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ALMOST SURE CONVERGENCE OF CERTAIN SLOWLY
CHANGING SYMMETRIC ONE- AND
MULTI-SAMPLE STATISTICS

By N. HENzZE AND B. VoigT

Universitdt Karlsruhe

Let X{, i=1,...,k; j €N, be independent d-dimensional random
vectors which are identically distributed for each fixed i = 1,..., k. We give
a sufficient condition for almost sure convergence of a sequence T, . .,
of statistics based on X @ j=1,...,k j=1,...,n,;, which are symmetric
functions of X{¥, X @ for each i and do not change too much when
variables are added or deleted A key auxiliary tool for proofs is the
Efron-Stein inequality. Applications include strong limits for certain near-
est neighbor graph statistics, runs and empty blocks.

1. Introduction. The Efron-Stein inequality [ESI, Efron and Stein
(1981)], which essentially says that Tukey’s jackknife estimate of variance is
nonnegatively biased, has already had interesting applications in varicus fields
[Hochbaum and Steele (1982), Steele (1981, 1982), Devroye (1987), Steele,
Shepp and Eddy (1987)].

Alternative proofs, generalizations and analogues of the ESI were given by
Karlin and Rinott (1982), Bhargava (1983), Vitale (1984), Rhee and Talagrand
(1986), Steele (1986) and Vitale (1988).

It is the purpose of this paper to show how the ESI may be fruitfully applied
to yield almost sure convergence of certain symmetric one- and multi-sample
statistics with small fluctuation when variables are added or deleted. The main
message is that in this case convergence of expectations implies almost sure
convergence. For ease of reference we restate the ESI.

LemMma 1.1 [Efron and Stein (1981)]. Let X,,..., X, ., be i.i.d. d-dimen-
sional random vectors and S(x,, . .., x,) a real-valued symmetric statistic such
that E[S(X,,..., X, )1 <. If §;=8(X,...,X; y, Xi1p,..., Xy, 0=
1,...,n+1,and S = (n + V'L 2LS,, we have

Var(S(Xy,..., X,)) < E| T (8- s)]

i=1
2. Main result. Consider 1ndependent random vectors X, i = 1,...,k;
j €N, in RY where, for each i, (X; (‘)) eN are 1dent1cally dlstrlbuted.
For (n,...,n;) € Nk let S, ., = Snl,...,nk(X{I)’ L XD XO,
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X, X® X,(,’;)) be a real valued statistic which is symmetric in each

ng?’*

group X{,...,X® i =1,...,k. Suppose that E[S? ,]1<o. In what
follows, n = n, + - -+ +n, denotes the total sample size. For short, let S,, =
S .

LITERER] ng

LeEmMMA 2.1. Assume that for each (n,,...,n,) € N*, there is a positive
constantd,, . , such thatforeachi=1,..., k:

.....

(21) |Sn1 ..... n, Snl ..... ni_Lni+lngeg,..., nkl = dnl ..... ng? P-a.s.
Then
-1 -172
Var(n Snl ..... n,,) <2n dn ..... ny

ProOF. Letting Y = (X{(,..., X5, ;X®, .., X®), i=2,...,k, we
start with
Var(S,) = E[Var(S,|Y®)] + Var(E[S,|Y®]).
Put S = S (X®, ..., X®, XDy, ..., XD, ;; YP] and

_ ny+1 .
S,=(n,+1)"' ¥ 8.
i=1

By Lemma 1.1 and (2.1), we then have P-a.s.:

ny+1
Var(S,)Y®) <E| ¥ (S$ - §n)2|Y(2)]
i=1

ny+1 9
i 2
< £ E[(59 - Suronm ) 77
2
= (m + DE[(S0 = 8,00, 7

.....

and thus
Var(S,) < 2n,d2 . + Var(E[S,Y®]).
Writing gP(Y®) = g, (Y®) = E[S,]Y®] and applying (2.1) to the con-

s
ditional expectation g&(Y®), we obtain
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and proceeding as above it follows that
Var(gQ) = E[Var(g@IY®)] + Var(E[g@IY®])
< 2n2d,2,1 n, + Var(g@(Y®)).

,,,,,

Iterating this reasoning for i = 3,..., k — 1 and finally applying Lemma 1.1 to
g(Y®) yields the assertion. O

LEmMmA 2.2. Let (N));cn be a sequence of real-valued random variables
such that lim; _,, E[N;] = b € R exists. If

L P(|N; ~E[Nj][>¢) <=
j=1
for each ¢ > 0, we have lim; ,, N; = b, P-a.s..
Proor. Use the Borel-Cantelli lemma and the triangle inequality. O
We now state our main result.
THEOREM 2.3. In addition to the conditions stated at the beginning of this
section, assume the following:
(@) There is a positive constant ¢ with |n"1S,| < ¢, P-a.s.

(b) There are positive constants K, a,,...,a, with a; + -+ +a, >k — 2
and a sequence (d,, n,eN Of positive real numbers such that

t=1,...,k, P-a.s.,

..... nk)nl,‘..,

d

_ 1/4k
l-—aj,l—ay ... l-a
ny,..., nkSK(nl 1n2 2 ny k) .

Let (ny,...,n.) = (ny(j),...,n(j));en be a fixed sequence in N* such that
lim; ,,n(j)=w(G=1,...,k) and

7= lim n, () (ma(s) + - +ny(J) >0,  i=1,...,k,
exists (for k = 1 set 7, = 1). If for some constant b,
lim E[(n,(j) + -+ +r4(1)'Sa] =,
we have

lim (ny(j) + -+ +n4(j)) 'Sa=5b, Pa.s.
J—o®

ProoF. From condition (b) and Lemma 2.1, we have
(2.2) Var(n™'S,) <2n'd2 .
Let (ny(j),...,n,(j));en be a sequence in N* with the properties stated
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above. Given j € N and i €{1,..., k} choose a,(j) € N such that a,(j)? <
ni(j) <(ay j) + 1P, where p = 2k It is easily seen that for some positive
constant M we have

aiz(j)
Without loss of generality assume that

(2.4) (@1(j1)s- -5 ax(d1)) # (a1(Ja), - - - ap(Js)) if jy # js.
Let £ > 0 be fixed, and let

(2.3) >M, 1<iig<k;j=1.

. . -1 .
N; = (al(J)p + +ak(J)p) Sa iy, ... anis d(J) =daGy,... e
It then follows from (2.2), (2.3), (2.4) and condition (b) that there is a positive
constant L such that

L PN~ E[N]|> )

8—2

Var(N))

‘™

|/\
N I
|
Tl[\’ls -

J

cuj)[axj) e ray ()]

f d(Jj )2[a1(j)2 al(j)2 b +ak(j)2 ak(j)2 -
i1 ay(j)* -+ ay(j)® ay(j)? -+ ap(J)?

k
(l;] ,(J))

<L ild(j)z[al(j)2 ak(j)2] -
jo

)
SLZ e Y (d )[ll...iz]—l
ii=1 i,,—l
o oo
SLK2Y -+ ¥ (PO .. jplen)Pliz .. 2]
i=1 ip=1
oo
= LK?2 Z Z [ll+a1 1+a,,] 1
i=1
< oo,

From Lemma 2.2, we deduce that

. . . -1
(2.5) }l_rfolo(al(l)p + o 40y (D)) Sap, agr=b,  Pas.
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Consider now the following interpolation argument:

Let j € N be fixed and let (ny,...,n,) = (n(j),...,n,(j)). There is exactly
one vector (a,...,a;) = (a()),...,a,(j) € {(ai),...,a,(i): i € N} such
that

P (p .
af’Snl<(al+ 1)P= Z ( ')a{,_’]
j=o\J
<aP + (2" - 1)aPl,  i=1,...,k.
It follows that
(26) 0<n;,—aP< (2P -1aP '<(2°P-1nP VP, i=1,...k,
and thus for sufficiently large j,
(2.7 ai? < (n;— (27 = Dn®~2)7" i=1,.. k.

Letting T(il, ey ik) = (ll + - +ik)_lsi1
the triangle inequality, we have

voivip Gyyo.nrip) € N, and using

|(n1 + o +nk)—lsn1,...,nk - (af + +a£)_lsaf,...,af|
=|T(ny,...,n,) — T(a?,...,ad)l

ny—1
< Y IT(i, + L,ng,...,n,) — T(iy,ng,y...,np)l
iy=af
ny—1
+ Y, IT(al,iy+ 1,n5,...,n;,) — T(ab, iy, ng,...,ny)l
i2=a§
n,—1
+ -+ Y IT(aP,ad,...,a8_1, i, +1) = T(ab,...,af_1,ip)l.
ik=ai’

It will be seen that each of the & sums (depending on j) in this upper estimate
tends to zero as j — . Since the reasoning is the same for each sum, only the
first sum is considered. From conditions (a) and (b), it follows that P-a.s.,

IT(i,+ Lng,...,n,) = T(i;,ngy...,np)l
(g +ng+ " +1,)S; i1y 0,

(i +1+ny+ - +n,)S; o al
T (it 1 Ang+ o Ang) (i g ¥ o tny)
< |Si1+1,n2,...,nk - Sil,nz,...,nkl
T iyt 1l4+ngt+ - +n,
+ ISil,nz,...,nkl
(i, +1+ny+ - +n,)(i; tng+ -+ +ny)

1
< d.
i;,+1+ng+ +nk( R

+c).
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Observe that by (2.6),
ny;—1 c ny—1

)» <c Y a;f =ca;?(n, - af)
iy =a? i, =af

<cajyl(2? - 1),

where the last term tends to zero as j — «. Furthermore, invoking (2.6) and
(2.7) and putting a = a; + - -+ +a,, straightforward algebra yields

n;—1
Z dll:nz ----- g

i1=afi1+1+n2+ et

ngy l-ay n, l1—ay 1/4k
n, n,

n(lk —2—a)/4k

(1 — (27 - l)nl_l/p)(4k—l+a1)/4k’

i1+1+n2+"'+nk

< (2 - 1)K

Since by assumption « >k — 2, we see that the last term tends to zero as
J — . Summarizing, we have the following: For each ¢ > 0, thereisa j, € N
such that for each j > j,:

IT(ny(J),---ne(J)) — T(an(J)", ... au(4)?) <e,  Paas.
In view of (2.5) the proof of Theorem 2.3 is complete. O

3. Applications.

3.1. One-sample nearest neighbor statistics. Consider a sequence
X,, X,,... of iid. random vectors (points) in R?, d > 1, with a.e. continuous
Lebesgue density f(-), and let || - || be an arbitrary normon R¢. Fori =1,...,n
and r=1,...,n — 1, let NX(X,) denote the rth-nearest neighbor of X,
among the points {X;: 1 <j < n;j + i} with respect to | - |l. Note that N{”
depends on all X;, i = 1,...,n. Obviously, ties may be neglected since their
occurrence is an event of probability 0. In what follows, I{A} denotes the
indicator of an event A. The random variable

n
nTREND =n~t Y X, = NO(NO(X)))
i=1
is the fraction of points X;,..., X, which are the /th-nearest neighbor to
their own rth-nearest neighbor. It has been studied by various authors [Clark
and Evans (1955), Clark (1955), Dacey (1969), Schwarz and Tversky (1980),
Cox (1981), Pickard (1982), Henze (1986, 1987)], usually under the ideal model
of events within a d-dimensional homogeneous Poisson process.
To state a strong limit theorem for n !R{¢", let A denote d-dimensional
Lebesgue measure and write u for (d — 1)-dimensional Hausdorff measure
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(surface area) normalized such that wu{x € R%: |lx||= 1} = 1. Generically,
S(x, p) is the open || - [l-sphere with radius p centered at x, and 0 = (0,...,0)
is shorthand for the origin in R?. For u with |lu|| = 1, let
A[S(0,1) N S(u,1)] A[S(0,1)]
p(u) = »q(u) = :
A[S(0, D] MS(0,1) US(x, )]

Observe that q(u) = (2 — p(u))~ L. We finally write

m-—1+j

oy = [ i1 - oy CoN = me1 — p)d
b(m,j.p) = (7 )o@ =p)" 7 wimip) = (21 e - p)
for the probabilities of the binomial and negative binomial distribution, respec-

tively.

THEOREM 3.1. We have

lim n"'R¢:" =t (1), P-a.s.,

n—o

where

L) = [ X b(r— 1,4, p()W(r, 1~ 1 —j,q())u(du)
llull=1;—9

and k = min(r — 1,7 — 1).

Proor. Clearly R%" is a symmetric function of X,,..., X, satisfying
In"IR""| <1 as. It was shown in Henze [(1987), Theorem 1.1] that
lim E[n~'R¢"] =¢.(1). From Corollary S1 of Bickel and Breiman (1983),
which may be easily generalized to rth nearest neighbors, we deduce that
there is a universal positive constant A, depending only on r and || - || such
that, for any set 2,,...,2, of n distinct points in R¢, z, can be the rth
nearest neighbor for at most A, other points. This entails

[R¢:") — RVl < A, P-as.,

for a constant A depending only on r, [ and || - ||, so that the assertion follows
immediately from Theorem 2.3. O

Another interesting problem concerning nearest neighbors is the fact that,
although each point X; has a unique nearest neighbor, it is not necessarily the
nearest neighbor of precisely one other point. The problem of finding the
probability that a random point is the nearest neighbor of precisely s other
points is of interest in various fields [Tversky and Rinott (1983), Maloney
(1983)] and has been investigated in the situation of a homogeneous d-dimen-
sional Poisson process [Roberts (1969), Newman, Rinott and Tversky (1983),
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Newman and Rinott (1985)]. Let

n n
nTITO =n"t Y I{ Y I{X, = NO(X,)} =5
j=1 \i=1
i#j
be the fraction of random points Xj,..., X, that are the nearest neighbor of
precisely s other points.

THEOREM 3.2. We have

lim n T = p(s), P-a.s.,

n— o

where

1 =1 )
p(s) =-';!_VZ=:OL—!(_1) 8510 s>0,

6,=f Fr fexp

r = {(xl,...,x,) e[RY:lx) < min |x-x)15)< r}.

l<v<r;v#j

—/\(iL:JlS(xi,Iin))]dxl - dx,

REMARK. Observe that I, = & and thus 6, = 0 for sufficiently large r.

Proor. Henze [(1987), Theorem 1.4] showed that lim, ., E[n"'T] =
p(s). The assertion now follows from Theorem 2.3 by analogy with the
reasoning given in the proof of Theorem 3.1. O

In connection with a nonparametric multivariate two-sample test [Henze
(1988), see also Schilling (1986)] the nearest neighbor graph statistic

n
-1 2
C{) = (nr) y (D,(,’)J — r)
j=1
is of interest. Here

n r
D,(f)J = Z Z I{Xj = Nrgy)( Xi)}
1

=1lv=

J

~~

is the number of points X,,..., X;_;, X;.,,..., X,, for which X; is one of the
rth nearest neighbors. In terms of graph theory, D,(,’ )J is the indegree of vertex
X in the union of the nearest, second nearest, .. ., rth nearest neighbor graph
of X,,..., X,. In this way, C{” may be regarded as an empirical variance of

indegrees.
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TuEOREM 3.3. We have

(3.1) limCP=1-r+r 1t Y c¢(,s), Pas,
n—® l,s=1
where
e(l,s) = a% ) ZO wa'n'” A(S; N S,) A(S; N\ S5)°A(S, \ S;)"

xexp[—A(8S; U Sy)] du, dus,,
min(l +a — 2,5 + B — 2), b=l-v+a-—-2,
s—v+p-—2,

V=

n

Sep= {(ul, u,) € [Rd]2: 0eS(uy,lu, - u2|)a NS(ug,lu, — uzl)B},
S;=8(uj,lu;l) forj=1,2and A* = A, A° = A° foraset A.

Proor. Some algebra and symmetry give

E[cO]=1-r+rt 2 (n—1)(n-2)
l,s=1

X P(Xs = NI(X,), Xy = Nrfs)(Xl))~

By straightforward but tedious calculations along the lines of Henze [(1987),
Section 3] it can be shown that the expectation of C{” converges to the
right-hand side of (3.1). Corollary S1 of Bickel and Breiman (1983) implies that
the conditions of Theorem 2.3 are fulfilled for S, = nC{”. Since C{” is a
symmetric function of X,,..., X,, the assertion follows. O

3.2. Nearest neighbor comparisons for two samples. Consider two se-
quences (samples) X, X,,..., X3 Y, Y,,...,Y, ... of independent
d-dimensional random vectors (points), where X, X,,... (Y},Y,,...) are
identically distributed according to a Lebesgue density f(-) (g(-)) which is
assumed to be continuous a.e. Let

X, ifl<i<n,g,

12
Zi=\y, ifn,+1<i<n,+n,y,

i—ny

and put n = n, + n,. Define N{"(Z,) to be the rth nearest neighbor of Z;
among Z,,...,Z;_4, Zj.y,---,Z,, and let

I;(r) = I{Z; and N{"(Z;) belong to the same sample}.
Then

T, = Z Z L;(v)

Jj=1lv=1

is the number of all »th nearest neighbor comparisons (v = 1, ..., r) in which
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points and their neighbors belong to the same sample. T,f;)nz may be used as a
statistic for testing the hypothesis H,: f = g a.e against general alternatives
[Schilling (1986), Henze (1988)].

THEOREM 3.4. As n,,ny, = ® such that n,/(n, +ny) > 7, 0<7<1, we
have

lim(nr) 'T" . =D(f,8,7), P-a.s.,

where "1"2
2f(x)% + (1 — 7)%g(x)?
@2 P(fe) = [ e e~

Proor. The proof of lim E[(nr)"'T\", 1= D(f, g,7) is given for the case

r =1 in Henze (1988). The general case r > 1 follows similarly. Obviously,
TS, is a symmetric function within each of the two samples. Since

I(nr) 7™ | <1 and

nyng
ITrf:)nz - Trg)n2+1| < A’ ITrg)nz - Trf:?f—l n2| = <A
for a constant A depending only on r and the chosen norm || - || [use again
Corollary S1 of Bickel and Breiman (1983)], Theorem 2.3 yields the assertion.

]

ReMARK. Theorem 3.4 may be generalized to the case of £ independent
samples. If f;(-) denotes the density of points from the jth sample of size n;
and T(")m,n , stands for the number of all vth nearest nelghbor type c01nc1-
dences (v = 1,...,r), we have, as n; > » with n;/(ny+ - +n,) > 1;,0<
<1, j= 1,...,k:

J=].T2f (x)

Ek 17' f(x) dx, P-a.s.

Km[(n, + - +n,)r] T —f

.....

3.3. Runs and empty blocks. Let X, X,,..., X, ,...; Y, Yy, ..., Y, ,...
be two samples of independent real-valued random variables, where
X, X,,...(Y,,Y,,...) are identically distributed according to a Lebesgue den-
sity f(-) (g(-)) which is assumed to be continuous a.e. Let R, , denote the
total number of runs (sequences of maximal length within the same sample)
when the pooled sample X;,...,X,,Y;,...,Y, is arranged in ascending

order [Wald and Wolfwitz (1940)] As above, let n =n,; + ny. The following
strong law of large numbers for R, , seems to be new.

THEOREM 3.5. As n,,ny, = ® such that n,/(n, + ny) > 7,0 <7 <1, we
have

limn"'R, , =1-D(f,g,7), Pas,
with D(f, g, 7) given in (3.2).
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Proor. Let

H_
R{) = min{X, -

{ X:j=1,...,n,X;> X},
Rgi')= mln{ Xl J = 1, '~,n2,};‘ >Xi}’
R =min{X; - Y;: j=1,...,n,, X; > Y}},
R® = min{Y; - Y;: j = 1,...,n2,Yj>Yi},

with the convention min @ = . Then

n, ng
R, , =1+ 211{Rg;> <R®} + 211{Rgi> <R®)
i= i=
which, in other words, is one plus the number of points in the pooled sample
whose nearest neighbor fo the right is of different sample type. By condition-
ing on X, respectively, Y; and arguing along the lines of Henze [(1988),

Theorem 4.1] we have

1—-7
lim PR <EY) = [ Tf(x() n (1)6:(:)2(@ flx) dz,
lim P(R{? < R()) = fff(x) +Tf§x3 7)8(%) 8(x) &,

which entails

f(x)g(x)
lim E{n~! =27(1 -
im E[n "R, ng] =201 = 1) [ s T
=1 _D(f,g’T)‘
Since R, is a symmetric function within each sample satisfying
In"'R, .| <'1'and IR, ny = Bujsinl <2, IR, ,, — R, ,,+1l <2, the asser-

tion follows from Theorem 2.3. O

Observe that D(f, g,7) = 72 + (1 — 7)2 with equality if, and only if, f=g
a.e. Consequently, Theorem 3.5 yields a simple consistency proof of the run
test under weak restrictions on the densities f and g.

Let, in the situation stated at the beginning of 3.3, X;, < -+ <X, , be
the ordered X-sample and let B; = (-, X;)], B; =(X;_1), X, J
2,...,nq, B, ;1= (X)) the blocks generated by X, ..., X, . Then

ni+1 ngy
E, .= X I{ N{y ¢ Bi}}

i=1 \j=1

is the number of empty X-blocks which may be used to test the hypothesis
f = g a.e. [Wilks (1962)]. Also the following strong limit law for E, , seems to
be new.
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THEOREM 3.6. As ny,ny, — © such that n,/(n; +n,) > 7, 0<7<1, we
have

e *f(2)”
(3.3) limn™E, , = fo(x) (=g dx, P-a.s.

Proor. Observe that, with the notation of the proof of Theorem 3.5,

ny
E, . — L I{RY>RY} <2
i=1

Since the right-hand side of (3.3) is the almost sure limit of n~'L}1, {R{) >
RV} (see the proof of Theorem 3.5), we are done. O
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