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BROWNIAN FLUCTUATIONS OF THE EDGE FOR CRITICAL
REVERSIBLE NEAREST-PARTICLE SYSTEMS!

By RINALDO SCHINAZI

University of Colorado at Colorado Springs

We apply an invariance principle due to De Masi, Ferrari, Goldstein and
Wick to the edge process for critical reversible nearest-particle systems.
Their result also gives an upper bound for the diffusion constant that we
compute explicitly. A comparison between the movement of the edge, when
the other particles are frozen, and a random walk allows us to find a lower
bound for the diffusion constant. This shows that the right renormalization
for the edge to converge to a nondegenerate Brownian motion is the usual
one. Note that analogous results for nearest-particle systems are only
known for the contact process in the supercritical case.

1. Introduction and statement of results. The nearest-particle sys-
tem on the integers Z is a Markov process introduced by Spitzer [7] which
evolves on {0, 1}Z in the following way. Let n be a configuration of the process:
sites x € Z for which n(x) = 1 are considered to be occupied by a particle, and
sites for which n(x) = 0 are vacant. Let

l(n) =x —max{y <x:7m(y) =1},
r.(m) = min{y > x: n(y) =1} —x,

which may be infinite. If n(x) = 0, then a particle appears at x at a rate
Ab(L, (1), r,(n), where A is a positive real parameter. If n(x) = 1, then the
particle at x disappears at rate 1. In this paper we will assume that there
exists a strictly positive probability density b on the positive integers such that

b(2)b(r)
(R) b(l,r) = m,
(A) b(1,r) is a decreasing function of / and r,
(1) b(l, ) =b(x,1) =b(1),
O
(2) m iy

Under the attractiveness assumption (A), it is known that the law of the
process converges to some probability measure when time goes to « and the
initial distribution is the point mass on the configuration with all sites on Z
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occupied. Let A, be the infimum of the A such that the limit distribution is not

the point mass on the empty configuration. When the limit distribution is the

point mass on the empty configuration, we will say that the system dies out.
Liggett [5] proved that under the assumptions (R), (A) and (2):

A, =1.
He also proved that for A = 1 the system does not die out if and only if
(3) M=y Ib(l) <.

=1

Under the same assumptions, Spitzer [7] proved that for A > 1 the stationary
renewal measure with density y’b(1) is reversible for the process with infinite
particles on the left and on the right of the origin, where y is the solution of
the following equation:

Y Ayip(l) =1.

i>1
When A =1 and under (3), the preceding property remains true. A more
detailed exposition of these results together with many other results known
about reversible nearest-particle systems can be found in Chapter 7 of Liggett
[5].

We will prove that the rightmost particle of a critical (A = 1) reversible
nearest-particle system has Brownian fluctuations. The only analogous result
for nearest-particle systems was proved by Galves and Presutti [4] for the
supercritical contact process. The problem is open for the critical contact
process, but it is generally believed that the fluctuations are not Brownian in
that case.

We need some more notation to state precisely our result. Let m be the
renewal measure with density & on the set of configurations which have a
particle at the origin and no particle on the right of the origin. Let r, be the
rightmost particle of the critical reversible nearest-particle system under the
initial probability m. We will also assume that
(4) Y 126(1) < oo,

>1
We can now state the main result of this paper.

THEOREM 1. In the critical case (A = 1) and under the initial distribu-
tion m,
ar,-z

converges to a Brownian motion as a —» 0 in the Skorohod space. Further-
more, if D is the corresponding diffusion constant, then we have

2( Y lb('l))2 <D <2Y 1%(l).

=1 =1

The convergence to a Brownian motion as well as the upper bound for D are
direct consequences of an invariance principle for reversible Markov processes
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proved by De Masi, Ferrari, Goldstein and Wick. Our task will be to check that
their invariance principle applies to our case. This will be done in Section 2.
The more interesting part of our work will be done in Section 3, where we will
find a lower bound for D. To do so, we define a process where deaths can only
occur at the rightmost particle and births can only occur on the right of the
rightmost particle. These deaths and births occur at the same rates than for
the reversible nearest-particle system. We show that the rightmost particle of
this new process behaves at large times like a random walk. This allows us to
compute explicitly the diffusion constant D' corresponding to the new process.
We finally use an observation in [3] to show that D > D’ and this gives the
lower bound in Theorem 1.

Finally, in Section 4 we discuss two open problems.

We are only able to treat the critical case because, to apply the results of [2]
and [3], we need the existence of a reversible probability for the system seen
from the edge. The probability m has this property in the critical case but we
think that in the supercritical case there is no reversible probability.

2. The edge process converges to a Brownian motion. We are inter-
ested in semi-infinite reversible nearest-particle systems as seen from the edge.
This means that births and deaths occur with the rates that we already
described, but when the rightmost particle dies or when a particle appears on
the right of the rightmost particle, then we translate the configuration to have
always the rightmost particle at the origin. We will denote this process 7(#)
which evolves on

X ={n:m(0) =1, n(x) = 0for x > 0}.

Let X be the subset of the configurations of X which have infinite particles.
We will consider another process on X that we will call the frozen process. In
this process particles can only appear on the right of the rightmost particle and
the only particle which can disappear is the rightmost one, but these deaths
and births occur at the same rates as for n(¢). We will denote this frozen
process seen from the edge as 7'(¢).

It is possible to use the techniques in Liggett [5] (Theorem 3.5) to construct
the Markov processes n(¢) and 1'(¢) on X.

We will prove that r, and r;, the rightmost particles of the critical reversible
nearest-particle system and the frozen process, under initial distribution m,
converge to Brownian motions. To do so, we will use an invariance principle
which holds for “antisymmetric”’ reversible processes (see [2] and [3]). We will
now state this theorem in the particular case of an edge process.

THEOREM 2 (De Masi, Ferrari, Goldstein and Wick). Let n(¢) be a semi-
infinite Markov process on Z. Assume that n(t) is reversible and ergodic with
respect to a probability measure m. Let r; be the edge process under the initial
distribution m. Let F, be the o-algebra generated by {n(s); s <t}. If r, is in
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L%(m) for all t and if

1
v= }P_IH) _}:Em(rt+h —rlF)’

exists as a limit in L'(m), then
ar, -z
converges in distribution, when a — 0, to a Brownian motion in the Skorohod

space. If, in addition, v is in L2(m), then we have the following expression for
the diffusion constant D:

+ oo
D=C- 2[ (v, S(t)v)n dt,
0

where C = lim, _ ,(1/h)E, (r?), S(¢) is the Markov semigroup corresponding
to n(¢) and {f, g>m = [fgdm.

We will now check that the hypotheses of Theorem 2 are satisfied in our
case. Let m be the renewal measure with density b on X. We begin with the
following lemma.

LEMMA 1. The probability measure m is reversible for n(¢) and 7n'(¢).

Proor. Let L and L' be the Markov generators corresponding respectively
to the processes n(¢) and n'(¢). We have

L=Ly+L,

where L, is also a Markov generator corresponding to a nearest-particle
system which has a particle at the origin which cannot die and such that there
are no births on the right of the origin. This form of writing L is just a way to
distinguish the behavior of the rightmost particle from the behavior of the
other particles.

Let f be a function on X that depends on finitely many coordinates. We

have

Lof(n) = X Ab(L(m),r(m)(f(n.) —f(m))

x<0:n(x)=0

+ X (f(n) = f(m)),

x<0:n(x)=1

where 1,(y) = n(y) for x # y and n,(x) = 1 — n(x) and
L'f(n) = X Ab(r,®)(f(r}n) — f(n)) + IZ Lx,-n( F(72m) = f(m)),
>1

r>1
where 7'7(0) =1, 7ln(y) =n(y +r) for y <0 and 7!n(y) =0 for y > 0.
Similarly, 72,m(y) = n(y — 1) for y <0 and 72,7(y) = 0. X, is the distance
between the rightmost particle and the next one.
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To prove the lemma, it is sufficient to have that for any continuous bounded
functions f and g:
<f’ Lg)m = <Lf’g>ﬂ7,‘

Using the reversibility of the renewal measure with density b for the process
with infinite particles on the left and on the right of the origin, an easy
computation shows that

<f’L0g>m= <L0f,g>m

so it is sufficient to prove the reversibility for L'.

Let x; <x, < -+ <x, be positive integers and let us define A as the
subset of the configurations of X such that the sites 0, —x,, —x,,..., —x, are
occupied and no other site is occupied between 0 and —x,. By the definition of
m we have

m(A) =b(x,)b(xy = %,) "+ b(x, —%,_1).
Let B be a subset of the same form as A and define
f=1, and g=13.
It is easy to verify, using the hypothesis (1), that

<f, L'g>m = <L'f’g>m

but the functions 1, generate all the bounded continuous functions on X, so
this proves that m is reversible for 1'(¢) and this implies that m is reversible
for n(#). O

We will now prove the following lemma.

LEMMA 2. The processes m(t) and m'(t) are ergodic with respect to the
probability m.

Proor. Let D be the set of the functions on X which depend on finitely
many sites. Let (P) be the following property:

If fe D is such that (f, Lf), =0, then f is m-almost
(P) surely constant.

To prove ergodicity, we will use the following criterion: If (P) holds, then the
process is ergodic with respect to m. This criterion is well known; see, for
instance, Reed and Simon [6] for a proof. We are grateful to the referee for

suggesting this reference.
Let f be a function in D such that

’ <f,Lf>m=0-

We have
L=L,+ L'

Using that m is invariant for the processes n(¢) and 7'(¢), we can write, for
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any function g in D:

-1
(& Logom = —~ Y Ce(x,m)(g(n,) —&(m)), &(n,) — &(M)m

x<0

and we have a similar formula for L’ so that
(g,Lygdn <0 and {(g,L'g)n, <0.
This implies for f that
(o LofoIm=<{f, L'f)m=0
and so for all x < 0:
f(n,) =f(n) m-almost surely.

Thus f is m-almost surely constant. So (P) holds for n(¢) and this process is
ergodic with respect to m.

Using the same criterion, it is easy to see that 7'(¢) is ergodic with respect
tom. O

We continue checking the hypotheses of Theorem 2 by showing that the
rightmost particles of 7(¢) and n'(¢) are in L*(m).

Let H(¢) be the rightmost particle of a process where births occur with
the usual rates but deaths do not occur. Let f, be the number of births on the
right of the rightmost particle. It is a Poisson process with rate 1 (A = 1). We
can write

fi
H(t)= Y W,
i=0
where W, = 0 and the W,, for i > 1, are independent identically distributed
random variables with probability density b. This is a consequence of the
hypothesis b(I, ) = b(1).

On the other hand, let G(¢) be the rightmost particle of a process where
deaths occur with the usual rates but births do not occur. Let g, be the
number of particles which died by time ¢ on the right of G(¢). The random
variable g, is geometric with parameter e ‘. Under the initial distribution m,
we have

8
G(t) == Z Zi’
i=0

where Z, = 0 and the Z,, for i{ > 1, are independent identically distributed
random variables with probability density &. This is a consequence of the

definition of m. -
We can construct the three processes jointly so that

G(t) <r,<H(?).
Using that f, and the W, are independent, we have
Var(H(t)) = E( f,)Var(W,) + E(Wy)*Var(f,).
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This and a similar formula for G(¢) imply that under assumption (4), r, is in
L?(m) for all time ¢.

Observe that the same arguments show that r; is in L%(m).

Comparing r, to H(¢) and G(¢), it is not difficult to see that

1

v=lim —E(r,, -rlF)=Y bl) - X l1x_,
h—0 h I>1 I>1

and that this limit occurs in L'(m), where X is the distance between the first

two particles. The same comparisons show that

C = lim lEm(Xz(h)) =2 126(1).
no0 h =1

Observe that the corresponding terms C' and v’ for the frozen process are
respectively equal to C and v (this is a consequence of the nearest-particle
interaction).

From (4) we see that v is in L%(m). From these remarks we can conclude
that Theorem 2 can be applied to r, and r,.

Using the reversibility of m, we have that, for any cylindrical function f:

(f,S8(t)fIm = 0.

So the expression of the diffusion constant D given in Theorem 2 implies the
following corollary.

CoroLLARY 1. D < 2%, ,1%b(1).

At this point we do not have a lower bound for D and the limit Brownian
motion could be degenerate; in the next section we will prove that this is not
the case.

3. The diffusion constant is strictly positive. We will use a strategy
suggested in De Masi, Ferrari, Goldstein and Wick [2] to find a lower bound for
the diffusion constant D. We will find the diffusion constant D’ of the frozen
process and then show that D is larger than D'.

To find D', we will compare the movement of the edge r; of the frozen
process 7'(¢) to a random walk that we will denote P(¢).

We define P(0) = 0. Every time we have a birth on the right of the
rightmost particle of the frozen process 7'(¢), P(¢) jumps to P(¢) + M. Every
time the rightmost particle of 7'(¢) dies, P(¢) jumps to P(¢) — M. Recall that

M= Ib(l).
I>1
Note that the preceding rules imply that after an exponential time of parame-
ter 2, P(¢) jumps either to P(t) + M or P(t) — M with probability 3.
We have the following theorem.

TuEOREM 3. lim,_, (1/ Vt)EIP(t) — r]| = 0.
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Proor. Let Z_; be the distance between the ith and the (i + 1)th particle
of 7'(¢) at time 0, for i > 1. Using the definition of the initial distribution m,
the Z_; are independent of each other and have the same density b. Every
time a particle appears on the right of the rightmost one, then r, jumps to
r] + W., where W, is a random distance. The W, are independent of each other
and of the Z,. Using the assumption b(k,») = b(k), we see that the W, also
have density b.

Define

Q(t) = 37P() and m(1) = min Q(s).
We can describe r; only using Q(¢), m(¢) and the Z;, W;. We now give two
examples. Assume that at time ¢, m(¢) = —2 and Q(¢) = 1. Then
ri=-2_1-Z 4+ W_,+W_,+W,.
Assume that at time ¢, m(¢) = —3 and Q(¢) = —2. Then
rl=-2_1-2_,—-Z_ 5+ W_,.
More generally if P(¢) < 0, then

-1 Q)—-1
n=-Y Z;+ Y (W,-2%2);
i=Q() i=m(¢)
if P(¢) > 0, then

Q) -1
=Y W+ Y (W,-2%).

i=1 i=m(t)

Let a > 0 be a real number which will tend to 0. We have

E(l’}' - P(t)ll(P(t)>0})

Q) -1
P(t) = X Wi |Lpwsq| +E|| X (W -Z)
i-1

i=m(¢)

<E

Consider first the term

E

Q(t)
P(t) - Z VVz 1(P(t)>0})~
i=1 .

Using that P(¢) = Q(¢)M, the preceding term is equal to

0
Y (M-W)
i-1

Q)

Y (M-W)

i=1

+E

Law> o )) :

Law <ayt)

(5) E(

Using the triangle inequality and the fact that the W, all have the same
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distribution, we have

Q)
(6) WE ;1(M -W) l(Q(t)q‘g,) <aEIM — W,|.
For the following term,
Q@)
(7) E ';1(M - Wi) 1(Q(t)>a¢£)),

using the independence between Q(¢) and the W;, we have that (7) is equal to

oo

Y, P(Q(t) =1)E

l=a\/t_

l
L (M- W)

Since the W, are an independent identically distributed sequence in Li(m), we
have the following convergence:

(8) lim E

>

1 !
=¥ (W,-M)|=0.
i=1

We use now the Cauchy-Schwarz inequality and

t 2(4)\"/* .
(9) E(E?%lm(t»aﬁ)) SE(Qt( )) P(Q(t) > aVt) .

But E(Q*(t)) = 2t, for all ¢ > 0. From (8) and (9) we have

Q)
g | e ] -0

And so we can conclude that

Q®)
thf.lo WE( ElWi - P(¢) 1(P(t>>0)) = 0.
Consider now
’ -1
E( Y (W, -2) 1(P(t>>0))‘
i=m(¢t)

Setting M(t) = —m(¢), by symmetry we have that the preceding term is equal
to

M)
Y (W, -Z)
i=1

M)

X (W.-2)

i=1

Limy> aye }) .

(10) E( 1(M(t)<a,\/t_)) + E(

Using the triangle inequality and the fact that the W, — Z; all have the same
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distribution, we have
M@)

X (W, -Z)

i=1

1(M(t)<a,ﬁ)) <aVt E\W, — Z,|.

(11) E(

For the second term of (10), we use the independence between the W, -2)
and M(t) so that

M@) ® l
E( X (W, -2) 1(M(t)>a\/t_)) = Z{P(M(t) = l)E‘ X (W, - Z)|
i=1 I=ayt i=1

Since the (W, — Z,) are an independent identically distributed sequence in
L(m), we have the following convergence:
l

X (W, -Zz)

i=1
Now we have to show that (1/ \/f)E(M(t)l(M(,)>aﬁ)) is bounded. To do so, we
apply a lemma due to Skorohod (Lemma 3.21 in Breiman [1]):

P(|Q(?)| = 1/2),

1
(12) lim —E - 0.

l—o [

(13) P(|M(t)| 21) < T=e])

where
c(t, 1) = sup P(1Q(s)| = 1).

s<t
It is not difficult to see that
o(t,1) = P(Q(1)] = 1) < P(IQ(1)| > avE) = o(t),

where the inequality comes from ! > avt. We can use again the Cauchy-
Schwarz inequality to obtain an upper bound for E(2|Q(¢)1q.)> . )) and the
central limit theorem to compute lim, _, (1 — ¢(¢)). These last two observations
used in (13) prove that (1/ vt YE(M(#)1 3¢5 o jiy) is bounded. This fact and
(12) imply

1 M@)
tll_{rolo V“;E( i§1 (W, -2, 1(M(t)>a,/[)) = 0.
So we can conclude that
1 i‘,l l
lim —E (W, -Z)|=0.
foe ‘/Z i=m(t) .

We now have
. 1 - !
lim \/t_E(|'°t - P()[Lpy> ) = 0.

It is clear that the same proof will work for the term corresponding to
P(t) < 0 and the proof of Theorem 3 is complete. O
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An immediate consequence of Theorem 3 is the following corollary.
CoroLLARY 2. D' = 2(X,.,Ib(1))>
We are now able to find a lower bound for D.
CoroLLARY 3. D > 2%, ,lb(1))>

Proor. The results in [2] and [3] give alternative expressions for D and D'
D =C+ 2{v, L"v),,,
D' =C + 2, L ),.
We know that C = C’ and v = v'. Using

L=Ly+L
and
(v, Lyv)n, <0,
we have
(14) (v, Lv),, is smaller than {v, L'v),,.

But L and L' are self-adjoint operators in L2%(m) and it is shown in [3]
(Lemma 3.1) that (14) implies

(v, L™ 'v),, is larger than (v, L' "'v),,.

The proof of Corollary 3 is complete. O
4. Two open problems.

1. T. Liggett asked the following question: What happens if _ , . ;{26(1) = «?
Do we still have convergence to Brownian motion? The methods in [2] and [3]
do not seem to apply if this second moment condition fails.

Related to this problem, we can make the following observations: For the
proof of Theorem 3, we only need the first moment condition ¥, ;Ib(1) < .
This shows that this last condition is enough to prove that the right-
most particle of the frozen process converges to a Brownian motion even if
Var(r]) = o [this is implied by ¥, ;1%b(1) = c].

2. Consider {(¢), the critical reversible nearest-particle system (not seen
from the edge) under the initial distribution m. If {(¢) converges in law to a
probability measure v, using the convergence of: the edge to a Brownian
motion, it is easy to see that v(&) > 1. In fact, our conjecture is that {(¢)

converges and
1 1
V= 56!3 + M,
where u is the upper invariant measure which is a renewal measure with
density b.



NEAREST-PARTICLE EDGE FLUCTUATIONS 205

Acknowledgments. This work was done for the author’s Ph.D. disserta-
tion at Universidade de Sao Paulo. Thanks are given to P. Ferrari for his
encouragement as adviser. The author also thanks T. Liggett for very interest-
ing discussions while he was visiting UCLA.

REFERENCES

[1] BrEmAN, L. (1968). Probability. Addison-Wesley, Reading, Mass.

[2] DE Masi, A., FERRARI, P., GoLDSTEIN, S. and Wick, D. (1985). An invariance principle for
reversible Markov processes. Application to diffusion in the percolation regime. In
Particle Systems, Random Media, and Large Deviations (R. Durrett, ed.). Contemp.
Math. 41 71-85. Amer. Math. Soc., Providence, R.I.

[3] DE Masi, A., FERrARI, P., GOLDSTEIN, S. and Wick, D. (1989). An invariance principle for
reversible Markov processes. Application to random motion in random environment. J.
Statist. Phys. 55 787-855.

[4] GaLvEs, A. and PresurTi, E. (1987). Edge fluctuations for the one dimensional supercritical
contact process. Ann. Probab. 15 1131-1145.

[5] LicgeTT, T. (1985). Interacting Particles Systems. Springer, New York.

[6] ReED, M. and SiMmoN, B. (1972). Methods of Modern Mathematical Physics. Academic, New
York.

[7] SpiTzER, F. (1977). Stochastic time evolution of one dimensional infinite particle systems.
Bull. Amer. Math. Soc. 83 880-890.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF COLORADO AT COLORADO SPRINGS
COLORADO SPRINGS, COLORADO 80933-7150



