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PROBABILITY LAWS WITH 1-STABLE MARGINALS
ARE 1-STABLE!

By GENNADY SAMORODNITSKY AND MURAD S. TAQQU

Cornell University and Boston University

We show that if X = (X,,...,X,) is a vector in R® and all linear
combinations ©¢_,C;X; are l-stable random variables, then X is itself
1-stable. More generally, a probability measure u on a vector space whose
univariate marginals are 1-stable is itself 1-stable. This settles an outstand-
ing problem of Dudley and Kanter.

1. Introduction. A probability measure @ on R? is stable if for any
A >0, B> 0, thereisa C > 0 and a D € R? such that

(1.1) AX® + BX® =, CX + D,

where X, X®, X, .. is a sequence of i.i.d. random vectors with distribution
Q. Equivalently, @ is stable if for any n > 1, thereisan a, > 0 andab, € R?
such that

(12) X=, a;I(X(I) 4+ .- +X(n)) + b".

In fact, a, = n!/* for some 0 < @ < 2. The probability law @ satisfying (1.2)
with a, = n'/“ is called a-stable. Obviously, the a-stability of @ implies that
for any vector C € R, the scalar product (C,X) of C and X is a-stable as well.
For some time it was believed that this is an “if and only if’ statement, that
is, a-stability of the real-valued random variable Y(C) = (C,X) for every
C € R? implies that @ is an a-stable probability law on R?. In fact, Dudley
and Kanter (1974) stated this as a theorem, but then de Acosta and Kuelbs
noticed that their argument works, in general, only when a« > 1. A student of
Dudley’s, Marcus (1983) has constructed a counterexample (with d = 2) show-
ing that in the case 0 < a < 1, the a-stability of Y(C) for every C € R? does
not imply the a-stability of @. Marcus’ proof was simplified by Samotij and
Zak (1989).

It is the purpose of this note to settle the long outstanding remaining case,
a=1.

In Section 2 we prove that if Y(C) is a 1-stable real-valued random variable
for every C € R?, then @ is 1-stable. In Section 3 we generalize this result to
the general setting of measurable vector spaces of Dudley and Kanter.
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We close this section by recalling that a real-valued 1-stable random variable
Y has characteristic function of the form

(1.3) Ee'® = exp{ —ol6l(1 + i(2/m)B sgn(6)In 6]) + iub)
for some 0 > 0, B €[-1,1] and u € R. We use the notation Y ~ S (a, 8, ).

2. The case of R?.

THEOREM 2.1. Let @ be a probability measure on R? and let X =
(Xy,..., X,;) be a random vector with the distribution Q. If Y(C) = (C,X) is
1-stable for every C € R?, then Q is 1-stable.

Proor. By assumption, for every vector C € R,
(2.1) Y(C) = (C,X) ~ §4(a(C), B(C), n(C))

for some o(C) > 0, B(C) €[-1,1] and u(C) €R. If o;, B; and w; denote,
respectively, o(C), B(C) and u(C), corresponding to the special vector C =
,...,0,1,0,...,0), with 1 in the ith position, then

Xi~S1(Ui’Bi’I‘Li)’ i=1,...,d.
Let XM, X®, ... be i.i.d. copies of X, and define for n > 1,

(2.2) S = (l ) X(j)) - E(ln n)(eXxpB)
n - T ’

J

where o X B = (0,8, 0,8,,...,0,B,). Since X; ~ S((o;, B;,n;), we have

11X ~ Sy(nay, By i), A/n)E7 XD ~ S, By, 1y + (2/7)0n n)o;B,)
and therefore the ith component of the vector S™ satisfies S{™ =, X, ~
S,(a;, B;, ;). This means that the sequence 8™, n > 1, has marginal distribu-
tions that do not depend on n. Therefore the sequence S™), n > 1, is tight,
and as such, it has a subsequence S"*¥, k > 1, converging weakly to a
probability measure on R [Theorem 29.3 of Billingsley (1986).] In particular,
(C, 8™*») converges weakly for every vector C = (C,,...,C,) in R?. But (2.1)
and (2.2) imply

(C,8™) ~ sl(o(C),B(C),u(C) + (2/m)(Inn)
(2.3) )
x(a(C)B(C) - glciaiﬂi)).

In order for (C, S™») to converge weakly, the coefficient of In » must be zero,
that is,

d
(2.4) d(C)B(C) = Y C;0,8; foreveryC € R?.
i-1
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Now (2.1), (2.3) and (2.4) imply (C, S™) =, (C,X) for every C € R, every
n > 1. Therefore, X =; S™ for every n > 1. Thus, X satisfies (1.2) with
a, = n and so @ is 1-stable. O

REMARK. A similar proof works in the case 1 <a < 2. Replacing the
denominator n in (2.2) by n'/¢, the term (2/7)XIn n)o X B) by n' ™Y *p — p,
we get

(C,8™) ~ 8§, U(C),B(C),nl‘l/“(ﬂ«(c) - f‘. Ciui) + Xd‘. Ci/-"i)'

i=1 i=1

The result follows from the fact that n!~/¢ - was n — .

3. Infinite-dimensional spaces. Let S be a real vector space and F a
vector space of linear forms on S. Let .(F) be the o-algebra generated by F
on S. The definition of a stable probability measure on (S, .#(F)) is com-
pletely analogous to the definition (1.1) in R.

Choose a topology 7 on F which makes (F, 1) a topological vector space
such that a linear form ¢ on F is r-continuous if and only if for every f € F,
o(f) = f(s) for some s € S. A pair (, F) is called semifull if every sequen-
tially 7-continuous linear form on F is of the form ¢(f) = f(s) for some
s € S. For an example of a semifull pair, let S be a separable Banach space
and F = S’ the dual space of S with the weak-star topology. We refer the
reader to Dudley and Kanter (1974) and Giné and Hahn (1983) for more
details and examples of semifull pairs.

We will use the following consequence of Theorem 2 of Giné and Hahn
(1983).

ProposITION 3.1 (Giné and Hahn). Ifa law on R? has all of its two-dimen-
sional projections infinitely divisible and has all its one-dimensional marginals
a-stable, then the law must be a-stable.

The next theorem extends Theorem 2.1 to infinite-dimensional spaces.

THEOREM 3.1. Let (S, F) be a semifull pair, and let . be a probability
measure on (S, A(F)). If wo f~! is 1-stable for all f € F, then u is 1-stable.

PrOOF. By assumption, all one-dimensional marginals w° f~!, f € F, are
1-stable. It also follows from Theorem 2.1 with d = 2, that all two-dimensional
marginals u o(f, g)~ !, f, g € F, are stable and thus, infinitely divisible. Apply-
ing Proposition 3.1 we conclude that u is 1-stable. O
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