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SHARP INEQUALITIES FOR THE CONDITIONAL SQUARE
FUNCTION OF A MARTINGALE

By Gang WanaG

Purdue University

Let f be a real martingale and s(f) its conditional square function.
Then the following inequalities are sharp:

2
Il < ‘/ > Is(llp, 0<p<2,
2
\/;Hs(f)llpsllfllp, pz2

The second inequality is still sharp if f is replaced by the maximal function
[*. Let S(f) denote the square function of f. Then the following inequali-
ties are also sharp:

-

2
ISCAHIp < \/;Ils( O, 0<p<2,

\/glls(f)llp <ISCAHIp, pz2

These inequalities hold for Hilbert-space-valued martingales and are strict
inequalities in all of the nontrivial cases.

1. Introduction and summary of the results. Let (Q, %, &) be a
probability space with a nondecreasing sequence of o-fields

{(Q,¢}) = FycF cFH - cFcC - CH.

Let H be a real or complex Hilbert space with norm |- |. A sequence of
H-valued strongly integrable functions (f,),.; is a martingale if for each
n > 1, f, is strongly measurable relative to .%,, and for n > 2,

E(d,|%,_1)=0 ae.
Here the difference sequence (d ), ., is defined by f, = X7_,d,, n > 1. Let

0

s(f) = T E(d,1,_,)
1

n=
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denote the conditional square function of f and
S3(f) =X Id,I*
n=1

the square function of f. We shall also use the notation s2(f) =
Z?=1E(|di|2|‘%—1)7 Sy = z:?=1|di|2 and f* =sup,.,[f,l

Let [|£,ll, = (EIf,")/? and || fll, = sup, s, Il f,ll,. Burkholder and Gundy
[7] proved that there exist positive constants « » and B, such that

€)) Ifll, <aplls(f)ll,, 0<p<2,
(2) aylls( Al <N fllp, p=2,
(3) ISCAHI, < Blls(FHll,, 0<p<2,
(4) Bolls( ), <IS(F)llp, p=>2,

for all real martingales. The reverse directions of the above inequalities do not
hold in general except for p = 2. )

Garsia [9] showed that the following inequalities are satisfied by the best
possible constants @, and B,: If 0 < p < 2, then a, < 4y/2/p and B, <V2/p;

if p>2, then @,>y2/p and B,>V2/p. We can prove that a, =
B, =v2/p forall p > 0.

THEOREM 1. Let f be an H-valued martingale. Then

2
(5) £l < \/;”s(f)“py 0<p=<2

2

(6) V I—JIIS(f)IlpsIIfIIp, p=2,
2

(6') V > IsCAMp <1 F*llp, p=2,

(7 ISCAHI, < \/glls(f)llp, 0<p<2,

(8 \/gIIS(f)IIp <IS(Hl,, p=2.

The constant \/2/p is best possible in each of these inequalities and is already
best possible in the special case of real conditionally symmetric martingales.
Furthermore, strict inequality holds for all of the mentioned cases except for
p =2orfor | fll, = {0,}.
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For example, if 0 <||fll, < ® and 0 < p < 2, then strict inequality holds
in (5).

Notice that if in (6), f is replaced by f* to obtain (6'), the best constant
does not change.

A martingale f is conditionally symmetric if for all » > 1, d,, and —d,
have the same conditional distribution on the o-field generated by f1,..., f,_1
o(fy,..., f,_1)- All dyadic martingales are conditionally symmetric. A martin-
gale is simple, if for all n > 1, f, is a simple function and there exists an
integer N such that when n > N, f, = fy. If &% =0(f1,..., fo_1,1d,]), then
for a simple conditionally symmetric martingale, E(d | & _)=0foraln>1
(see Hitczenko [10] or Wang [11]). By using the standard approximation
method with a little more care (see Wang [11)) this shows E(d,|.%,_,) = 0 for
a general conditionally symmetric martlnga.le This means f (fos .?n )P ]
a martingale. For this choice of o-fields {%}, . ., §2(f) = E(d A F ) =

S2(f) for all n > 1. Hence, if 2z, denotes the smallest posmve zero of the
confluent hypergeometric function M(—p/2,1/2,22/2) (see Abramowitz and
Stegun [1]), then

IFll, <2, I8C ), 0<p=<2,

2,18l <1 fllp, p=2,

and z, is best possible for this choice of &, (see Davis [8] and Wang [12)).
However if we put no restriction on the o-fields {#.}, -1, then as shown in
Theorem 1, z, is not best possible. As an interesting consequence, we prove

/2
z, <1/ =, O0<p<2,
p

2
ESzp, 2<p.

Computer calculation shows that strict inequality holds except for p = 2.

Note that for dyadic martingales, the conclusion of Theorem 1 is not true.
In fact, since [ls(f)ll, = IS(f)ll,, the best constants in (5) and (6) are z, and
the best constants in (7) and (8) are 1. This is different from the situation in
the square-function inequalities, in which case the best constant for condition-
ally symmetric martingales is the same for dyadic martingales (see [8] and
[12].

Even for conditionally symmetric martingales, the reverse directions of
(5)-(8) do not hold except for p = 2. For example, if f; = +1 with probability
a/2 each and 0 otherwise, then f = {(0, %,),(f, ¥)} is a conditionally sym-
metric martingale. It is easy to see that (5)—(8) cannot be reversed as ¢ — 0 for
this choice of f.
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THEOREM 2. Let {e,},., be a sequence of nonnegative random variables.
The following inequalities are sharp and strict in all nontrivial cases

(9) , p=1,

P

2 E(e,|%)

n= 0

1

(10) p<L1

o
Y e
n=0

p

Burkholder, Davis and Gundy [6] proved an inequality for convex functions
that implies (9) with some constant vy,. Garsia [9] showed that the best
constant y, satisfies y, > 1/p. Burkholder [2] proved an inequality for concave
functions that 1mp11es (10) with a constant v, and Garsia showed that y, <
1/p. We can prove that the best constant y, = 1/p for all p > 0.

2. Proofs. The proofs of inequalities (5)-(10) are based upon the follow-
ing elementary lemma.

LemMA. If x and d are nonnegative numbers and y > 0, then

+d 2 2
(y +d)”/2(—x —._=) sy"/"’(f - ;), 0<p<2,

y+d p y

2 x+d 2 x
+d ”/2(— - )s P/2(—— —), > 2.
(y +d) » yxd) =V \e Ty P

Proor. We prove the case 0 < p < 2 only. If p > 2, the proof is similar.

x+d 2 x 2
(y +d) yxd o) YNy 5

= sl + )7 - yra
+{d(y + d)P/2—1 _ ;[(y + d)P/2 _yp/2]}.

Since p < 2, the first term is nonpositive, and the second term is nonpositive
by the mean value theorem. O

To show (5), define
2
W(x,y) = t”/2 1(x2 —t), wheret= Fra

By the above lemma, for x,d > 0 and y > 0, W(¥x + d,y + d) < W(x, y).
Then, by the mean value theorem, when y > 0,

2 p/2
(11) lxl? — (;y) <W(x,y).
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Hence for n > 1 and 6 > 0, by (11)
2 p/2
E(lfn+1'p - (;[srzt+1(f) + 52]) )
= EW( fav1sSaii(f) + 62)
= EW(f, + doers [s2(F) + 6%] + E(d,,.,[11 7))
= B{E(W(f, + dyois [s2(1) + 8] + B(d,..a'157))| )
= EW([ 72 + B(d,1P19)] 7, [s2(£) + 6] + Bld, . P15))

<EW(f,,s2(f) + &%).

The last equality is from the fact E(d,,,|%) =0 and the definition of
Wi(x,y), and the last inequality comes from the inequality preceding (11),
setting x = f2, y = s2 + 6%, d = E(ld,,,,|’|.%,). Repeating this argument n
times, we have

p/2
(12) E(Ifn+1l" - (g[sﬁﬂm + 62]) ) < EW(fy, s3(f) +6%) <.

This proves (5) by letting § — 0.
Using elementary inequalities

2 p/2 p 2 p/2-1 2
(}—)y) —le”SE(;y) (;y—xz), p =2,
1\? 1\t 1
"”‘(;y) Sp(zy) (’“‘;y)’ O<ps<t
1\? 1\
(}—’y) —x"Sp(I—)y) (I—)y—x), p=1,

and the lemma, we can similarly show (6) and (9) and (10). (6') is a conse-
quence of (6). Finally, (7) and (8) are obtained by letting {e,},, . , = {Id ,,|%}, >0
in (9) and (10).

To see that inequality (5) is strict if 0 <p <2 and 0 < £, < e, we
assume without loss of generality that Es2(f) = EfZ > 0. Then as § — 0, (12)
yields

2 p/2
E(Ifn+1|1J - (;srzz+1( f)) ) = EW( fl,Sf( f))

- E(%sf( f))m_l(% - 1)Es§( f) <o0.
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2
Elfll, < \/;Ells(f)llp

The strictness of the other inequalities follows similarly.

We now prove the constants in the inequalities (5)—(8) are sharp for real
conditionally symmetric martingales. More precisely, we shall prove that if f
is a real conditionally symmetric martingale and %, = o(fy,..., f,) for n > 1,
then constants a, and B, in the inequalities (1)-(4) satisfy the following
inequalities: a, > y2/p and B, > y2/p when 0 <p <2; and «a, < y2/p
and B, < y2/p when p > 2. We shall also show that the constant in the
inequality

(13) alls(AHllp <lf*ll,,  p=2,

satisfies @), < y2/p. Therefore, combining the first half of the proofs, we
prove that the best possible constants a, and B, satisfy @, = a}, = B, = V2/p .
This will prove Theorem 1. Since (7) and (8) are consequences of (9) and (10),
the sharpness of (7) and (8) implies the sharpness of (9) and (10). Hence, it will
prove Theorem 2 as well.

Because all the proofs are similar, we prove only @, > y/2/p when0 <p <2
and indicate how to show the rest without giving details.

Denote by p the Lebesgue measure on R. Let .# be the set of all simple
real conditionally symmetric martingales f= (f,, #,), ., in the probability
space ([0, 1), £[0, 1), u), where [0, 1) is the Borel o-field on [0, 1). Moreover,
we let {Z},., be {o(fy,..., f,)}.»1. Since f is a simple martingale, we can
define f, =lim, ., f,.

When 0 < p < 2, let a, be a constant such that

I, < a,lis( £l
for fe #. For x € R, y > 0, define

Uy(x,) = sup(Elf. + 2} — aZBls*(f) +yIP/%}.
fed

Working from the definition, we can show (see Burkholder [3] and [4]) that
U(x, y) has the following property:

Vo(x,5) = 5P’ — afy?/? < Uy(x, ),
Uy(Ax, y)=APUy(x,y),

(14) )» ai(Ul(x +d,y+2) aidiz)

i=1 i=1

This shows

+U1(x —d,y+2Y aid?)) <U(x,5),

i=1
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where n is any positive integer, Z7?_,a;, = 1/2 and a; > 0 for all i in the last
inequality.
From the definition, we see

(15) U,(0,1) < 0.

Let b>a, Take n =2,x=0,y=1/ab®> -1, a; =a/2, a, = (1 — a)/2,
d, =1/Va and d, = 0, where a € (0, min(1, 1/b2)). Then by (14),

a 1 1 1 1
E{Ul(ﬁ’m) *UI(WW)}

(16)
< UI(O, % - 1) -(1- a)U1(0

)
e B
Also by (14),

o ) - ) e o
‘/E ab2 ‘/d— ab2 p ﬁ ab2 ‘

and U0, A) = |AP2U0, 1). Thus (16) implies

[ - a?™* - (1 - a)|Uy0,1) > 0.
By (15), this means
(17) g(a) = (1-ab>)”* - (1-a) <0
for a € (0, min(1, 1,/b2%)). Since g(0) = 0, then g'(0) < 0 or

- §b2 +1<0.

Thus & > y2/p, which implies @, > y2/p . This completes the proof.
To give a brief idea of how to show the rest, we define

Uy(x,,5) = sup (afE(s*(f) +5)"* = E(f. + 2 v £)"}
fed

onx€R,t>0and y >0, when p > 2;
Us(x,5) = sup {B(S*(f) +x)""* - BLE(s*(f) + )"}
fed
onx>0and y >0, when 0 < p < 2; and

Ux(x,9) = sup (BLE(( ) +5)"" = E(S%(f) +3)""")

on x >0and y > 0, when p > 2.

Here a vV b = max(a, b) and constants «, and B, are those such that
(3), (4) and (13) hold. Then we can prove o/, < y2/p by working with function
U,. Similarly, inequalities 8, > /2/p when 0 <p <2 and B, < y/2/p when
P = 2 can be proven by function Us,.
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For example, function Uy(x, ¢, y) satisfies
aPyP/2 — |x v 1P < Uy(x,t,y),
U2()tx, At, Azy) = |)‘|pU2(x7 t,y)’

3 ai{Uz

i=1

n
x+d,t,y+2) aidf)
i-1

+ U,

n
x = di’t7y + 22 azdtz)} =< U2(x7t’y)

i=1

ifXy,a;=1/2,a,20foralliand¢> |x| in the last inequality.

By using the above properties and taking n = 2, x =t =0,y =1 /aa’2 -1,
a;=0a/2, a,=010-a)/2, d;=1/Va and d, = 0, this implies, when a is
small,

(1-aa?)”* - (1-a) >0,

p
and hence a), < y2/p . Unlike the previous case, we can take b = «), since
U,(0,0,1) >0

from the definition.

ReEMARK 1. Burkholder used this method to get the lower bound of the
constants for martingale transform inequalities. He also used this method to
give a new proof of the sharpness of Doob’s maximal inequality for martingales
without using examples (see [5] for details).

REMark 2. Let .#' be the set of all simple martingales f
(0, 1), £(0, 1), w) and c,, be a constant such that if f€ .2/,

(18) I1fllp <c ISCAHI, p=2.
Defineon x € R,y > 0,
U(x,y) = sup {EIf, +xI” - cZE(S*(f) + W p=2
fed’
We can show
V,(2,9)<U(x,y),

(19) U(Ax, A2y)=APU(x,y),

n

Y aU(x+d,y+d})<U(x,y)

i=1
if X7 ,a,d;=0, Z7 1a—1anda>0forallt where V(x,y) = Ixl’ —

cPyP/?. By choosmg n=2 d,=2x/(x2-1), dy <0 such “that (x + d,)?
= 02(1 + d2) y 1 al _d2/(d1 - d2) (12 = dl/(dl 2) and X > Cp (19)
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implies
c,2p—1

as x — o, Combining this inequality with Burkholder’s inequality [4], it shows
that p — 1 is the best constant in (18) without giving examples. Burkholder in
his original proof constructed examples to show p — 1 is the best.

We also can apply this same method to show without giving examples that
there exists no constant c,, such that

Ifll, <c,IS(AHll,, 0<p<1,
for general martingales.

ReMARK 3. Examples which show inequalities (5)-(10) are sharp can also
be found. They come naturally from the second half of the proofs. For
instance, let 0 <p <2. Take 1>b'>b> yp/2, and let ¢y =1, a,=1-
b%/n for n > 1. On [0, 1), define a conditionally symmetric martingale f with
difference sequence (d,),.; by d, =Vn on [l a;, (1 + a,)/2)
M2>¢a;), — Vn on[((1 + a,) /2017 da,, [17-¢a;) and 0 elsewhere. Then when
n is large enough, we can show

Oll follp > lls, (£l
This proves by example that /2/p is sharp in (5).
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