is equivalent to A; — A, <A, — A5 <
2\ 5, which is equivalent to (2.24).

CAsE 3. Ay < Ay, Ay < Ag. In this case,
and the condition is max{A, — Ay, A; — A,} < 2A,, which is equivalent to (2.24).

CasE 4. 0 <A, —A; <A;— A, Let Ao be the configuration given by
Ao(2k + 1) = 02k + 1), Ao(2k) = —0(2k), k € Z. Let ¢, = Ao,. This case
follows from Case 1, by checking that the rates of ¢, satisfy the conditions of
Case 1 and the following easily proven fact.

Fact 4.9. The process o, is ergodic iff ¢, is.

CAsE 5. 0 <Az — Ay, <A, — Ay This is similar to Case 4, using Case 2 and
Fact 4.9.
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We have proven exponential ergodicity. When the strict inequalities are
replaced by equality, it suffices to observe that the identities are sufficient for
random walk to be eventually absorbed at the origin with probability 1. O

REMARK 4.10. Fact 4.9 can be used in greater dimensions. Define A by
Ao(xy,...,x5) =0(xq,...,x5) if Lx; is even and Ac(xy,...,x,) =
—o(xq,...,%,), otherwise. Hence all results about ergodicity of attractive
nearest-neighbor spin systems extend to anti-attractive systems. An ‘“‘attrac-
tive” spin-flip system is a system whose rates satisfy (a) c(x, o) > c(x, &) if
o(x) = &x) =1 and o > ¢ coordinatewise, and (b) ¢(x, o) < c(x, &) if o(x) =
&(x) = 0 and o < £. A nearest-neighbor spin system ¢, is called ““‘anti-attrac-
tive,” if the process o, == A¢, is attractive.

Proor oF COROLLARY 2.3. Divide the set of parameters into five regions, as
we did in the proof of Theorem 2.5. Then apply Theorem 2.2 to Cases 1, 2 and
3. For Case 4 write

L,=2ML, + (Ag = AL, + (A + 25— 22,) L,

where L, = L, + 2L, is an anti-voter model satisfying the conditions of the
generator L, of Theorem 2.2. Hence this case follows by applying that
theorem. Case 5 is solved analogously by writing

)‘3_)‘1 ’\3_’\1
T A L A R

5. Asymptotic behavior of the invariant measures. In the following
theorem we study the asymptotic behavior of the unique invariant measure in
the exponential ergodic regime as the rate of stirring tends to «. Let v, be the
product measure with magnetization u, defined by

1 +u)"“|

(5.1) vfo(x) =1l:x € A} = ( 7

THEOREM 5.1. Let o, be a spin-flip stirring process with generator L, =
L, +aL, with L, satisfying the conditions (2.9). Assume that c(x,0) =
c(x, — o), where (—oXz) = —o(2) for all z. Let u, be the unique invariant
measure for the process and v, the product measure with average magnetiza-
tion 0. Then, as a — «, u, converges weakly to v,.

Proor. It is sufficient to prove that, if f; (o) = l{o(x) = 1, x € D}, then
lim, ., u, fp = (3)'P. To avoid heavy use of notation, we assume |D| = 2,
D = {x, y}, the proof being essentially the same for the other D as we will see
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below. The function f is defined by f(o) = l{o(x) = 1, o(y) = 1}. Since u, is
invariant, u, f = u,S()f, and by the duality equation (3.5),

wS(t) f=E[H(DEY)]

(5.2) .
= E[H(D§:R), Co,a] + E[H(DER), Co,a],

where Cy, {D[0 7N ].5[0 = @} is the event in which the two structures
thought of as subsets of Z¢ X [0, ¢], do not have points in common. Cpo, s is the
complementary set. We prove the theorem by showing that there exist positive
constants a; and «, such that

(5.3) tli_{?OP[C[o,t], DAfg?t] =, 15[%' = @] >1- a0 (@/D
and that, for all initial o, as ¢ — o,
(5.4) E[H(D{g;g?, ")’ f)fg},] n DA%?H = Q] -

ProOOF OF (5.3). Since the branching process R2? dominating |D,| is subecrit-
ical, it dies in a finite time with probability 1. This means that for almost all w,
there exists a time T(w) such that D{*» = & for all ¢ > T. Moreover, the
number of branchings in the time 1nterval [0, 2] is bounded for almost all w
and has finite expectation. Now, Dfo’t] N D[%)t # & only when a branching
mark appears that involves two sites occupied by D{*?). We fix now the first
branching mark. Thus we condition on the event “the first branching mark
happens in the interval T' + dt.” Since the Ppp defining the graphic represen-
tation are mutually independent, this event is independent of the event “at
least two sites involved in this mark are occupied.” Hence the probability that
at least two sites involved in the first branching mark are occupied is of order
1/a%/% ([2] and [3]). Since the number of sites involved in each mark is
uniformly bounded by r [defined in (2.8)], the probability of an intersection in
the first mark is of order r/a?/2. Let N'P! be the number of new branches
created in [0, ¢], when the initial state of the branching process is |D|. Since the
process is subcritical, E(N'P!) < « and the probability of an intersection in at
least one of the branching marks is bounded by CE(N'?!) /a?/2, where C is a
constant depending on the rates c(-,-) and p(-,-). This proves also the
analog of (5.3) when |D| > 2.

ProoF OF (5.4). Notice that on the event Cy, ., N {Df);, = &, D}, = 7},

the random variables o,(x) and o0,(y) are independent [and equal to H (D[O )
and H( D[0 +)> respectively]. The left-hand side of (5.4) is then equal to

E[H f‘J)C)"])PI(D%?If])7 C[O,t]7 Dﬁ"’ =0, DP') = @]
(5.5) ) :
+ B[ H(Dg), o (DI = &, DY = 2)'].

Now, since the branching process is subcritical, as ¢ — ©, P(D{*! = &, D = &
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eventually) = 1. In this way, by dominated convergence, the second term in
(5.5) goes to 0 as ¢ —» . Finally, by symmetry of the noise with respect to 1
and — 1, the first term of (5.5) converges to ; when ¢ — ». O

ReEMARK. Notice that this proof works only in the exponentially ergodic
case.
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Note added in proof. After finishing the paper, I learned that Claudia
Neuhauser [18] proved the following: If the process with generator L, is
exponentially ergodic, then there exists a > 0 such that the process with
generator L, + aL, is also exponentially ergodic. This has a small intersection
with the results in this paper.
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