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Consider moving average processes of the form

where {Z;} are iid and nonnegative random variables and ¢;>0 are
constants satisfying summability conditions at least sufficient to make the
random series above converge. We suppose that the distribution of Z ; 1s
regularly varying near 0 and discuss lower tail behavior of finite and
infinite linear combinations. The behavior is quite different in the two
cases. For finite linear combinations, the lower tail is again regularly
varying but for infinite moving averages, the lower tail is I'-varying, i.e., it
is in the domain of attraction of a type I extreme value distribution in the
sense of minima. Convergence of point processes based on the moving
averages is shown to hold in both the finite and infinite order cases and
suitable conclusions are drawn from such convergences. A useful analytic
tool is asymptotic normality of the Esscher transform of the common
distribution of the Z’s. The extreme value results of this paper are in terms
of minima of the moving average processes but results can be adapted to
study maxima of moving averages of random variables in the domain of
attraction of the type III extreme value distribution for maxima.

1. Introduction. Moving average processes and linear combinations of
iid random variables are basic objects in time series analysis and in regression
~models. The type of processes we have in mind are of the form

©
Xt = Z cht—j’
Jj=0

where {Z;} are iid and c; are constants satisfying summability conditions at
least sufficient to make the random series above converge. Studies of the
extreme value behavior of such processes have been carried out by Rootzén
(1978, 1986, 1987) and Davis and Resnick (1985, 1988). Such studies use point
process methods and either assumptions about the tails of the distribution of
Z; or about the form of its density to get results about distributions of
functionals of the moving averages.
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EXTREMES OF MOVING AVERAGES 313

Here we suppose that c; > 0, Z, > 0 and that the distribution of Z; is
regularly varying near 0. We discuss lower tail behavior of finite linear
combinations in Section 2 and of infinite linear combinations in Section 3.
Surprisingly, the behavior is quite different in the two cases. For finite linear
combinations, the lower tail is again regularly varying but in the case of
infinite linear combinations, this is no longer true. In fact, a slight strengthen-
ing of assumptions allows us to show that the lower tail of the infinite moving
average is I'-varying, i.e., it is in the domain of attraction of a type I extreme
value distribution in the sense of minima. This crossover phenomenon is quite
interesting and shows it is impossible to obtain the correct type extreme value
distribution of an infinite order moving average by truncating to a finite order
moving average.

In Section 2, point process methods [cf. Resnick (1986, 1987) and Davis and
Resnick (1985, 1988)] are used to derive both analytical results about lower tail
behavior and results about the weak convergence properties of a sequence of
point processes based on the moving average process. From such results it is
straightforward to get the behavior of lower extremes of the moving average
process. In Section 3 an entirely different analytic technique is needed for the
study of lower tails of the infinite order moving average. The distribution of
the Z’s is assumed to have a density which is regularly varying at 0. The
density function of the moving average is embedded in an exponential family
via the Esscher transform and the transform, suitably normalized, is shown to
converge to a normal density as the parameter goes to infinity. Similar
techniques are used to Rootzén (1987) and Feigin and Yashchin (1989). In
Section 4 these lower tail properties are used to show that a sequence of point
processes based on the infinite order moving averages converges to a limiting
Poisson process. From this result numerous weak convergence results about
the lower extremes of {X,} can be read off.

The extreme value results of this paper are in terms of minima of moving
average processes. The results can be adapted to study maxima of moving
averages of random variables in the domain of attraction of the type III
extreme value distribution for maxima. This extreme value distribution has
the form

v (x) = {exp{—(—x)“}, forx <0,
) for x > 0,

)

where a > 0.

2. Finite moving averages. Fix k > 1 and suppose Z,, ..., Z, are non-
negative iid random variables with common distribution F(x) where F is
regularly varying at 0 with index a > 0, i.e., for all x > 0,

F(tx)
Fit)

We first derive the form of G(x):= P[X* ,c;Z, <x] as x > 0 for given
constants ¢c; > 0,i=1,...,k.

(2.1) lim
t{0
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In contrast to the analytic methods employed in the next section, we use
point process methods to analyze the order of G(x) near 0 [cf. Resnick (1986,
1987) and Davis and Resnick (1985, 1988)]. For a locally compact space E with
countable base let M,(E) denote the set of Radon point measures on E and let
#,(E) denote the o-field generated by the vague topology. For x € E and
A C E define

(1, ifxeA,
8x(A)_{0, ifxeA,

so that a point measure in M,(E) can be represented by L ¢, , x; € E. We

sometimes denote a Poisson process with mean measure u by PRM(u).
Set a, = F < (n"'/*) and observe that for x; > 0,i = 1, ..., k, we have

k
nP(Z, <a,x,...,Z, <a,x,] =n]]F(a,x,)
i-1

If we define a measure » on #([0, ©)*) by

k
P10, ] x - X [0, 2, ]} = Tt

then we have
(2.2) nPla, (Z,,...,Z,) € -] =, v(*),

 where the convergence is vague convergence of measures on [0, ).
Let {Z,,n > 1} be an iid sequence of random vectors in R* with Z, A =,
(Z,,...,Z),). It follows from (2.2) and Proposition 3.21 in Resnick (1987) that

as n — o,
n
(2.3) ) €031z, = )y €5m
i=1 m

in M p([O, ®)*) where = denotes weak convergence and the limit is a Poisson
process with mean measure ». Define the mapping 7': [0, ©)* — [0, ©) by

k
T(%q,y...,%5) = Y, €;;.
i=1
Applying Proposition 3.18 in Resnick (1987), we get from (2.3)
n
(2.9) Y eairg, = L rj,,
i=1 m

in M,([0,»)) and the limit is a Poisson process with mean measure vo T~
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Observe that for x > 0,

k
v T-1([0, 2]) = v{ye [0,9)% ¥ ciy; sx}

i=1
2.5 k
@9 [ [Tays ' dy,
(- -, yi): Lk cyi<x}i=1
=c(a, k)x*e,
where
k
(2.6) c(a, k) =T*(a + 1)/(F(ka +1) ﬂc;’).
i=1

Applying Proposition 3.21 in Resnick (1987) once again, we see that (2.4) is
equivalent to

k
(2.7) nP[a,Il Y ¢Z; < x] - ,([0,2]),
i=1
where
v,([0,2]) = c(a, k)x*e.
By a change of variable, (2.7) is equivalent to

P[Tt  c;Z; < tx]
2. li
(2.:8) il0 FE(2)

This shows that as ¢ | 0,

P[Zk: c;Z; < t] ~c(a, k) F*(¢),

i=1

=c(a, k)x*.

whence P[L%_, c;Z; < t]is regularly varying at 0 with index £a. Compare this
to equation (8.14) in Feller [(1971), page 278].

We now consider finite moving averages generated by the iid sequence
{Z,,— » < n < »} with common distribution F satisfying (2.1). Let c;,...,c,
be positive constants and define the moving average process { X,,} by

k

Xn = Z CjZn—j'
j-1

With a, defined as above, (2.7) implies
nPla;'X, € -] -, v,(+)
~ on[0,), so that forall x > O and j = 2,...,k — 1,
nP[a;le <x,a,'X; < x] <nPla,;'X, < x]P[a;ICIZj_I < x]
-0
as n — . Now since {X,} is (£ — 1)-dependent, it follows from a generaliza-
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tion of a theorem of Adler (1978) given in Davis and Resnick (1988) that

(2.9) > Ei/n,azlX) = ) Etmsim)

i=1 m
in M,(0o, ©)2) where the limit is a Poisson process with mean measure
dt X Vk(dx).

From this many extremal properties ensue [cf. Resnick (1986, 1987), Lead-
better, Lindgren and Rootzén (1983) and Davis and Resnick (1985, 1988)]. For

instance,
[nt]

Na' X, =Y(t) = A Jjn

i=1 t, <t

in D[0, «).
It is worthwhile to explore the relevance of this discussion to random
variables in the (maximum) domain of attraction of a type III extreme value

distribution

¥ (x) = {exp{-—(—x)a}, x <0,
s x>0,
for a > 0. A distribution F is in this domain if

xg =sup{x: F(x) <1} <
and

1-F(xy—x71) =x7°L(x),

where L(-) is a slowly varying function at «. If Z has distribution F, we have
for x > 0,

P[(x0 -Z) '> x] =1-F(xq—x71) =x"°L(x).
Let ¢t = x~! and we have as ¢ | 0,
Plx,— Z <t] =¢*L(t7') = t*L(¢)

so that (2.1) holds. If Z,,. .., Z, are iid with common distribution F, then for
¢;>0,i=1,...,k, we get from (2.8) as ¢ | 0,

(2.10) P[f ci(xg—2;) < t] ~c(a, k)(t"Ll(t))k

i=1

so that as x — o,
k k \
P[( Y c,-)x0 —x"l< Y ciZi] ~c(a,k)(x~*L(x))
i1 i=1

and therefore the distribution of ©¥ ¢, Z; is in the domain of attraction of ¥,,,.
“Pushing this further, we may take a, to satisfy

Plxg—Z,<a,]~n"Y* n-ooo
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If {Z,,— » <n <} are iid with distribution F € 2(¥,), then from (2.9)
and (2.10),

0

r EG /n,a; kg clzo-Zi) = Etms dm)
i=1 m
in M,((0,»)?) whence, setting X,, = L% ¢,Z,_,,
(2.11) L 86 /m, a7 (K- hr o) = 2 Eltprim)

i=1 m
in M ([0, ) X (=, 0] and from (2.11) many maximal properties of {X,} are
readily determined.

3. Infinite moving averages. Unlike the finite moving average case of
Section 2, the distribution of the infinite order moving average is no longer
regularly varying at zero. The objective of this section is in fact to show that
the marginal distribution function of such a process belongs to the minimum
domain of attraction of the extreme value distribution 1 — exp{—e*}.

For a nonnegative random variable Z with df F, we define its Esscher
transform to be a random variable Z,, with distribution given by

Fy (dx) = e F(dx) /6,(A), A0,

where

¢,(A) = Ee*Z,
It follows directly from the definition that if Y and Z are independent and
nonnegative random variables, then

(Y +2Z)o =4 Y + Z,

and

(cZ)n) =4 CZ(cA)

for all ¢ > 0.
Now suppose Z has a probability density function (pdf) f(x) = (d/dx)F(x),
which is regularly varying at 0 with index o — 1, a > 0. That is, for all x > 0,

flm)
(3.1) llln(} @) =x 1

which, by Karamata’s theorem and Theorem 3 of Feller [(1971), page 445],
implies

xf (x)
(3.2) F_(xT —a, asx]O0,
and
$(1) = ["ef(x) dx
(33) 0

1
~ F(X)F(a +1), as A >,
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From (3.1)—(3.3), the pdf f(x) = exp{—Ax}f(x)/#(A) of Z,, satisfies
1 /x e *f(x/A)
(3)

AN T AFA /)T (@ + 1)

(3.4) __° (f(x/A))((l/A)f(l/A))
['(a+1) | f(1/2) F(1/))
e—xxa—l

I'(a)

as A — ». Consequently,
AZ,, =T,

as A > «, where I, has a gamma distribution with parameter a. Since ¢'(A)
and ¢"(A) are monotone, we have by the monotone density theorem [Resnick
(1987), Proposition 0.7] that the mean u, and the variance o of Z,, satisfy
as A — o,

Apy = E()‘Z(A)) == )“f"()‘)/‘f’()‘)

(3.5)

- a=ET,
and
(3.6) No? = Var(AZ,,) - a,
since

E(AZy)? = 2%"(1) /(X)) > (a + 1)a = ET2.

ProposiTION 3.1. Let {Z,, t = 1,2,...} be an iid sequence of nonnegative
random variables with finite variance and pdf f satisfying (3.1). Let c; be
positive constants with L.5_;¢; < .

(a) The series Y,y = (Z5.1¢;Z;)y = L7-1¢,(Z)p) converges a.s. and
in L2

(b) Set
W, = Yo — EY(,‘)'
vVar(Y(A))
Then
W, = N(0,1)
as A = »,

(9) If in addition

(3.7 /me'2“f2(x) dx < o forlarge A
0
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and c; is a nonincreasing sequence satisfying for all 6 € (0, 1),

(3.8) lim 9™ Z c/ck =0,

then density convergence ensues:

-x2/2

(3.9) fin(2) = n(x) = =
uniformly in x.

REMARK 1. The assumption (3.7) together with (3.2) and (3.3) implies that
oA~ le—2Axf2(x)
Er~ f,\(Z(,\)) f —-——2(7)—dx
A" (4ar) " F2(1/(20))T (20 + 1)
a” A1/ (a + 1)
— (const.)

as A — . Hence (3.7) implies that E(A~'f(Z,,) is bounded for large A. This
will be needed for what follows.

REMARK 2. The nondecreasing assumption on the coefficients can be dis-
pensed with provided that condition (3.8) is expressed in terms of the ordered
¢; [i.e., replace c; by the jth largest c, in (8.8)]. Condition (3.8) is quite mild in
that it is satisfied by all but the most pathological sequences. For example,
(3.8) is easily checked by c¢; ~ Kr/ or ¢; ~ Kj~'/" for some r € (0,1) and
K > 0. Weaker assumptions on {c;} could be imposed at the expense of a
second order assumption on the regular variation of f(x) near 0.

ProoOF oF ProrosITION 3.1. (a) It follows from (3.5) and the definition of
Z,, that u, is bounded for all A > 0 and hence

(z: (Z)w) L cpen <

by the summability of {c;}. L? convergence is shown similarly.
(b) Define

g(t) = BeNZum,
By (26.5) in Billingsley (1986),
(3.10) lg\(¢) — (1 — 12%2) < ¢2E mln{ItIIA(Z(A) w )P, X%(Z,, — m)z}.
We first show that

(3.11) a(¢) = sup A~ %0 %E min{ItII/\(Z(A) — )3, 222, - m)“’} -0
A=0
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as t — 0 so that
(3.12) lgi(2) — (1 — 3t2%02)| < t:\%02a(t)

uniformly in A > 0.
Observe that with Z,, = M(Z,, — u,),

7 |2 72 72
0 < (l12°) A 23, < 2,

Since Z2, = (T, — @)% (tlIZ,)* A Z3) = (T, — a>) A IT, — al* and
EZ}, = N0? - a = Var(I,), as A — », we get by Pratt’s lemma [cf. Billingsley
(1986), Exercise 16.6] that for ¢ fixed,

E[(11Z*) A 23] = E[(1IIT, - «*) AIL, - af?].

Moreover, since (|t||IT, — a/®) A [T, — al> <(T, — @)? € L,, we get by domi-
nated convergence,

lim E[(1t]IT, — al?)AIL, — al?| = 0.
lim E[(i4IIT, - af*) AIT, = al’]
Hence from (3.6) there exists an M > 0 such that

sup A~%0; 2E(tllZo|°) A Z3,] < 27 E[(iEIIT, - a’) AIT, — af’]
A>M

-0
as ¢t — 0. On the other hand, for A < M, it follows eas11y from the form of the
density function of Z,, and the boundedness of o; %, A < M, that
sup A~ %07 2E [ (1£1A(Zgy = 1)) A R2(Zgsy = ,)%] = 0
A<

‘ as ¢ — 0. This, together with the above inequality, proves (3.11).
We now prove that W, is asymptotically normal. Since (cZ), =, cZ,, we
get from (3.12) that the characteristic function g, (¢) of

A((cjzj)m) - cj'“c,-)«) = )‘cj((zj)@j)«) - /J’cj)«)
satisfies
(3.13) 8ea(8) — (1 — 3222202 )| < ciNo 2 t%a(t).

We have that cfA%s.’, is bounded in A and j; for c;A large this follows from
(3.6) and for c; A small this is a consequence of

Re'(2) [ Ad'(A) )2‘
PO
beiﬁg bounded for small A due to EZ, < », EZ} < ». Also we have

2.2 _
Aoy =

(3.14) AS2 > o,
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where

Sy = Var(Yy,) = c ‘Tc A2

since by Fatou’s lemma and (3. 6)

L

liminf A%2S2 > Z liminf cA%02, = 3 a =
A—>® J 1 A—> i=1

(recall c; > 0 for all j). So for A large, we have that

Eoit¥, ﬁ . tch)t2 2 ]_[ ot ﬁ ch)@a-cf,\
Wy - < - S
¢ 2052  Eep M 2)%S2

j=1
2 2
© o4 t
Jj c
<t? ——a| —
L s (ASA)

= tza(_t_) — 0

as A — o, the convergence to zero following from (3.11) and (3.14). Since
t2c2\%0?

© \
,E(l‘ﬁzs%)”"m as ) - o,

it follows that
(3.15) Ee'™s - e7t'/2,

which establishes the asymptotic normality of W,.
(b) To prove density convergence, we follow Feller [(1971), page 516]. The
Fourier inversion formula gives

() =)l = = |

— 0

dt
j=1

sf +f + ,
ltl<a a<|t|<8AS, || >8AS,

where @ > 0 and 6 > 0 are to be specified. By the dominated convergence
theorem and (3.15), the first integral converges to zero as A — «. From (3.13),
for each j

Me., ( ) —e

(3.16)

|gc A < exp{—§c2A2 c).tz(l - 2a(t))}

for ¢ small and, therefore,

{3

2A2 2

< e{:p{—g‘é c,\zszA (1 - 2a(;~%;))}
= exp{—z;i(1 - 2“(A; ))}
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Thus there exist 8 € (0, 3) and § > 0 such that for |t/(AS,)| < 8,

e 55|

and, therefore, the second integral in (3.16) may be bounded by

< exp{ —Bt?}

2 e Pdt <2 e B dt,

a<|t| <8AS, a<l|t|

which can be made arbitrarily small by taking a large.
To handle the last integral in (3.16), we note that by (3.4) and Scheffé’s

lemma,
gA(t) - Eeit(l"a—a)

uniformly in ¢ as A — . Therefore, given ¢ > 0 sufficiently small, there exists
an M > 0 such that for A > M,

sup |g,(¢)| < sup |Eei*Ta=®)| 4+ ¢
(3.17) lt1=5 It]>5
=@ +82)_a/2+8 =7 < 1.

Increasing M if necessary, it follows by Cauchy-Schwarz, Plancherel’s iden-
tity and Remark 1 that for all A, A, > M,

f_aowlgAl(t)gAz(t)l dt < ( f_:lgh(t)lz dt)1/2( /_0;|g/\2(t)|2 dt)

= 27(EAT o (Zony)) (BN ol Zoy))
< (const.).

Now setting N, = min{j: Ac, < M} and using the inequalities (3.17) and
(3.18), the third 1ntegral in (3. 16) is bounded for A large by

t
—||dt + e /2 dt
c’A( AS, ) 'll't|>8/\SA

f 8
¢l >84S, j=1
Ny-1
Eepa ( AS, )

1/2

(3.18)

1/2

dt + o(1)

<
(3.19) ’/I‘tl >8A8, jl:[1

< "7NA_3fw

t t
. gclA AS gczA ASA

< nM3)\S,(const.) + o(1)

and 1t remains to check that

dt +o(1)

ZNAA2S2 = 172N)‘ z /\20 o.c/\ -0
j=1
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as A — =, Recall that for all A, A%02 and 0,2 are bounded by a finite constant,
say B. Also by definition of N,, A <M/cy and N, - © as A - o, so for
6 € (9%, 1), we have
0-N: = (202,
oy
72282 < 2N ¥ )t20120'c2.,\ +M2 Y 121
Jj=1 ! j=0"M Cn,

N,
< (22‘) AB + 6™M*BY. ;5 4-m ¢

2
CN/\

-0, asA »> x,

by (3.8). This completes the proof of the proposition. O

From (3.9) we conclude that as A — o,
(3.20) S\eMEFmIf (Syx + m,)/éy(A) = n(x)

uniformly in x, where

L

L]
m,= ) Cilea = ) CjEZ(cj,\) = EY,,.
Jj=1 Jj=1

Since u, = —¢'(1)/¢p(A) and
du, &) (w)
da é(A) é(A)

we have from (3.5) that u, |0 as A — ». Hence each summand in m,
decreases to 0 as A — «, which by dominated convergence implies

2
) = Var(Z,,) > 0,

m,l0 as A — o,

So as in Feigin and Yashchin (1983), if we evaluate (8.20) at x = 0, we get as

A > @
Sye M fy(m,) /by (A) > 1/V2m
and if n = m,, we get as 7 |0,
Smeme ™ Pfy(n)/y(m = (n)) - 1/V2m,

giving an asymptotic form for the density of Y near 0. We show that this
asymptotic form implies the distribution of Y is in the domain of attraction of
1 —exp{—e*}x R

Observe first that the function

g(x) = e (2)
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is well defined for all x > 0 with derivative given by
1

m'(m* (x))(m*= (x))”
= (m* (x)) *S;2 0,
Since lim, _,,, A2S? = «, we get lim,  , g'(x) = 0, whence g is self-negleéting:

lim g(t+xg(t))/8(t) =1

g'(x) = -

locally uniformly in x [see Lemma 8.13.8 in Bingham, Goldie and Teugels
(1987)]. Such a function is a suitable auxiliary function for distribution
functions in the domain of attraction of 1 — exp{—e*}, x € R. We show g is
the auxiliary function of Y.

Since the convergence in (8.20) is uniform, we get, upon replacing x by
x/(AS,) and remembering that AS, — =,

Sye e M fy(x/A + m,) /dy(A) - n(0)
locally uniformly in x as A — . If we make the change of variables ¢ = m,
and recall g(¢) = 1/m“ (¢), then as ¢ 0,
‘/E;Sm“(t)e_tmwt)fy(xg(t) +t)/dy(m (1)) > e”
locally uniformly in x so that
lim fr(xg(t) +1¢) Lo
10 fr(¢)

locally uniformly. Thus fy is in the class I' with auxiliary function g and
* hence the same is true for Fy(t) = [¢ fy(uw)du [see Corollary 3.10.7 in
Bingham, Goldie, and Teugels (1987) for the case fy is monotone; Vervaat
(1973), page 24, for nonmonotone fy]. In particular,

g(t) = - o fy(y)dy _ Fy(t)
m*= (t) fy(2) fy(2)

and hence

R ~ 220

The following theorem is now immediate.

THEOREM 3.2. Under the assumptions of Proposition 3.1 including (3.7)
and (3.8), the distribution function of the random variable Y = £5_1c;Z; is in
the minimum domain of attraction of 1 — exp{—e*} and

PIY <m,] ~e*™¢y(1)/(AS\V21), as A — o,
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or equivalently
P[Y <x] ~e*™ @ (m* (x))/(m‘_ (x)Smh(x)\/_Z—'tr—), asx 0.

Moreover, if {Y,} is an iid sequence of rv’s with Y, =; Y, then
n 1 d

TP ——

j=1
where b, = Fy (1/n) and a, = g(b,).

ReEmARK 3. If we pick r, to satisfy
exp{r,m, }éy(r,)/(r.S, V27 ) =n"",

then we also have

4. Point process convergence. In this section, we extend the point
process convergence of Section 2 to infinite order moving averages,

(4.1) Xt = Z cht—j’

Jj=0
satisfying the conditions of Section 3. We will show that the sequence of point
processes,

N, = 2 &G /n,azkX, -5,
i=1
where a, and b, are as specified in Remark 3 of Section 3, converges in
M,([0, ) X [—o,®)) to a Poisson random measure (PRM) with mean measure
dt X e*dx. In particular, this implies that the asymptotic behavior of the
lower extremes of {X,} coincides with that of the associated independent
sequence {X,} (ie., {X,} is iid with X, =, X,). Similarly, these results can be
recast, as in Section 2, for the maxima of moving averages based on Z’s in the
domain of attraction of a type III extreme value distribution.

THEOREM 4.1. Let { X,} be the moving average process (4.1) where {Z,} is an
tid sequence of random variables with probability density function satisfying
(8.1), {c;} is a sequence of positive constants whose ordered values (see Remark
2 of Section 3) satisfy (8.8) and c; = O(j~%) as j = « for some q > 2. Then in
M ([0, ®) X [— o0, ),

(4.2) N, = N,

where N is a PRM(dt X e* dx) and a,, and b, are as specified in Remark 3 of
Section 3.



326 R. A. DAVIS AND S. I. RESNICK

Proor. First observe that from Theorem 3.2,
(4.3) nP[X,<a,x +b,] > e"

for all x > —x and

a, 0, — > o0,

The first statement follows from a, = g(b,) = 1/m  (b,) — 0 since m(A) = 0
as A —» o and the second statement always holds for distributions in this
domain of attraction. In addition the slow variation of auxiliary functions [see

Proposition 0.12 in Resnick (1987)] implies that a, is slowly varying, whence
(44) a,n® — o
for all £ > 0. Moreover

b2
(4.5) = 0.

a,

To see this it is enough to show, replacing r, with A in the definition of the
normalizing constants, that

Mm, =Y )\1/2cj,u.ch -0
=0
as A — o, But A/%y, is a bounded function of A, say by the constant B,
which, by (3.5), vanishes at infinity. Thus

J ©
12, _ 1/2 1/2
)\/mA—Z)\/cjp,ch+B Y cj/
j=1 jed+1

o
- B ) c¢j/? as\ >,
j=d+1

-0 asd — oo,
which proves (4.5).

To establish the convergence in (4.2), it suffices by Theorem 5.5.1(ii) in
Leadbetter, Lindgren and Rootzén (1983) to check that the process {—X,}
satisfies the mixing condition D.(u,) and the local dependence condition
D'(u,) for all x where u,= —(a,x +b,). We verify D,.(ua,) by applying
Lemma 3.1 in Rootzén (1986). With u = EZ,, we have by Markov’s inequality,

Y ¢;Z; >s}$s‘1na;1(.z cj)p.
j=nv

Jj=nv

-1
n

nPla

< (const.)na;(nv)' ™7
¥ ' —)0,
since ¢ > 2, from which D,(u,) now follows directly from Lemma 3.1 in
Rootzén (1986).
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As for D'(u,), we must show that

[n/k]
limsupn }. P[X; <u,, X, <u,] >0
n—ow j=1

as k > oforall x> 1; u, =a,x +b,. By (4.3),
nP[X1 fu,Xj < un] < nP[X1 SUp,€0Zjq+ 0 12y < un]
(4.6) =nP[X, <u,]P[coZj,, + * +c;_1Zy < u,|
= O(l)P[cOZj+1 + o te 12y < un]
and writing X/ = ¢;Z, + ¢;,1Zy+ -,
P[c(,Zj+1 + o te1Z, < u,,]
= P[cOZj+1 +tei 1 Zy<u,, X < an]

+PleoZin+ - He i Zy < uy, X > ay|
(4.7) <P[X;,1<a,(x+1)+b,]

+PleyZyy + v +e;1Zy <u,|P[X] > a,]

<0(n™Y) +F(l:—) F(cu )P[Xj' >a,|.

Now define

c¥ = min c,.
0<i<s

Since a,, u, — 0, there exists a sequence of integers w,, T such that

1/2

*
ch = ul

for all n large. Moreover for a fixed integer s > 2/, choose a positive
¢ < as — 2, so that by the regular variation of F at zero and (4.5), we have

a,'F(u,/c¥) < (const.)a,(a,x +b,)°** ° (for n large)
< (const.)a,(a,x + b,)*
~ (const.)a; b2
-0
as n — . Thus the second term in (4.7) is bounded by

Fi(u,/ck ) <F/(uy?) forj<uw,
and, using Markov’s inequality, by
Fo(u,/c¥)ua;' Y c; < o(1)j1°9 forj > w, > s,
i=j
where the o(1) term does not depend on j. Summing we obtain from (4.6),
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(4.7) and the two preceding inequalities
[n/k]

nY P[X,<u, Xj, <u,|
j=1

<0(1)|(n/k)O(n™") + % Fi(u}/?) +0(1) X j'77|

j=1 i>w,
=0(1)[0(1)k~ + 0(1) + o(1)]
=0(1)k™! (asn — )
-0

as k — o as required. This completes the proof. O
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