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on the occasion of his sixtieth birthday

A notion of U-exponents of a probability measure on a linear space is
introduced. These are bounded linear operators and it is shown that the set
of all U-exponents forms a Lie wedge for full measures on finite-dimen-
sional spaces. This allows the construction of U-exponents commuting with
the symmetry group of a measure in question. Then the set of all commut-
ing exponents is described and elliptically symmetric measures are charac-
terized in terms of their Fourier transforms. Also, self-decomposable mea-
sures are identified among those which are operator-self-decomposable.
Finally, S-exponents of infinitely divisible measures are discussed.

The theory of Lie groups and their Lie algebras is very well established and
has many applications in different branches of mathematics and physics.
Notions and first results for Lie semigroups are already in the fundamental
book by Hille and Phillips [(1957), in the next-to-last chapter]. During the last
10 years or so many papers have appeared on Lie semigroups; compare
references in Hilgert and Hofmann (1986a, b) or the recent monograph by
Hilgert, Hofmann and Lawson (1989). In many of these, differential geometry
and geometric control theory are used as examples where such theory is
needed. This paper shows that tangent spaces to some operator semigroups
and groups are very natural and basic tools in the central limit problem in
probability theory on vector spaces. It seems that there are no results in Lie
semigroup theory to be applied directly in the context of probability measures.
One can hope that both fields will benefit from this new direction of investiga-
tion, Lie semigroup theory and probability theory. Here tangent spaces (sets)
are used to characterize self-decomposable measures among those which are
operator-self-decomposable (cf. Proposition 1.6). Furthermore, the presenta-
tion of results in this note emphasizes the probabilistic origin of the problem
in question.

1. Notation, definitions and results. Let X be a Banach space and
(A(X), ) denote the convolution semigroup of probability measures on X
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with the topology of weak convergence. A measure u € P(X) is said to be full
or genuine on X if its support is not contained in any proper hyperplane. By
End(X) and Aut(X) we mean the Banach algebra of all bounded linear
operators on X with the operator norm topology and the group of all invert-
ible operators on X, respectively. For u € #(X) and A € End(X), Ap de-
notes the image of u by A, that is, Au is the probability distribution of A¢
whenever u is a probability distribution of X-valued random variable ¢. Then

A(p*v) =Apx* Av, (AB)pu = A(Bp),

for A, B € End(X) and u, v € £(X). Urbanik (1972) introduced the notion of
a decomposability semigroup D(u) of a probability measure u, namely,

(1.1) D(u) :={A €End(X):n =Apu*p,, for some p, € P(X)}.

It is obvious that D(u) is a semigroup containing the zero 0 and the identity I.
Furthermore, D(u) is closed in End(X); compare the proof of Proposition
1.2(b). [The norm topology is always taken in End(X).]

We say that @ € End(X) is a U-exponent of a measure u € Q(X ) if, for
each ¢t > 0, there exists v, o € #(X) such that

(1.2) p=euxv, o

In other words, @ is a U-exponent of u iff D(u) contains the one-parameter
semigroup e’?, ¢ > 0. Of course, @ = 0 is a U-exponent for all u € P(X). On
the other hand, each full operator-self-decomposable u admits a U-exponent @
with the property lim, . e’® =0 (in norm topology) [cf. Urbanik (1978)].
Recall here that u is called operator-self-decomposable (or a Lévy measure) if
u is the limit distribution of the sequence

(1.3) A (& + &+ o +E,) tx,, n>1,

where x, € X, A, € Aut(X), the £,’s are X-valued independent random
variables such that the triangular array {A,¢;: 1 <j < n, n € N} is uniformly
infinitesimal and

(1.4) sem{A,,A;':1<n <m, €N} iscompactin End(X).

[sem(F') denotes the smallest closed semigroup spanned by the family F. If
dim X <® or A, =a,I, a, € R*, then (1.4) can be omitted.] Compare
Urbanik (1978). The limits of (1.3) with A, = a,I are called self-decomposa-
ble measures (or Lévy class L distributions); compare Loéve (1963) and Jurek
and Vervaat (1983). Thus a full u is operator-self-decomposable if and only if
w admits a nonzero U-exponent @ with lim, ., ‘@ = 0, while p is self-decom-
posable if and only if u admits @ = —1I as its U-exponent [cf. Urbanik (1978)].

There are also other instances where some purely probabilistic properties of
measures can be expressed in terms of algebraic properties of their decompos-
ability semigroups [cf. the proofs of Corollary 1.3 and Proposition 1.4, and
(2.2)].

In combination with decomposability semigroups D(u) it is natural to
consider symmetry semigroups A(u) consisting of those A € D(u) for which
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k4 = 8(a) (point mass measure concentrated at a € X) in (1.1) [cf. Billingsley
(1966), Sharpe (1969) and Urbanik (1972, 1975) for X = R* and, more gener-
ally, Urbanik (1978) for X a Banach space]. They are also closed subsemi-
groups of D(x) and always contain I. In fact, we have the following proposi-
tion.

ProposiTiON 1.1. Ay(u) = A(u) N Aut(X) is the largest subgroup of the
decomposability semigroup D(u).

First we are going to describe the set E;(u) of all U-exponents of a given
measure u. After that we are able to characterize self-decomposable measures
among those which are operator-self-decomposable (cf. Proposition 1.6). Our
main tool is the notion of tangent space. Recall that the tangent space 7 (H)
at the identity of a given subset H of End(X) consists of those A € End(X)
such that

(1.5) limd;'(G, -1I)=A forsomeG,cHand0<d, |0
n—oo
[cf. Hille and Phillips (1957), Definition 24.14.1. and Lemma 24.14.2).

PRroPOSITION 1.2.  For a probability measure u on a Banach space X, its set
Ey(u) of all U-exponents has the following properties:

(@) 0 € Ey(pn), aEy(n) = Ey(u) for a > 0.

(b) Ey(un)= Ey(n) (closure in the operator norm topology).

(©) Ey(p) + Ey(p) = Ey(w).

(d) AE (WA = Ey(p) whenever A € A y(p).

(&) Ey(u) N (-=Ey(w) = T(AW) N (- T(A(w)) and it is the largest lin-
ear subspace contained in Ey(u), while Ey(u) — Ey(u) is the smallest linear
space containing E;(u).

We specify the preceding results for the particular case X = R* and the full
Borel measures on R*. In this case, A(u) = A,(u) is a compact subgroup of
Aut(R*) [cf. Billingsley (1966), Sharpe (1969) or Urbanik (1972)].

CoroLLARY 1.3. If u is a full measure on R*, then the following hold:

(@) Ey(u) N (=Ey(p) = I(A(w) and is a Lie algebra.

(b) AE,(p)A™Y = Ey(p), forall A € A(p).

(c) e®4Ey,(u) = Ey(u), for all A € T(A(p)), where ad,(B):=AB - BA
for B € End(R*).

REMARK. Subsets W of a completely normable vector space L with proper-
ties (a), (b) and (c) in Proposition 1.1 are called wedges. If W also possesses
property (c) of Corollary 1.3 for A € W N (— W), then it is called a Lie wedge
[cf. Hilgert and Hofmann (1986a), Definition 0.5]. Hilgert and Hofmann proved
that Lie wedges are always tangent spaces of some local semigroups [see
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Hilgert and Hofmann (1986a), Corollary 5.7]. Here we investigate tangent
spaces (sets) of some closed subsemigroups of End(X) associated with proba-
bility measures by more elementary methods.

PROPOSITION 1.4. Let u be a full measure on R*. Then the following hold:

@ Ey(p)= M) N{A:0<det A <1)).
(b) For a given U-exponent @,

Q. = fA(“)gQg‘lH (dg) € Ey(p)

and commutes with elements from A(w). [Here H is the Haar probability
measure on A(w).]

Let E,;(un) denote the set of all U-exponents commuting with the symme-
try semigroup A(u) and let

cD(p) = {A €D(un): AB = BA for each B € A(n)}.
Of course, cD(u) is a closed subsemigroup of D(u) and I € ¢cD(u):

COROLLARY 1.5. For a full measure u on R* we have
Ey(n) = I(cD(p) N {A: 0 <det A <1}).

Now let us return to the question when —I € E;;(u), that is, when u is a
limit distribution in (1.3) with A, = a,I, a,, € R*. In such a case p is said to
be a self-decomposable measure [cf. Loéve (1963), Section 23, and Jurek and
Vervaat (1983)].

PROPOSITION 1.6. Suppose {0} and R* are the only invariant subspaces of
R* with respect to the symmetry semigroup A(w). If u is full and 7 (D(w)) \
T (A(n)) # Sthen w is self-decomposable, that is, —I € Ey(w).

Moreover, for a nondegenerate self-decomposable u we have -—1I€
T M) \ T(AWw).

A measure u on R* is said to be elliptically symmetric if its symmetry
semigroup A(u) is conjugate to the full orthogonal group &= &(k,R), so that
A(u) = W™1ZW for some positive definite and symmetric W.

COROLLARY 1.7. A measure p on R* is elliptically symmetric with
T (D) \ T(An) # Bif and only if there exists a probability measure p on
(0, ») such that, fory € R*,

-1

o

log #(y) = i(y, a) — c,IWyl®> + czl‘(g)/: Zl(_l)j(jlzjr(j * g))

j=

s\
x(||wy||§) Jlog(1 + s%)p(ds),
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where ¢; > 0, ¢; + ¢, > 0 and W is a positive definite, invertible and symmet-
ric matrix.

Now we will illustrate the notion of U-exponents by the example of
Gaussian measure on R*.

ExampPLE. Let yg be a zero-mean Gaussian measure on R* with covariance
operator S. Then

Ey(vs) = {@ € End(R*): @S + SQ* < 0}.

Let us return again to sequences of the form (1.3). Their limit distributions
are called operator-stable measures if the uniform infinitesimality of the
triangular array is replaced by the assumption that the £,’s are identically
distributed. Sharpe (1969), for X = R*, and Krakowiak (1979), for the Banach
space case, proved that a full measure v is operator-stable if and only if there
exists an operator B and, for each ¢t > 0, a b, € X such that

(1.6) vt = tByx §(b,).
The convolution power v*‘ is well-defined because operator-stable measures
are infinitely divisible. The operators B in (1.6) are called S-exponents of v.
Let Eg4(v) denote the set of all S-exponents of v and E,g(v) consists of all
S-exponents commuting with the symmetry semigroup A(v). Commuting S-
exponents play an essential role in the construction of the invariant norm in
Hudson, Jurek and Veeh (1986). Finally, from (1.6) we obtain

v=v"txp 070 = o(Bsy 4y A=y §(p ),
for 0 <t <1and s = —logt. Hence,
(L.7) — Es(v) C Ey(v),

for infinitely divisible v. The following characterizes S-exponents in a form
slightly different from that in Holmes, Hudson and Mason (1982) and Hudson,
Jurek and Veeh (1986).

COROLLARY 1.8. Let v be a full measure on R* and let B and B, be
S-exponents of v, where B, is a commuting exponent. Then the following hold:

(@ Es(w) =B+ J(AW) N {A: det A = 1}).
(b) E.s(v) = B, + I(CA(w) N {A: det A = 1}), where CA(v) is the center of
the group A(v).

The previous results allow us to restrict ourselves to subgroups of the
special linear group SL(k, R), which has been investigated extensively [cf. Lang
(1975)].
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2. Proofs. In order to make this paper more accessible, we quote the
following fundamental fact [cf. Hille and Phillips (1957), Lemma 24.14.4].

__Lemma 2.1, If H is a subsemigroup of End(X) then exp maps I (H) into
H, where exp A == lim,, , (I + n7'A)".

ProOF. Let h = hmn_m d;l(hn —1I) for some h,€H and 0<d, 0.
Taking n, = |d;?], n, is the integer part of d;!) and g, =
ny(h, —1I)—h, we get nkdk — 1 and g, — 0. Since h, =n;¥g, + h) +1,
we obtain A% = (I + nj; (g, + h)"* € H (semigroup property) and hence h%}*
—exph € ﬁ, which completes the proof. O

REMARK. One can show that exp A = L% _,A"/n! [convergence in End(X)].

Now, using the notion of tangent space and Lemma 2.1, we obtain the
identity

(2.1) Ey(p) = T(D(n))-

For further reference, we quote the following equivalence between one state-
ment in terms of measures and another in terms of groups:

(2.2) w is full in R® iff A(p) is a compact subgroup of Aut(R*),

[cf. Billingsley (1966), Sharpe (1969) and Urbanik (1972, 1975 and 1978)]. Also
compare Jurek (1981) for counterexamples in infinite-dimensional linear
spaces.

ProoF ofF ProposiTION 1.1. It is obvious that A ,(u) forms a subgroup in
D(w). On the other hand, if A and A~! are in D(u), then A € A j(u) because
of Proposition 1.3 in Urbanik (1972). [This argument is extended in the proof
of Proposition 1.2(e).] Thus A ,(u) is the largest subgroup of D(n). O

ProoF oF ProposITION 1.2. Part (a) is obvious.

(b) Let @, € Ey(un). Then p = e*@pu v, o ,forall £ > 0and n € N and for
some v, o € P(X). If Q, > Q in End(X), then e'@ry = e*9y as n - o, by
Theorem 5.5 in Billingsley (1968). [Here “ = "’ denotes weak convergence
in #(X).] Theorem 2.1 of Chapter III in Parthasarathy (1967) gives that
v, @, € N is conditionally compact in #(X). Hence u = e’ * v,  for any
limit point Viq of {1, q,: n € N}. (In fact, V4, = V1,Q whenever the Fourier
transform [ does not vanish.) Thus part (b) is proved

(c) Let @,,Q, € E;(n). Then Lemma 2.1 together with (a) and (2.1) implies
that exp(¢@,) and exp(¢Q,) are in D(u), for all ¢ > 0. From

t~exp(tQ,)exp(¢Q;) —I] - @, + Q,, ast — 0,

it follows that @, + @, € E;(n), so Ey(n) + E;(n) € Ey(u). The opposite
inclusion follows from the fact that 0 € E;(w).
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(d) Let u =Ap=6(a) and A € Aut(X), a € X. If Q € Ei(u), then p =
e'u v, o = e @Ap * v, o * 5(e’%). This combines with u = A=l x 5(—A~a)
into u =A""e®Aux A, o+ 8(A %% — A~ Ta). Hence A™'QA € E,(p),
so AT'Ey(un)A C Ey(p), which completes the proof of part (d).

(e) By (a) and (c) we have that E;(u) N (—E,(u)) is a linear subspace of
Ey(p). It is clear that it is the largest subspace in Ey(u). Similarly, E;,(u) —
Ey(u) is the smallest linear space containing Ej(u). The inclusion
T (AW) N (= T(A(w)) € Ey(p) N (—Ey(w)) follows from (2.1). Conversely,
if A and —A are from E;(un), then (2.1) and Lemma 2.1 imply that both e‘4
and e “4 are in D(u), for ¢ > 0. Consequently, by (1.1) there exist v, 4 and
v, _4 in P(X) such that

— HtA — pltA[(,—tA
H=eTury, 4 =e (e M*Vt,—A)*Vt,A

=pxetty, Vt, A
Hence 4| < |il |9, 4|, where again /i denotes the Fourier transform of u. Thus
|7, ol =1, in some open neighborhood of zero in the topological dual X'.
Consequently, 7, 4] =1 and v, , = 8(a, ,), for some a, , € X. Similarly,
v, _a = 0(a, _4). So e and e~*4 are in A(w), for ¢ > 0, which is equivalent to
+A being in J(A(u)). Thus identity (e) is proved. [The preceding is an
extension of the arguments of Urbanik (1972), Proposition 1.3.] O

ProoF oF COROLLARY 1.3. In view of (2.2) we have that A(u) is a group, so
A(p) = A (u); therefore (a) and (b) follow from (d) and (e) of Proposition 1.2.
To see (c), note that for the adjoint representation ad , we have exp(ad AXB) =
© e “Be” [cf. Lang (1975), Lemma on page 144]. By Lemma 2.1, we have
exp 7 (A(n)) C A(p), so (c) is a consequence of (b). O

PrOOF OF PrROPOSITION 1.4. (a) By Proposition 1.1 in Urbanik (1972), D(x)
is a compact subsemigroup for full u € P(R*). So for any Q € E, (),

sup det e°? = sup e* 2@ < o,
$=0 s=0

that is, trace @ < 0 and 0 < det e°? < 1. Therefore, @ € I (D(u) N {A: 0 <
det A < 1}), which gives (a) because of (2.1).

(b) Fullness of u gives that A(u) is a compact group [cf. (2.2)] and therefore
A(u) carries a Haar probability measure H. Since @, is a limit of the sequence
L7 ,0,8,Qg;', m>1, where a, >0, X ,a, = 1and g, € A(u), we conclude
by (a), (b) and (c) of Proposition 1.2 that @, € E;(u). This completes the proof
of Proposition 1.4. O

ProoF oF COROLLARY 1.5. In view of Lemma 2.1 and the definition of
tangent spaces, we have E_;(1) = Z(¢D(u)). The rest of the proof is similar
to that of Proposition 1.4(a). O
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ProorF oF ProposiTioN 1.6. By (2.2), A(n) is a compact subgroup of
Aut(R*). Furthermore, A(u) = WO,W~! for some positive definite self-adjoint
W and closed subgroup O, of the full orthogonal group, by the classical
Fenchel result [cf. Billingsley (1966)]. Since A(W™ ') =0, D(W )=
W D(u)W and W~ is full, we may and do assume without loss of generality
that A(u) = 0,. Let @ € 7(D(k) \ I(A(n)) and @, be the commuting
exponent from Proposition 1.4(b). Since A* = A~! for A € A(u) (O, consists
of orthogonal matrices), also @* commutes with A(x) and so does Q.QF. By
Schur’s lemma [cf. Lang (1975), page 362] we conclude Q.QF = A\?I and
@*Q, = p°I for some real A and p. Hence, °Q, = (Q,@°)Q, = Q.(Q*Q,) =
p%Q, and (A2 — p?)Q, = 0. Consequently, @.Q = @*Q, and both @,, @* com-
mute with A(u). Once again by Schur’s Lemma we get @, = AI. Now D(u) is
compact and eI € D(u), for ¢t > 0, so A < 0. Furthermore, we infer from

kA = trQ, = [A | tr(eQe")H(dg) = rQ
I

that A < 0, because otherwise dete’? =1, ¢’? € D(u), so e’? € A(u) by
Proposition 1.4 in Urbanik (1972), and finally @ ¢ 7 (D(u)) \ J(A(n)), con-
tradicting our assumption. So, by (a) of Proposition 1.2 we obtain —I € E;(u).
Conversely, —I € E;;(u) for self-decomposable wu. If —I € J(A(n)), then
e 'I e A(w), so Ay = |a(e™*y)| = |i(e ™y)l > 1 as n — », which gives
that u is concentrated at one single point. Thus the proof is complete. O

Proor oF CorROLLARY 1.7. By Proposition 1.6, u is self-decomposable, more
specifically a translation of a symmetric self-decomposable measure, since
—I € A(n). From this and Theorem 7.2 in Jurek and Vervaat (1983), we
conclude

log A(y) =i(y,a) — (¥, Dy)
+ szRk\m)fOl[cos t(y,s) — 1]t~ dtm(dx)/log(1 + llxlI?),

for a probability measure m on R* \ {0} and a real c, > 0.
Assume A(u) = &. Uniqueness of the Gaussian and Poissonian parts in the
Lévy-Khintchine formula for infinitely divisible measures implies

ADA* =D and Am(‘)=m(‘) forall AeF.

From Schur’s lemma we obtain D = c;I for some ¢, > 0. To solve the
preceding measure equation, let us define measures H, and p on the unit
sphere S*~! and the positive half-line as images of m under the mappings
x — x/|lx|l and x — ||lx||, respectively. Then H, is the Haar probability mea-
sure on the homogeneous space S*~! = O(k,R)/O(k — 1,R) and its Fourier
transform is given by

H(y) = T(k/2) ¥ (1) (JIT( + k/2)) " (lyll/2)%.
Jj=0
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Note that H,(y) = cosly| and that H,, for £ > 2, can be expressed in terms of
Bessel functions. Finally, R* \ {0} = S*~! X R* and (u,t) - u - ¢ is a prod-
uct of two independent random variables under m, which gives

m(F) = f:Hk(t‘lF)p(dt), for Borel subsets F.

Substituting this into the formula for i and performing some integration, we
get Corollary 1.7 with W = I.

The general case A(u) = W™ 1AW is reduced to the previous one by the
following observations:

A(Wp) =0, D(Wp)=WD(p)W1,
T(D(Wu)) = WT(D(n))W 1.

Thus the proof is complete. O

Proor oF THE ExamMPLE. Note that Ayg is also a Gaussian measure with
covariance operator ASA*. Furthermore, if yg = v, * v,, then both v, and v,
are Gaussian measures [cf. Cramér’s theorem in Loéve (1963)]. Consequently,

D(vs) = {A € End(R*): ASA* < S}.

So, Q € Ey(yg) iff S — e?9SeT9* > 0, for all ¢ > 0. Differentiation with re-
spect to ¢ gives —(e’?QSe’@* + ¢!@SQ*e’?*) > 0, for all ¢ > 0. In particular,
QS + SQ* < 0. Conversely, if QS + SQ* < 0, then —(e’(QS +
SQ*)e!*x, x) > 0 for all ¢t > 0 and x € R. Consequently,

d
zi—t—[(Sx,x) — (e'9Se'@*x, x)| > 0,

for all x € R* and ¢ > 0, so S — e9Se’?* > 0, for ¢ > 0. Hence, ¢‘? € D(yg),
so @ € Ey(yg). O

ProOF OF COROLLARY 1.8. Since A(v) is a compact subgroup of Aut(R*),
TAW)) = T(AW@) N {A: det A =1)) and (a) and (b) follow from Holmes,
Hudson and Mason (1982) and Hudson, Jurek and Veeh (1986), respectively.

O
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