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UNIVERSAL SCHEMES FOR PREDICTION, GAMBLING
AND PORTFOLIO SELECTION?

By PAuL ALGOET

Stanford University

We discuss universal schemes for portfolio selection. When such a
scheme is used for investment in a stationary ergodic market with un-
known distribution, the compounded capital will grow with the same
limiting rate as could be achieved if the infinite past and hence of the
distribution of the market were known to begin with. By specializing the
market to a Kelly horse race, we obtain a universal scheme for gambling on
a stationary ergodic process with values in a finite set. We point out the
connection between universal gambling schemes and universal modeling
schemes that are used in noiseless data compression. We also discuss a
universal prediction scheme to learn, from past experience, the conditional
distribution given the infinite past of the next outcome of a stationary
ergodic process with values in a Polish space. This generalizes Ornstein’s
scheme for finite-valued processes. Although universal prediction schemes
can be used to obtain universal gambling and portfolio schemes, they are
not necessary.

1. Introduction. Let {J,} be a sequence of random variables taking val-
ues in the finite set {1,..., m}, and suppose a gambler is allowed to bet on
these random variables according to a nonanticipating strategy. Thus the
gambler may arbitrarily distribute his compounded wealth at the beginning of
every round ¢ with knowledge of the t-past J°=(J,,...,dJ,_;) over the
possible outcomes j = 1,..., m. The gambler will collect the return of his
investment at the end of round ¢ when the random outcome J, is revealed,
and start another round. We assume that bets are paid out at uniform odds,
so, the return at the end of round ¢ is m times the amount that was invested
in the actual outcome oJ,. Consequently, if the gambler starts with initial
wealth S, = 1 and if he places a fraction Q(j,/J*) on every possible outcome j,
during round ¢, then his compounded wealth after n rounds amounts to
S, = [m"Q(J™)], where

(1) QW™ = 1 QUMY).

Suppose the gambler knows the distribution P of the random process {J,}.
To maximize the growth rate of compounded wealth, he should place bets at
the beginning of every round ¢ proportional to the conditional probability
P(j,lJ*) on every possible outcome j,. Indeed, if Q(j,lJ?) is any alternative
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902 P. ALGOET

betting scheme, then Q(J")/P(J") is a nonnegative supermartingale with
respect to the information fields o(J"). The initial value @(J%)/P(J°) is
equal to 1 by convention, so that all the expectations E{Q(J")/P(J")} are
bounded by 1. It follows (cf. Lemma 2 below) that

o) g

1
(2) lim sup Py log( m

n

and consequently,

llmsup log[m”Q(J")] < hmsup — log[ m"P(J")] as.,

n

llmmf log[m"Q(J”)]<11m1nf log[ m"P(J™)] aus.

If {J,} is statlonary ergodic, then the maximum growth rate is well defined
and almost surely equal to the constant [log m — H(J|J )], where H(J|J~) =
E{—1log P(J|J ™)} is the entropy rate of {J/,}, that is the conditional entropy of
J = dJ, given the infinite past J = (...,J_, J_;). Indeed, the Shannon-
McMillan-Breiman theorem implies that

(3) %log[m”P(J")] - [logm — H(JIJ7)] aus.

This was observed for stationary ergodic processes with known distribution by
Cover (1974), after Kelly (1956) and Breiman (1961) considered the indepen-
dent identically distributed case. See also Cover and King (1978).

Cover (1974) also posed the challenging question how to gamble on a
stationary ergodic sequence whose distribution is unknown. The conditional
probability P(j,|J?) can be estimated on the basis of the t-past J?, and the
question is whether wealth allocated according to these estimates will com-
pound with the same maximum rate that would be achievable if the process
distribution were known a priori. A gambling scheme is a computable function
Q(j,l7?) of sequences j* = (jg,...,J,—1) and elements j, in {1,..., m}, taking
values in [0, 1].

ProBLEM 1 (Existence of a universal gambling scheme). Find a gambling
scheme P(j,|j%) that is universal in the following sense. If {/,} is any station-
ary ergodic random process with distribution P on the m-ary sequence space,
then a gambler who at time ¢ with knowledge of the ¢-past J ¢ places bets
according to the strategy P(j,lJ*) on all possible outcomes j, will earn money
with the same limiting rate as a gambler who apportions his wealth according
to the true but unknown conditional probabilities P(j,lJ?), that is,

%log[mnPA(Jn)] N [logm —H(J|J_)]
(4)
= llm log[mnP(Jn)] a.s.
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Let K(j") denote the length of the shortest binary program which com-
putes j", when no program is allowed to be a prefix of another. Thus K(j") is
the algorithmic entropy of Chaitin, which is nearly equivalent to the Kol-
mogorov complexity. Cover (1974) exhibited a scheme for gambling on individ-
ual binary sequences j" such that the compounded wealth will grow by a
factor [2"Q(j™)] > 2"~X¥U™, Consequently, if a data compression algorithm
can reduce the description length of a sequence from n to K by removing
n — K bits of redundancy, then a gambler can double his wealth at least
n — K times when gambling on this sequence against even odds. Cover’s
scheme is universal in the sense of Problem 1, since Levin and Zhvonkin
(1970) proved that K(J")/n — H(J|J ") a.s. for stationary ergodic {J,}. How-
ever, this scheme is not computable, since it requires evaluation of the
Kolmogorov-Chaitin complexity of finite sequences. To be practical, a gam-
bling scheme must be a recursive function with low complexity.

Gambling is related to prediction. Recall that the conditional distribution of
the random variable J = J,, given the ¢-past J ! = (J_,,...,J_,) converges
to the conditional distribution of J given the infinite past J = (..., dJ _,, J_,):

(5) P(jlJ~*) > P(jlJ7) as.forall j,1<j<m.

A prediction scheme is a computable function P(j|j~*) of sequences j~* =
(J-ts---»J—1) and elements j in the finite set {1,..., m}. The following
problem appears in a list of eight significant problems posed by Cover (1975) at
the Moscow Information Theory Workshop.

ProBLEM 2 (Existence of a universal prediction scheme). Find a prediction
scheme that is universal in the sense that for any stationary ergodic random
process {J,} with distribution P on the m-ary sequence space, we have

(6) B(jlJ™*) > P(jlJ7) as.forall j,1<j<m.

Thus a universal prediction scheme for stationary ergodic processes is an
algorithm that generates estimates P(:|J~*) of the conditional distribution of
J = J, based on a finite but growing number of past observations, so that the
estimates converge almost surely to the true conditional distribution of
given the infinite past.

A solution to Problem 2 has been obtained by Ornstein (1978). In Section 5
we review Ornstein’s universal prediction scheme and formulate a generalized
scheme to learn the conditional distribution of X = X, given the infinite past
X =(...,X_,, X_,) of any stationary ergodic process {X,} with values in a
Polish space .

If P(j|j~*) is a universal prediction scheme and {J,} is stationary ergodic,
then Breiman’s generalized ergodic theorem (cf. Lemma 1 below) implies that

Y [B(JY) - P(JIY)] >0 as.

0<t<n
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A variant of Problem 2, also posed by Cover (1974), is to construct a scheme
P(j,|j) that satisfies the stronger property

[B(J)J7) - P(J)J%)] -0 as.

Bailey (1976) proved that no such scheme exists. However, empirical frequency
counting can be used to learn the conditional distribution of future outcomes
given the past if the process is known to be kth-order Markov, for some
fixed k.

Bailey (1976) also used Ornstein’s universal prediction scheme to formulate
a computable gambling scheme which he claimed to be universal. But his proof
is based on an invalid assumption, and the question whether his scheme is
universal remains open. In Section 2 we discuss ways to avoid the difficulty
with Bailey’s approach. In fact, we shall construct a universal gambling
scheme without the help of a universal prediction scheme.

In Section 3 we discuss the relation between universal gambling schemes
and the universal modeling schemes of Rissanen and Langdon (1981). These
authors were mainly interested in modeling for the purpose of compression of
individual sequences of finite length, and they did not emphasize the asymp-
totic optimality of their schemes for stationary ergodic ensembles of random
sequences. Langdon (1983) and Rissanen (1983) interpreted the universal data
compression algorithm of Ziv and Lempel (1978) as a universal modeling
scheme, and Feder (1991) pointed out that this scheme can also be regarded as
a universal gambling scheme.

In Section 4 we discuss investment in the stock market. We follow Algoet
and Cover (1988a) and describe the market by random vectors X, =
(X)), < j<m> Where X/ > 0 is the factor by which capital invested in stock j
will grow during period ¢. The investor is allowed to diversify his capital at the
beginning of every period ¢ according to a portfolio vector b, = (), < j<m I
the unit simplex. The capital will grow by a factor (b, X,) = £,_;_,b/X/
equal to the weighted average of the growth factors of the individual stocks.
The objective is to select nonanticipating portfolios b, depending on the ¢-past
X! =(X,,...,X,_;) so as to maximize the growth rate of the compounded
capital

(7) S,= IT (b,%,).

0<t<n

The portfolio selection problem was first considered by Breiman (1961),
after Kelly (1956) considered the special case of gambling. A Kelly horse race is
a special type of market because exactly one horse will win and yield a nonzero
return, so that the return vector X, will be oriented along a coordinate axis of
R™. For a general market, the return of several stocks may be nonzero. If the
market distribution is known, then the maximum growth exponent is attained
by maximizing the conditional expected growth exponent Eflog(b,, X,)|X*} at
each step. A portfolio b} which attains the maximum is called log-optimum.
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Let the compounded capital after n periods of investment according to the
log-optimum strategy {b;} and some alternative nonanticipating strategy {b,}
be denoted by

Sy=TII 5, %), S,= II (b,%).
0<t<n 0<t<n
Then S, /S is a nonnegative supermartingale with respect to the informa-
tion fields o(X?). Since S, = 1 = S by convention, we see that E{S, /S;} < 1
for all n and consequently (by Lemma 2 below) that

S,
S* <0 a.s.

If the market process {X,} is stationary ergodic, then S;* will grow exponen-
tially fast almost surely with limiting rate equal to the maximum growth
exponent given the infinite past:

1
(8) lim sup — log(

n

1 -
(9) ~log S} > W(XIX") = E{log(?*, X)} a.s.,

where b* maximizes Eflog(b, X)|X}.

Note that b} can be computed only if the conditional distribution P(dx,/X*)
of X, given the ¢-past is known. Of course, it is not realistic to assume that we
know the distribution of the market process. In Section 4 we solve the
following problem.

ProBLEM 3 (Existence of a universal portfolio selection scheme). Find a
nonanticipating portfolio selection scheme {,} such that for any stationary
ergodic market process {X,}, the compounded capital S, =TI, ct< n(bt, X,) will
grow exponentially fast almost surely with the same maximum rate as under
the log-optimum strategy {6/}, that is,

(10) lim — log§ W(XIX") = lim — logS* a.s.

We need the following result, which was used by Breiman (1957) to prove
what he called the individual ergodic theorem of information theory.

LeEMMA 1 (Breiman’s generalized ergodic theorem). Let {g,} be a sequence
of real-valued random variables defined on a stationary ergodic dynamical
system (Q, &, P,T). Ifg, - g a.s. and {g,} is L'-dominated (E{sup,lg,|} < ),
then

(11) 2 Y alTw) > Elg) as.

n 0<t<n
In fact, if E{inf, g,} > —, then

(12) hmlnf— N gt(T‘w)>E{hm1nfgt} a.s.

0<t<n
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A different approach to prove the Shannon-McMillan-Breiman theorem
was developed by Algoet and Cover (1988a, b). The foundation of our approach
was the so-called asymptotic optimality principle (AOP) for log-optimum selec-
tions in convex families of random variables. This principle, which is also
essential for our present purposes, can be abstractly formulated as follows.
Suppose for all n > 1 that an element S, must be selected in a convex family
7, of nonnegative random variables defined on a probability space ({2, &, P).
Typically S, will grow (or decrease) exponentially fast, and we wish to
maximize the asymptotic growth rate liminf,(1/n)log S,. An element S} is
called log-optimum in ./ if S} attains the maximum expected growth
exponent supg . . Eflog S ) Bell and Cover (1980, 1988) proved that log-
optimum selections are umquely characterized up to almost sure equivalence
by the Kuhn-Tucker conditions

S,
E{S*} <1, forall S, € 7.

The log-optimum selections S in the convex families ./, are optimum in
asymptotic growth rate by the following:

LeEmMA 2 (Algoet and Cover). Let {S,} and {S;} be sequences of positive
random variables such that E(S,/S}*} < 1 for all n. Then

1 S,
(13) hmsup log S* <0 as,
and consequently
1 1
(14) lim sup - log S, < limsup ~ log S} a.s,
1 1
(15) lim inf; log S, < lim inf; log S} a.s.

Proor. For any & > 0, the Markov inequality asserts that

1 S” S ne —ne S —ne
P;log— >¢g) = §k—2e <e ES* <e

Sy
and the Borel-Cantelli lemma implies that

1 S
P{; log(s—:) > ¢ infinitely often} =0.

This proves (13), and (14) follows by adding lim sup,,(1/n)log S;* to both sides.
Replacing S, and S} by 1/S} and 1/8, proves (15). O

Lemma 2 holds in particular if S,/S} is a nonnegative supermartingale
with initial value S,/S} = 1. In the case of gambling, ., is the family of
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random variables of the form S, =[m"Q(J")] where Q(;j") is an arbitrary
probability or sub-probability mass function. The log-optimum selection in ./,
is equal to [m"P(J")] where P(j") is the true probability mass function
of J™.

2. Universal gambling schemes. Let {J,} be a random process with
distribution P on the m-ary sequence space. No gambling strategy Q(j,lJ*)
can do better in the long run than proportional betting according to the true
conditional distribution P(j,|/*). Indeed, Q(J")/P(J") is a nonnegative su-
permartingale with respect to o(JJ") since

P(JtlJt) - e PGigldH) >0} P(thJt)

= Y Q(j ') < 1.

Ue: PGl >0}

P(jdJ")

The initial value of this supermartingale is equal to 1 since J° is the empty
sequence and Q(J°) = 1 = P(J°) by convention. Lemma 2 therefore implies
that

lim sup — log
n N

(e, .
[mP(M] | =7 %

If {J,} is stationary ergodic, then by the Shannon-McMillan-Breiman theo-
rem,

limsup%log[m”Q(J")] < [logm — H(JIJ7)]

(16) " )
= lim ~ log[ m"P(J™)] a.s.

A gambling scheme Q(j,|j?) is called universal if for any stationary ergodic
process {J,},

(17) lim%[m"Q(J")] = [logm — H(JIJ7)] a.s.

The Shannon-McMillan-Breiman theorem for stationary ergodic {/,} as-
serts that

1
— Y &°T'->E(g} as,

n 0<t<n
where
g = —log P(JIJ"), g= —logP(JIJ7).

Breiman (1957) derived this theorem from the generalized ergodic theorem
that is stated in Lemma 1. Clearly g, — g a.s. by the martingale convergence



908 P. ALGOET

theorem for conditional probabilities. The difficult part was to verify the
integrability condition Ef{sup, g,} < .

Bailey (1976) observed that a universal gambling scheme can be obtained
from Ornstein’s universal prediction scheme. In fact, if P(j|j~?) is any univer-
sal prediction scheme [such that P(J]J %) > 0 a.s.], then

&, = —log P(JIJ™*) > g = —log P(JIJ7) as.

To prove that a universal prediction scheme P(j|j~*) yields a universal
gambling scheme by shifting, one must argue for any stationary ergodic
random sequence {J,} that

1
(18) — Y &-°T'-E{g} as.

n 0<t<n

Since g, > 0 and g, — g a.s., Lemma 1 yields

hmlnf— Y §,°T'>E{g} as,
Ost<n

which is equivalent to (16). To prove (18) and hence (17), we must verify that
{&,} is L'-dominated. Bailey’s (1976) proof is based on an invalid assumption,
namely Lemma 5.3 on page 47. In fact, Breiman’s proof of the integrability
condition Ef{sup, g,} < «© was quite delicate, and it remains a challenge to
construct estimates g, such that E{sup, §,} < © and g, > g a.s. Empirical
estimates of the probability of rare events are very unreliable, and taking
logarithms amplifies the problem. We shall use a variation of Bailey’s approach
to avoid the integrability condition altogsther.

For any betting scheme @ and 0 < A < 1, we define the betting scheme @*
by

1
(19) Q) =(1-N—+1Q(), lsism.

If Q(j,lj) is a gambling scheme, then the gambling scheme @*(j,|j*) places at
least a portion (1 — A)/m on every stock, so that the gambler will never go
broke. The compounded growth factor of wealth over n rounds amounts to

(20) [mr@*@m] = T1 [mQ(M)].

TueorREM 1. Let P(jlj~%) be a universal prediction scheme such as
Ornstein’s. If {J,} is stationary ergodic with distribution P on the m-ary
sequence space, then the growth exponent of compounded wealth for the
gambling scheme P"( JlJ?) is given by

(21) lim — 1og[ m*PA(J™)| = [log m — HNJIT)] a.s.,

where
(22) HX(JIJ7) =E{—logP"(J|J‘)}.
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Proor. Consider the random variables
gl = ~log PA(JW™),  g*= —log PA(JIW").
One must prove that

1

— Y 8)°T'- E{g"} as.

N oo<t<n
This follows from Breiman’s extended ergodic theorem since g;' is bounded
(between 0 and log[m /(1 — A)]) and 8} —» g* as. O

Note that H*(J|J ") approaches H(J|J~) as A approaches 1 since
(23) H(JIJ™) —logr 2 HNJIJ™) > H(JIJ™), 0<A<I1.

Thus the maximum growth rate is asymptotically approached to within & =
log(1/A) by the scheme P*(j,|;j*). We now prove that the maximum growth
rate can be asymptotically attained. .

THEOREM 2. There exists a gambling scheme B( J:J?) that is universal in
the sense that for any stationary ergodic random process {J,}, we have

%log[m”p(c]”)] - []og m — H(J|J_)]
(24)

1
= lim —~ log[ m"P(J™)] a.s.

Proor. We define a universal gambling scheme P( JJJj?) in terms of a
universal prediction scheme Q(j|j ~?) as follows. The gambler divides his initial
wealth into countably many piles indexed by &, and he manages the money in
the kth pile according to the strategy Q*#*(j,lJ*). The money in the kth pile
will grow exponentially fast almost surely with limiting rate [log m —
H*(J|J )], by Theorem 1. The limiting growth rate of the total in all piles is
no smaller than that of the kth pile, and is no larger than [log m — H(J|J )]
We make sure that A, ~ 1, so that the total in all piles will grow with limiting
rate

[log m — H(JIJ)] = sup [log m — H*(JIJ7)].
k

The return of all piles is pooled at the end of every round, but the gambler
can keep track of the amount in every pile by keeping records of the past. If
w; > 0 denotes the initial allocation to the kth pile (£ ,u, = 1), then the total
wealth after n rounds is given by

[mrB(J™)] = §uk[an*k(J")].
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This is achieved by the nonanticipating strategy
[ mQ (I )] Q(j 1)
L pip[ m'@M(JY)]

p(jtut) =

REMARK 1. We can construct a universal gambling scheme that does not
use a universal prediction scheme. We compute an empirical estimate of the
conditional probability P(jlJ~*) on the basis of %, namely

8;(J) + ct(j|J—k)
1L+c(J7%
where & jo(-) is the indicator function of some fixed j, € {1,...,m} and
(W ®)y=#{rl<r<t,(J_,_p,..sd o, d ) = (Jpy-- s d 1, 1)}
c(JH)y=#rl<r<t,(J__p--rd_r 1) =(J_ps..., I 1)}
= X c(jlJ7*).

l<j<m

Thus P(-|J~*) is the emplrlcal distribution of the symbols that follow past
occurrences of the block J % within the longer block J ‘%, when some
symbol j, is given one tally a priori. The ergodic theorem implies that
B(jlJ*) is a consistent estimate of the conditional probability P(jlJ*), that
is,

ﬁt(ju—k) =

B(jlg™%) > P(jlJ™*) as.ast— .

Shifting P(jlJ*) yields an empirical estimate P(j,lJ,_y,...,J,_,) of the
conditional distribution P(j,lJ,_,,...,J,_;) that is computed on the basis of
J* and some arbitrary choice for Jk The growth rate of wealth when betting
according to strategy P Ay, - -, J,_1) is equal to

llm log( [mP (Selei—4» - "’Jt—l)])

0<t<n

= [logm — HN(JWJ*)] as,

(25)

where
(26) H(JIJ ) =E{—logP"(J|J‘k)}.

Observe that H*(J|J*) decreases to H(J|J™) as £ —» © and A » 1. One
obtains a universal gambling scheme by dividing the initial wealth into count-
ably many piles indexed by & and using strategy P"k( JlJ?) for the kth pile,
where A, 7 1.

REMARK 2. So far we have assumed that the gambler is paid out at uniform
odds, so that the return is m times the amount wagered on the winning
outcome. The results generalize if the odds are derived from an arbitrary
reference measure u on {1,..., m}, that is, if the return when outcome ; is
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realized is p; times the amount wagered on j. The optimum nonanticipating
strategy is to bet a portion on every possible outcome j proportional to its
conditional win probability P{cJ, = j|J‘}, as before. The maximum growth rate
of compounded wealth is now given by the relative entropy rate or
Kullback-Leibler information divergence rate

P(JIJ‘))
u(J) }

If p is the uniform distribution that assigns mass 1/m to every possible
outcome j, then the odds are uniform and I,(J|J ) =[log m — H(J|J)).

(27) I(JW") = E{log(

3. Universal modeling and data compression. Gambling schemes are
related to the modeling schemes of Rissanen and Langdon (1981). These
authors were primarily interested in universal modeling of information sources
for the purpose of data compression via arithmetic coding.

3.1. Modeling schemes. A modeling scheme is an assignment, for all
n > 1, of numbers @Q(j") between 0 and 1 to all sequences j" = (jg, ..., Jo_1)
of elements in (1, ..., m}. The number Q(;") is called the code space assigned
to the sequence j". The total amount of code space assigned to the sequences
of a given length must fit in a unit interval, so that @(j") is a subprobability
measure on n-tuples:

(28) L Qu" <1

Modeling is commonly done in the context of a computable structure
function f(j?) that summarizes the past j’ One poses that Q(j") =
[Ty <<, @(:l7Y), where the conditional probability @(j,|/*) depends on j only
through the context or conditioning class z, = f(j*). Thus

(29) Q(j") = . ]:[< Q(Jj.lz,), where z, = f(j’),1<j<m.

Many interesting structure functions are defined by finite automata with input
set {1,..., m}. Given an automaton (S, §, g, s,) with finite state set S, initial
state s, € S, transition function &(s, j) and output function g(s), one defines
the structure function

(30) z,=f(j") =g(s,), wheres, ., =208(s;,Jj;),0<t<n.

In particular, if z, is the k-past, then the finite automaton can be implemented
as a shift register of length k& with state s, = 2, = (j,_4,..., J,_1)-

The optimum choice for the structure function f is an undecidable prob-
lem. However, the model defined by a particular structure function f ex-
presses Q(j™) in terms of conditional probabilities @(j|z) as

(31) QUM = T1 QUile) - T1 TIQUE™?,

<j<m z

where c¢,(jlz) counts how often the symbol j has occurred within the context
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of the conditioning class z:

(32) c.(jlz) = #{t: 0 <t <n, (J,,2,) = (J,2)}
Let the total number of occurrences of the conditioning class z be denoted by
(33) c,(2)= Y c,(jl2) =#{t:0<¢t<n,z =2z}

l<j<m

The following result of Rissanen and Langdon (1981) generalizes Bartlett’s
(1951) characterization of the maximum likelihood estimates of the transition
probabilities of a Markov chain by means of empirical distributions.

THEOREM 3. Consider a structure function [ and the modeling scheme
QU™ =Tly.,,QU,l2,), where z, = f(j*). To minimize the codeword length
—log Q(j™) or equivalently to maximize the likelihood Q(j"), one must choose
Q(jlz) equal to the empirical conditional distribution

¢.(J12)
cn(2)

The minimum per-symbol codeword length is equal to the conditional entropy
of J given Z when the joint distribution of (J, Z) is the empirical distribution
of the pairs {(j,, 2,): 0 < ¢t < n}. Indeed, if P,(2) = c,(2)/n, then

(34) P,(jl2) =

l<j<m.

(35) —%log P(J") =H™(JIZ) = - L P(2) ¥ P(jlz)log P(jl2).

l<j<m

The excess per-symbol codeword length for any alternative Q(jlz) is equal to
the conditional relative entropy

1 1 . .
~ —log Q") + —log P,(J") = I§(J12)
(36)

B,(jlz) )

_ Zz:pn(z) Z Pn(j|2)log( Q(le)

1<j<m

Any modeling scheme defines a sequence of uniquely decipherable binary
codes. The code for blocks of length n is characterized by the Shannon-Fano
codeword length function

(37) 1(j") = [-log; @(j™)].

Conversely, if an assignment [(j") of nonnegative integers to n-tuples j"
satisfies the Kraft inequality

(38) Y 27 <1,
J'n

then there exists a uniquely decipherable binary code with length function
1(j™), and Q(j™) = 27'U"™ is a modeling scheme for n-tuples.
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A modeling scheme is considered attractive for the purpose of coding or
compression of a finite sequence j" if the assigned codeword length —log @(j™)
is small. For a random sequence {cJ,} with distribution P, it makes sense to
compare the assigned codeword length —log @(J") to the ideal codeword
length —log P(J ™).

THEOREM 4. If Q(j") is any modeling scheme and {J,} is any random
process with distribution P, then
1 (Q( J")

(39) limnsup Py log P(I)

) <0 a.s.
In particular, if {J,} is stationary ergodic, then
1 1
(40) liminf — ;logQ(J”) > H(JlJ7) = lim — ;log P(J") a.s.

ProoF. This result is an immediate consequence of Lemma 2, since

Q(J™) Q™)
E{ P(J“>} oy

—P(") = Y Q") =<1l. O
G PG> 0) P(j") G PG™>0)

Theorem 4 immediately implies that the entropy rate is almost surely a
lower bound on the noiseless compressibility of a stationary ergodic random
sequence. Barron (1985) was the first to derive this strong lower bound for
noiseless coding from the Kraft inequality, with knowledge of the asymptotic
optimality principle for log-optimum gambling of Algoet and Cover (1988a).

CoROLLARY 1. For n > 1 let I(j") denote the length function of a uniquely

decipherable block-to-variable-length binary code for blocks of length n. Then
for any random process {J,} we have

1 1
(41) liminf| —I(J") + —log P(J")| >0 a.s.
n n n
In particular, if {J,} is stationary ergodic, then
1 1
(42) liminf —I(J") > H(JIJ™) = lim — —log P(J") a.s.
n n n n
ProoF. Set Q(j™) = 27" and apply the preceding theorem. O
A modeling scheme Q(j™) is called universal if for any stationary ergodic
random sequence {J,}, the assigned codeword length is equal to the ideal

codeword length in the long run average or Cesaro mean sense, that is,

1 1
(43) — —logQ(J™) ~ H(JW") = lim — —log P(J") a.s.
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THEOREM 5. There exists a universal modeling scheme.

Proor. Let @,(;j") denote the scheme that models the sequence ;" as
being kth-order Markov with stationary transition probabilities. Thus @,(;™)
is the scheme whose structure function is defined by the finite automaton that
keeps track of the k-past [and makes arbitrary assumptions about j =% =

Gopyeoor JDI If {J,} is ergodic, then clearly
1
- log Q,(J") > H(JIJ %) as.

By mixing the modeling schemes @, according to a priori weights u, > 0
(where T, , ou), = 1), one obtains the universal modeling scheme

QU™ = XL [meQe(U™)]. =

k>0

Any universal gambling scheme Q(j,|j*) yields a universal modeling scheme,
and so does any universal data compression algorithm, including that of Ziv
and Lempel (1978) and the recent scheme of Ornstein and Shields (1990).
However, the proof that these schemes are universal is not as elementary as
that for the scheme in Theorem 5.

3.2. Gambling and arithmetic coding. Any gambling scheme Q(j,|j*) yields
by compounding a modeling scheme

(44) Q") = 0<].:.£nQ(jt|jt)'

This modeling scheme is special because the code space assignments to se-
quences of different lengths are compatible in the sense that

(45) Q(jo’---’jn—1) = Z Q(joa“"jn—l’jn)‘

1<j,<m

In fact, any gambling scheme Q(j,|j*) defines a probability measure € on the
m-ary sequence space, such that @(j") is the probability of a cylinder set.
Conversely, any computable probability measure @ defines a gambling scheme

Q(jo’ v ’jt—l’ Jt)
Q(jo’ .. ’jt—l)

Note that @(j,|j%) is arbitrary if Q(j*) = 0.

Observe that minimizing the description length —log @(j") is equivalent to
maximizing the likelihood Q(j™) or the compounded wealth [m"Q(;")] when
gambling on the symbols j,. Every bit of compression yields an extra factor 2
in capital growth.

Sometimes a gambler may wish to set aside a portion of his wealth, rather
than bet everything. In this case Q(j,|j*) is a conditional subprobability

(46) Q(jlj*) =
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measure on the symbols j,:

(47) r QU =1

l1<j,<m
In particular, a portion [1 — ¥, _; . ,Q(jy)] of the initial wealth @(; D =1is
never invested.

Let {J,} be a stationary ergodic process with values in {1,...,m}, and
suppose modeling is done in the context of a structure functlon z, = f(J™).
The empirical conditional distribution BP( Jlz,) is not a satlsfactory betting
strategy since the gambler will go broke if the next symbol j, happens to be
the first occurrence of that symbol in the context z = z,. A strategy that is
asymptotically equivalent to P(jlz,) but that avoids going broke is defined by

c,(Jjlz,) + 1

) l1<j<m.
c,(z,) + m J

(48) B(jle,) =
The rationale for this strategy is as follows. One must select a distribution in
the unit simplex, for betting on oJ,, within the context z, = f(J"), having seen
¢,(jlz,) occurrences of the symbol ;j in this context. If the prior distribution is
uniform on the simplex of probability measures on {1,...,m}, then the
posterior distribution after observing all these occurrences in the context z,, is
a p-distribution with parameters {c,(jlz,), 1 <j < m}. The mean of thls
posterior B-distribution is exactly equal to the distribution B( |z,) on
{1,..., m}. The strategy P(:|z,) is identical to the strategy P(- |z,,), except that
every symbol J is given an a priori count of 1 in every context z.

Any gambling scheme yields a modeling scheme that can be used for data
compression. The asymptotic lower bound in Theorem 4 holds for any model-
ing scheme, and Corollary 1 is valid for any sequence of uniquely decipherable
codes. In a realistic system, the codes must be compatible in the sense that the
code for a prefix of a sequence must be a prefix of the code for that sequence.
Also, the encoder must be able to generate the output bits eventually, given a
sufficient amount of lookahead in the input sequence. If a modeling scheme is
derived from a gambling scheme, then the encoding can be performed incre-
mentally by arithmetic coding.

The original concept of arithmetic coding is due to Elias [cf. pages 476-489
of Jelinek (1968)]. The idealized encoding algorithm may require infinite
precision arithmetic and unbounded lookahead. In practice, the computations
are done with finite precision using a finite state automaton [cf. Pasco (1976)
or Rissanen and Langdon (1979)].

An ideal arithmetic coding unit accumulates the total probability of se-
quences that are lexicographically smaller than or equal to the random se-
quence being encoded. Let @(j,|j*) be a universal gambling scheme and let

(49) C.= X QM= ¥ ¥ QUo.-.-,d 1),

jr<dn 0<t<n 1<j<d,

(50) C.= L QU™ =C,+Q(").

Jjr=<dJd?™
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Note that C, and C, can be computed recursively as

(51) Co=0, Coii=C,+QUJ™M) XL QUI"),
1<j<d,

(52) Co=1, C,.;,=C,-Q(J") X QUIM.
J,<j<m

Clearly, C, increases to the cumulative probability of infinite sequences that
are lexicographically smaller than the actual sequence {J,}, and C, decreases
to the cumulative probability of infinite sequences that are lexicographically
smaller than or equal to {/,}. The digits in the binary expansion of I" = lim, C,
are taken as encoding of the sequence {J,}. The limit I' is always contained in
the interval [C,,C,), and the encoder can generate %k output bits as soon as
this interval is narrowed down to a dyadic interval of length 2~*. This dyadic
interval can then be scaled up by a factor 2* to a unit interval. (An interval is
called dyadic if its endpoints are dyadic numbers, i.e., rational numbers whose
denominator is a power of 2.) This is done in the following arithmetic encoding
algorithm:

begin
Q@=1C=0; K:=0;
forn=0,1,2,... do(* @ = 2%X+Q(J") and C = (2¥«C,) mod 1*)
begin
Q= Q+*Q(J,lJ");
Co=C+Q+Ly;., QUI"; Ci=C+ &
while C < 1 do begin output ‘0’;
(* replace dyadlc interval by its lower half *)
K=K+1,C=2+C; Q :=2+Q end;
while C > 1 do begin output ‘1’;
(* replace dyadic interval by its upper half *)
K=K+1,C=2+C—-1;,Q = 2+Q end;
end
end.

If Q(j,lj) is a universal gambling scheme, then the width @(J,) = C, — C,
of the interval [C,, C,) decreases exponentially fast almost surely with limiting
rate H(J|J ™), so that roughly nH(J|J~) output bits are generated per n
input bits. The encoder is delayed and unable to generate any output bits while
the smallest dyadic interval containing [C,,, C,) remains unchanged, or equiva-
lently while the rescaled interval straddles the value 1/2. The decoder can
recover ¢/, as soon as the number I' is known with sufficient precision, given
enough lookahead.

If @ is replaced by the true distribution P, then the cumulative probability
I' is uniformly distributed over the unit interval [0, 1], at least if the probabil-
ity of any infinite sequence is 0. With probability 1, I' will not be a dyadic



UNIVERSAL PREDICTION AND GAMBLING SCHEMES 917

rational and the encoder will not be delayed forever. But there is no such
guarantee for an arbitrary gambling scheme Q.

3.3. The Ziv-Lempel algorithm. The incremental parsing algorithm of Ziv
and Lempel (1978) is a universal data compression algorithm. Variations of
this algorithm have been interpreted as modeling schemes by Langdon (1983)
and Rissanen (1983).

The Ziv-Lempel algorithm parses individual sequences J " into phrases by
inserting commas. The first comma is placed in front of the first symbol J,.
Each phrase starts at a comma, and consists of a maximal length sequence
that has occurred as an earlier phrase, followed by an innovation symbol and
another comma. We denote by v, the number of complete phrases when
parsing the finite sequence J”. For example, the binary string J" =
0101000100 with length n = 10 is parsed as ,0,1,01,00,010,0 and contains
v, = 5 complete phrases and an incomplete phrase ,0 at the end.

It is well known that the Ziv-Lempel parsing can be obtained by maintain-
ing a dynamically growing data structure in the form of a tree. Initially this
tree consists of a single node, the root. The search for a new phrase starts at
the root and proceeds down the tree as directed by the input symbols. The
search is complete when a branch is taken from an existing tree node to a new
node that has not been visited before. The branch and the new node are added
to the tree, a comma is inserted in the input stream and the search for the
next node starts over again at the root.

Let T, denote the tree, to the extent it has grown by the time the algorithm
has finished reading JJ”. The branches that diverge from every node in T, are
labeled by the symbols 1,...,m, but some nodes may be incomplete in the
sense that not all m outgoing branches are present. We define the completed
tree T, as the tree that contains all branches leaving all nodes of T,. Thus
every node of T, is an interior node of T,. It is easily shown by induction that
T, contains v, + 1 nodes, while T, contains 1 + m(v, + 1) nodes, namely
v, + 1 interior nodes and 1 + (m — 1)(v, + 1) leaves. The search for a new
phrase ends when a branch is taken from an interior node to a leaf in the
completed tree. That leaf is then converted to an interior node and its m
children are added to the completed tree.

Let z, = f(J*) denote the node in the tree T, where the search for the next
phrase has arrived after J* but before J, is read. Langdon (1983) interpreted
f(j9) as a structure function and modeled the next symbol J, as being selected
on the basis of the context or conditioning class z, = f(J%). Let c,(jlz) and
¢,(2) be defined as in (32) and (33). Then c,(j|2) is the number of transitions
from node z to the jth child of z. Also, 1 + ¢,(2) is the number of nodes in the
subtree of T, that is rooted at z, unless z is an ancestor of z,, in which case
1 + ¢,(2) is one more than the number of nodes in that subtree. To maximize
the likelihood

QW™ = Tl Q)= T1 11 Q(jlz)"?,

<t<n l<j<m z€T,
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it suffices in view of Theorem 3 to choose

Wl
o@  CTIE™

Observe that Q(jlz,) is equal to the ratio of the number of nodes in the
subtrees of T, that are rooted at z, and the jth child of z,, when the roots of
those subtrees are not counted. The assignment Q(jlz,) is not a good gam-
bling strategy since the gambler will go broke at the end of a phrase, when the
search proceeds from z, to a new node and hence back to the root.

Rissanen (1983) described an incremental modeling scheme which ensures
that all leaves of the completed tree T, are equally likely outcomes of the
search for a new phrase. The number of leaves in the subtrees rooted at node
z,, and its jth child in the completed tree T, are equal to

Ya(2,) =1+ (m = 1)(c,(2,) + 1),
Ya(Jl2,) = 1+ (m = 1)(c,(Jjlz,) + 1).

To make all leaves of T, equally likely outcomes, one must assign a probability
to each child j of z, that is proportional to the number of leaves of the
completed subtree rooted at this child. Thus the proportion bet on outcome j
must be equal to

Q(jlz) =

(53)

Ya(Jl2,)  m+ (m —1)c,(jlz,)
'Yn(zn) - m + (m - l)cn(zn) ’

Feder (1991) observed that Rissanen’s interpretation of the Ziv-Lempel pars-
ing algorithm yields a universal gambling scheme.

(54) P(jlJ") =

l<j<m.

THEOREM 6. The gambling scheme P(jlJ ") is universal.

Proor. We argue that P(J") =T1,_,.,P(J,|J*) decreases exponentially
fast almost surely with limiting rate H(J|J ™) if {J,} is stationary ergodic. In
Corollary 1, we used the Kraft inequality and the asymptotic optimality
principle to prove that for any gambling strategy,

1 A
liminf — ;log P(J") = H(JIJ) aus.

We prove that H(J|J~) is not only a lower bound but also an upper bound for
the decay rate of P(J").
Let n; denote the starting point of the ith phrase (1 <i < »,). Then

1
[1 P = [1+(m-1)i]"

n;<t<n;,;

The product on the left-hand side telescopes, so that all numerators and
denominators cancel except the denominator [1 + (m — 1)i] of the first factor
(¢t = n;) and the numerator 1 of the last factor (¢ = n;,, — 1). Taking the
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product over all phrases proves that
1 1
>P(J") =
Moo i+ (m-ni] = D) 2T i+ (m - 1)

and consequently
—log P(J") =logv,!+ O(v,).

Wyner and Ziv (1990) have shown [their proof appears in Section 12.10 of
Cover and Thomas (1991)] that log v,! = &(v, log v,) and

1 . 1
limsup — — log P(J") = limsup — logv,! < H(JIJ™) a.s.
Thus we reach the desired conclusion:

1 A
—;logP(J”) - H(JIJ™) as. O

Theorem 6 was proved using different methods by Ornstein and Weiss
(1990).

4. Universal portfolio selection schemes.

4.1. Log-optimum investment in a market with known distribution. The
stock market is modeled by random vectors X, = (X/),_; _ ,, Where X/ >0
denotes the factor by which capital invested in stock J will grow during period
t. We call X, the return vector for period ¢. It must be emphasized that X; J is
not the dlﬁ'erence but rather the ratio of the price at the end of investment
period ¢ to the price at the beginning of that period. Often, X/ is called the
price relative of stock j. We assume that the distribution P of market process
{X,} is such that P{X, = 0} = 0 and hence X, # 0 a.s. for all ¢.

An investor must decide how to distribute his current capital at the begin-
ning of every investment period ¢ over the available opportunities j = 1,..., m.
The allocation of capital is described by a vector of nonnegative weights that
sum to 1, that is, by a portfolio vector b, = (b/);_ ; ., in the unit simplex %
of RT. Portfoho b, must be nonant1c1pat1ng, that is, b, must be a measurable
functlon of the ¢- past X' =(X,,..., X,_) [notation: b € o(X")]. The capital
will grow by a factor (b, X,) =X, _; mb X/ equal to the weighted average of
the returns of the 1nd1v1dual stocks, and the total amassed at the end of the
period is redistributed at the beginning of the next period. If the investor
starts with initial wealth S, = 1, then the compounded capital after n invest-
ment periods amounts to
(55) S,= I (b, X).

0<t<n
The objective is to invest according to nonanticipating portfolios that maximize
the asymptotic growth rate of the compounded capital S,,.
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First, we consider the simple case where the return vectors X, are indepen-
dent realizations of a random vector X = (X’), _;_,, with distribution P on
R7 — {0}. If the investor rebalances his capital at the beginning of every period
according to some fixed portfolio b, then the compounded capital will grow
exponentially fast almost surely with constant limiting rate Ef{log(b, X)}, by
the strong law of large numbers for products. (It must be assumed that the
expected log return is well defined.) A portfolio b* is called log-optimum for P
if no alternative can improve upon it in growth exponent:

b, X
56 E{log L———) < 0 a.s. for all portfolios b € #.
(6%, X)

Any log-optimum portfolio attains the maximum growth exponent

(57) W(P) = sup E{log(b, X)} = E{log(b*, X)}.
bed

Conversely, if W(P) is well defined and finite, then any portfolio attaining the
maximum is log-optimum. The maximum capital growth exponent may be
informally denoted by W(X), although strictly speaking it is a functional
W(P) of the distribution P of X. Bell and Cover (1980) proved that a portfolio
b* is log-optimum for P if and only if b* satisfies the Kuhn-Tucker conditions

E{ (6, X)

) %)

} <1 for all portfolios b € 4.

The growth factor (b*, X) is uniquely defined almost surely, even if the
log-optimum portfolio b* is not unique. It is possible to select a log-optimum
portfolio *(P) that is Borel measurable in P when the space of probability
distributions on R’ is equipped with the weak topology. See Algoet and Cover
(1988a) for proofs of this as well as the following results.

The maximum capital growth rate for a general market with dependent
return vectors is asymptotically attained by maximizing the conditional ex-
pected growth exponent given the currently available information at each step.
Indeed, let b denote the result when the log-optimum portfolio selection
function b*(-) is applied to a regular conditional distribution P(dx,|X*) of X,
given the t-past X‘. Then b} is a nonanticipating portfolio attaining the
maximum conditional expected log return

(59) Eflog(b}, X,)X*) = sup E{log(b, X,)IX").
bea(X?)

Let the capital growth over n periods of investment according to the log-
optimum strategy {bf}o.,.. and a competing nonanticipating strategy
{b,}9 < : < be denoted by

S:f= 1_[ (b;kth)’ S, = 1_[ (bt’Xt)'

0<t<n 0<t<n

Then {S,,/S¥, 0(X")} is a nonnegative supermartingale with initial value 1
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and

(60) AOP: limsup—l-log(i) <0 as.

no N Sy
This asymptotic optimality principle holds with no restriction on the distribu-
tion of the market process {X,}.

If the market is stationary, then its history can in principle be extended into
the infinite past. Thus a stationary market can be modeled as a two-sided
sequence of return vectors {X,} _.. ., ... Let b¥ denote the portfolio that results
when the log-optimum selection function 5*(-) is applied to a regular condi-
tional distribution P(dx|X~?!) of X = X, given the t¢-past X! =
(X_,..., X_)). Then b* is conditionally log-optimum for period O given the
t-past, that is, b} attains the maximum conditional expected log return

(61) E{log(b}, X)Xt} = sup Eflog(b, X)IX™*}.
beo(X™Y)

The maximum expected growth exponent given the ¢-past is given by

(62) W(XIX™*) = sup Eflog(b,X)} = E{log(d}, X)}.

beo(X™)
The maximum is taken over larger sets of permissible portfolios as ¢ increases,
so that W(X|X~*) is monotonically increasing with ¢.

Recall that P(dx|X~*) converges weakly almost surely to the conditional
distribution P(dx|X~) of X given the infinite past X =(...,X_, X_,).
Application of b*(:) to P(dx|X~) yields a portfolio b* that is conditionally
log-optimum given the infinite past. Thus b* attains

(63) Elog(b*, X)X~} = sup Eflog(b, X)IX"}.
beo(X™)

The maximum growth exponent given the infinite past is equal to

(64) W(XIX~) = sup E{log(b, X)} = E{log(d*, X)}.

beo(X™)
It can be shown that the maximum growth exponent given the ¢-past increases
monotonically to the maximum growth exponent given the infinite past:

(65) W(XIX™t) 2 W(XIX™) ast— .

If the market is stationary ergodic, then the maximum capital growth rate
is well defined and almost surely equal to W(X|X™):

(66) S* = exp[nW(XIX~) + o(n)], whereo(n)/n — Oaus.

This asymptotic equipartition property or AEP for log-optimum investment in
a stationary ergodic market is a generalization of the Shannon-McMillan-
Breiman theorem of information theory. To prove the AEP, Algoet and Cover
(1988a, b) argued that an investor who at time ¢ may look back at the ¢-past is
sandwiched in asymptotic growth rate between an investor who may look back
at the k-past and one who may look back at the infinite past. The maximum
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capital growth rate for an investor who may look back only at the k-past is
equal to W(X|X~*), and for an investor who may look back at the infinite past
it is equal to W(X|X ™). It follows from the asymptotic optimality principle that
the growth rate n~!log S} is asymptotically sandwiched between the maxi-
mum rate given the k-past and the maximum rate given the infinite past:

1 1
(67) W(XIX7*) < liminf; log S} < lim sup — log S} < W(XIX™) a.s.

n

Since the lower bound W(X|X~*) increases to the upper bound W(X|X~) as
k — », we may conclude that the asymptotic equipartition property holds:

1
(68) AEP: - log S} » W(XIX™) aus.

Thus an investor who at time ¢ may only recall the ¢-past can attain the same
limiting growth rate as an investor who can always remember the infinite past.

The maximum capital growth rate for a stationary ergodic ‘market is
attainable if the distribution of the market is unknown but randomly selected
according to a known prior distribution on stationary ergodic modes. It suffices
to select portfolios that are log-optimum under the stationary mixture distri-
bution. Indeed, if the investor diversifies during each period ¢ according to the
portfolio b* that is conditionally log-optimum given X’ under the stationary
mixture distribution, then the compounded capital S} = IT,_, . (b}, X,) will
grow exponentially fast almost surely with limiting rate equal to the maximum
rate associated with the stationary ergodic mode that governs the actual
realization of {X,}. This is not surprising since the ergodic mode is uniquely
identified by the infinite past.

Every stationary market is a mixture of stationary ergodic modes, but it is
not clear how to construct a prior distribution that supports every stationary
ergodic mode. Furthermore, the AEP for stationary markets only guarantees
exponential growth with the maximum rate almost surely under the stationary
mixture distribution. We want an AEP that holds for every stationary ergodic
market, not one that only holds with probability 1 under some prior distribu-
tion on stationary ergodic modes. We shall argue that the maximum capital
growth rate W(X|X™) can be achieved in the limit even if the distribution of
the stationary ergodic market is unknown and must be learned from experi-
ence.

4.2. A universal portfolio selection strategy. Suppose the market process
{X,} is stationary ergodic, but its distribution P is unknown. For ¢ > 0 let
P(dx,|X?) denote a regular conditional distribution of X, given X°. If capital is
allocated at the beginning of every investment period ¢ according to the
portfolio b} that is conditionally log-optimum given the -past X‘, then the
compounded capital S} = I1,_, (b}, X,) will grow exponentially fast almost
surely with the maximum limiting rate W(X|X™). Portfolio b/ cannot be
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computed directly since the conditional distribution P(dx,X*) is unknown.
However, we can use the ¢-past X’ to compute an estimate P(dx,X?) and
diversify according to the portfolio 5* that is log-optimum with respect to this
estimate. This results in the compounded capital
(69) Sr= TI (8. %)

0<t<n
We shall prove that S* grows with the same maximum rate W(X|X~) as S¥,
provided the estimate P(dxth *) is carefully constructed and the market is safe
in some formal sense. A general market is not safe, but we can approach the
maximum growth exponent W(X|X™) to within any desired ¢ > 0.

The estimates P(dx,|X*) are constructed as follows. In Section 5.2 we shall
describe a universal prediction scheme to learn the conditional distribution
P(dx|X™) of X =X, given the infinite past X~. The algorithm reads past
outcomes and generates estimates based on what it has read so far. In
particular, P(dx|X~*) will denote the estimate that is generated by the algo-
rithm on the basis of the ¢-past (X_,,..., X_,), before it reads the next past
outcome X_, ;. The estimates P(dx|X~*) converge weakly almost surely to
P(dx|X™). We deﬁne P(dx,X?) as the output of the algorithm when it is
applied to the shifted input sequence X,_,,..., X,. Thus

(70) B(dx|X*) = ﬁ(deX") o T,
The market is called safe if E{log X’} > —o for 1 <j < m and hence
(71)  E{log(b, X)} > — for every portfolio selection b € o(X™).

The following theorem does not apply to a Kelly horse race, which is a most
unsafe market.

THEOREM 7. Let {X,} be a stationary ergodic market process, and let bf
and b* denote the portfolios that result when the log-optimum portfolio selec-
tion function b*(-) is applied to the true conditional distribution P(dxth ) and
an estimate P(dx,|X?), respectively. Let P(dx,|X*) be the shifted version of an
estimate P(dx|X~") such that

(72) P(dx|IX~t) > P(dx|X~) weaklya.s.
If the market is safe, then diversification according to the portfolios b} or 5;“
attains the maximum growth rate given the inﬁnite past:

(73) log S* - W(XIX™) = hm —log S} a.s.

Proor. The AEP for the log-optimum portfolios b} and the AOP for the
nonanticipating portfolios 3* assert that

lim ; log S} =W(XIX") as,
1 *
lim sup — log( S":‘ ) <0 as.

n
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This implies the asymptotic upper bound

limsup log S* < W(XIX™) = lim — log S* a.s.

n

The difficult part is proving the asymptotic lower bound
hmmf —log S*>W(XIX") as.

For this we use Brelman S extended ergodic theorem.

Let 5* and b* denote the portfolios that result when the log-optimum
portfolio selectlon function b*(-) is applied to P(dx|X~) and the estimate
P(dx|X~*). Since P(dx|X~*) converges weakly almost surely to P(dx|X~), it
follows [cf. Theorem 4 of Algoet and Cover (1988a)] that any accumulation
point of {b}} is log-optimum for P(dx|X"). Thus

(7;;", X) - (b*,X) a.s.
To prove that n~' log $* — W(X|X~), we must argue that

1
Y 8,°T'—> E{g} as.,
0<t<n
where &, = log(b#, X) and g = log(b*, X). Clearly g, > g a.s., and we may
assume without loss of generality (by rescaling X) that X is bounded and
hence that &, is bounded above by a fixed constant. To prove that {g,} is
L'-dominated, it therefore suffices to verlfy the integrability condition
E{inf, 8} > —». But inf, 8, > min; log X’ since (b, X) > min; X/ for any
portfolio b, and E{min; log X7} > o since the market is safe. Thus the
integrability condition is satlsﬁed and the theorem follows. O

The theorem holds more generally if the scaled return vector U = X/(B, X)
is safe, for some constant portfolio B8 = (8/),_; j<m that places a positive
amount B/ > 0 on every stock j. The most obvious choice for B is the portfolio
(1/m), . <, that allocates equal amounts to all stocks.

If the market is not safe, then some stocks will occasionally yield zero
return or perform much worse than other stocks. The investor should prevent
the possibility of going broke by bounding portfolios away from the boundary
of the simplex, that is, by placing some amount on all stocks, including the
least promising ones. Let B be a fixed portfolio such that g7 > 0 for all j, and
for 0 <A <1let
(74) S} = TI (6% X,), whereb}* = (1 - 1) + Ab}.

0<t<n
The jth component of portfolio 3" is bounded below by the positive constant
1 - 1B
For any information field & and 0 < A < 1, let

(75) W*(X|#) = E{log(b**, X)},
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where b** = (1 — A)B + Ab* and b* attains the maximum conditional ex-
pected growth exponent sup E{log(b, X)|£}. Since (b**, X) > A(b*, X), we see
that

(76) W(X\#) + log A < WA(XI#) < W(X|#).

[Alternatively, one may define W*(X|#) = E{log (b**, X)}, where b** attains
sup Eflog(b*, X)|#} and the supremum is taken over the shrunken simplex
#* of portfolios b* = (1 — A)B + Ab. The portfolio b** is log-optimum in &*
and is at least as good as the portfolio 5** which is obtained by shrinking the
log-optimum portfolio 5*.]

THEOREM 8. Consider a stationary ergodic market with unknown distribu-
tion. If capital is diversified according to the nonanticipating portfolio b} at
the beginning of every investment period t, then the compounded capital S}
will grow exponentially fast almost surely with a well-defined limiting rate. In
fact,

1
(77) — log S} > WA(XIX™) a.s.,
where [writing b** = (1 — A)B + Ab*]
(78) WA(XIX™) = Eflog(b**, X)}.

Proor. We use Breiman’s extended ergodic theorem for the random vari-
ables

o (1 =18 + 287, X)

8 = log (8, X) ’
\ ((1 = A)B + Ab*, X))

g —log( (5. %) .

Since §;' — g* a.s. and {£}} is bounded between log(1 — A) and max ; log(1/87),
we have

1
— Y, 8}eT'-> E{g*} as.

0<t<n

The theorem follows since

1 1 1
;log§,¢=— Y gleT'+— Y log(B,X,)

0<t<n 0<t<n

— E{g*} + E{log(B, X)} = WX(XIX") as. O

The nonanticipating strategy {5;“ } achieves capital growth exponent
W*(X|X ™) that approaches W(X|X ™) to within any desired ¢ as A ~ 1 (namely,
to within ¢ = —log A). We show that the maximum growth exponent given the
infinite past can be asymptotically achieved.
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TueoREM 9 (Universal portfolio selection). Suppose the stock market pro-
cess {X,} is stationary ergodic with unknown distribution. There exists a
universal nonanticipating portfolio selection strategy {b,} such that the com-
pounded capital S, =TTy, <, b,, X,) grows exponentially fast almost surely
with the maximum rate W(X|X™):

1
(79) — log S, - W(XIX") a.s.

Proor. The AEP, in combination with the AOP for any nonanticipating
portfolio selection strategy {b,}, asserts that

1 1

limsup — log 8, < W(XIX™) = lim— log S} a.s.
n n n n

We use the bookkeeping technique of Theorem 2 to construct a particular

nonanticipating strategy such that

1
lim inf — log S >W(XIX") as.

The initial capital S, = 1 is distributed over a countable number of separate
accounts, indexed by k. Let u, > 0 denote the initial value of the kth account,
so that ¥ ,u, = S, = 1. The kth account is managed using the strategy {6+
so that its value after n investment periods is given by [u, §,’:k]. By Theorem
8, the capital in the kth account will compound with limiting rate

1
lim — log[ ux$)] = WH(XIX™) as.

The total capital in all accounts is given by
gn = Z [/'Lkgr):k] .
k

We assume that A, 1 as k& — . Since S, > [u, 8] for all k, we may
conclude that

1

lim inf — log S >W(XIX")=supW**(XIX") as.
n k

The accounts form a bookkeeping device, that is, they are separate only on

paper. The total capital is pooled at the end of every investment period £, and

is then reinvested according to the nonanticipating portfolio

A Zk[:u‘kgt)\k]b;k)‘k
b, = .
! Ek[#kgt'\"] .

The universal prediction scheme P(dx|X~*) is complicated, but it allows
construction of a strategy {6**} whose growth exponent W*(X|X~) approaches
the maximum W(X|X~) uniformly to within any desired ¢ = log(1/A).



UNIVERSAL PREDICTION AND GAMBLING SCHEMES 927

4.3. A simpler approach. We now describe a universal portfolio selection
scheme that does not require a universal prediction scheme as a subroutine.
For any k > 0, any finite subfield % * of o(X™*), and any 0 <A <1 we
construct a strategy {b;*} for which the compounded capital $** grows
exponentially fast almost surely with rate W*(X|% *). The maximum rate
W(X|X") can be asymptotically attained by combining such strategies.

Fix some k£ > 0 and some finite subfield &~ * of the k-past (X *). The
empirical estimate of the conditional distribution P(dx|.% *) based on X %*~¢
is defined for s > 0 as

be(dx) + T, 8y (dx)

1+ A ’
where £, € 2" is arbitrary, §,(dx) is the unit mass at £ € 2" and
E={rl<r<s,(X_._4,....,X_,_)and (X_,,..., X_))

s

(80) P (dx|F*) =

(81)
belong to the same atom of & *}.

It follows from the ergodic theorem that
(82) P (dx|F*) » P(dx|F*) weaklya.s.as s — o.

Let #* denote the finite subfield of ¢(X,_,,..., X,_,) that is obtained by
shifting & *:
(83) Gk =T'F*={T'F. Fe F7*}.
Shifting B,(dx| 7 *) yields an empirical estimate P,(dx,|.%*) of P(dx,F*).
This empirical estimate is a function of X’ and X *. [To compute the
estimate, one must make some arbitrary choice for X°*, since X~* is un-
known. It is perhaps more convenient to work with P,_,(dx|.%~*) which is a
function of X~°. Shifting P,_,(dx| % *) yields an estimate for P(dx,|%") that
is based on X*] ~

We consider the log-optimum portfolios b* and 6% for P(dx|#*) and
P(dx,| #*). Let B be a fixed portfolio with B/ > 0 for all j, and for 0 < A < 1
let
(84) Sk*= TI (b¥* X,) where b} = (1 —1)B + Ab.

O<t<n

It is easily verified using Breiman’s generalized ergodic theorem that .§,’f”‘
grows exponentially fast almost surely with limiting rate

1 -
(85) lim — log Sk* = WA X|F*) = E{log(b>*, X)} as,
where 5%* = (1 — A)B + Ab*. Note that W*(X|F*) increases to W(X|.F*)
as A 7 1 since
(86) W(XIF*) +log A < WA(XIF*) < W(XIFH).

To attain the maximum growth exponent W(X|X~), we divide the capital
into countably many accounts, indexed by & > 0. Let u, > 0 denote the initial
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amount in the kth account (L ,u, = 1), and suppose the kth account is
managed according to the strategy {6/ *+}, where A, » 1 and F* is a finite
subfield of o(X %) such that % * increases to (X~) as k£ — ». The total
capital, obtained by summing all accounts, will grow exponentially fast with
limiting rate

(87) W(XIX™) = supWh(X|F*).
k

4.4. Some observations.

REMARK 1. Markets for which the return vector X, is always oriented
along a coordinate axis of R deserve special attention. Log-optimum invest-
ment for such a market reduces to log-optimum gambling on the identity /, of
the stock that will yield the nonzero return. A Kelly horse race is the canonical
example of such a market, because exactly one horse will win and yield a
nonzero return. Placing bets on every horse j proportional to its conditional
win probability is log-optimum. If the winning horse J, returns m times the
amount invested in it, then X, is m times the unit vector in direction J;, and
W(X|X~) = [log m — H(J|J )], where H(J|J~) is the entropy rate of the
stationary ergodic process {J,}. If a universal portfolio selection strategy is
applied to a stationary ergodic market such that exactly one stock will yield a
nonzero return, then the result is a universal gambling scheme.

REMARK 2. A stationary ergodic market with side information is described
by a stationary ergodic pair process {(X,,Y,)}, where X, € R} is the return
vector for period ¢ and Y, is side information taking values in some Polish
space Z. If the nonanticipating portfolio b, may depend on the side informa-
tion Y, and the z-past Y’X’, then the maximum capital growth exponent is
given by

(88) W(XIYY"X") = E{log(d*, X)},

where portfolio 5* is conditionally log-optimum for period 0 given the side
information Y = Y, and the infinite past Y~X~. The maximum growth rate
can be asymptotically attained even if the pair process distribution P is
unknown. It suffices to use estimates P(dx,|Y,Y*X*?) of P(dx,Y,Y'X") rather
than estimates P(dx,/X*) of P(dx|X?) in the preceding strategies. In Section
5.2 we show how to generate estimates P(dx|YY*X~*) such that

(89) P(dx|YY™*X™*) - P(dx|YY"X") weakly a.s.

REMARK 3. Mori (1984) carried out a refined analysis for markets with
independent identically distributed return vectors such that the log-optimum
portfolio b* is unique and contained in the interior of the unit simplex. His
results imply that the capital S, = I, _, ..(b;, X,) will grow with the maxi-
mum rate W(X)if b, = (1 — A,)B + A,b*, where A, » 1 and b* is log-optimum
for the empirical measure P, = (1/n)% ¢, <0 x,- In fact he proves the stronger
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result that n™~1/2S, /S* has a nondegenerate limit distribution. Thus the
capital of an investor who must learn the market distribution from experience
grows only polynomially less fast than the capital of an investor who already
knows the distribution to begin with. However, this result is valid only if the
return vectors are independent and identically distributed.

REMARK 4. Cover (1991) considers a different type of universal portfolio
selection, for markets with arbitrary return vectors X, that need not form a
stationary random process. If the capital is rebalanced at the beginning of
every period ¢ according to some fixed portfolio b, then the capital growth over
n investment periods amounts to
(90) S.(0) = IT (b, X,).

0<t<n
Let b} = b*(P,) denote the portfolio that is log-optimum for the empirical
distribution

1
(91) pn=_ Z BX,'
n05t<n
Then
92 S (b*) = S (b).
(92) n(67) pmax n(b)

It is possible to generate nonanticipating portfolios 3t such that the resulting
capital §, = HOSK,,(I;“ X,) grows only polynomially less fast than S}. To
prove this, Cover considers a continuum of accounts, indexed by all possible
portfolio vectors b € &. The initial capital S, = 1 is uniformly distributed
over all possible accounts (according to the distribution that is proportional to
the Lebesgue measure db on the simplex %), and the strategy for the bth
account is to rebalance according to the constant portfolio 5. Thus the
compounded capital after n period amounts to

[5S,(b) db .
(93) S, = iﬁzz_ = w”q("“ X,),

where
5 _ JabSdb)db
" JaS/(b)db

Note that 13, is an average over the simplex %, when each portfolio b € & is
weighted according to how well it would have performed in the past. Similarly,
gn is the average growth over the continuum of accounts indexed by portfolios
in the simplex.

Cover’s result is stronger than ours because he makes no statistical assump-
tions about the return vectors X, (which need not be random variables). In
fact, the empirical distribution P, need not converge, and the growth rate of
S,(b*) or S, need not exist. But Cover’s universal strategy is also weaker
because it only attains the maximum limiting rate achievable by rebalancing

(94)
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according to constant portfolios. Our universal strategy for stationary ergodic
markets attains the maximum capital growth rate achievable by nonanticipat-
ing strategies that may be time-varying. The maximum achievable by portfo-
lios that may depend on the infinite past is higher than the maximum
achievable by constant portfolios, except when the return vectors are indepen-
dent and identically distributed.

5. Universal prediction schemes. We consider a discrete-time station-
ary ergodic process { X,} with values in a Polish space 2" Thus X,(w) = X(T '),
where X:Q) —» £ is a random variable defined on a stationary ergodic dynami-
cal system (Q, #, P,T). We assume that (), ) is the two-sided sequence
space Z°% with its Borel o-field and T is the left shift on Q. The distribution
P is stationary ergodic but unknown, and we wish to learn the conditional
distribution P(dx|X~) of the next outcome X = X, given the infinite past
X =(X_,, X_,,...). An algorithm that achieves this goal is called a universal
prediction scheme.

The infinite past uniquely determines the ergodic mode of the process as
well as the conditional distribution P(dx|X~), but no finite number of past
outcomes is sufficient to identify P(dx|X™) exactly. However, it is possible to
generate estimates P, = P,(dx|X~°) that converge weakly almost surely to
P(dx|X™) no matter what the unknown distribution P of {X,} happens to be,
as long as P is stationary ergodic. The estimates will depend on a finite but
growmg number of past observations, that is, 15 will be a function of

" =(X_y,...,X_,,), where o, = 0,(w) is a stopping time (when going
backwards into the past) such that o,(w) = » more or less fast depending on
the particular realization  of {X,}.

The estimates P, are eas1ly transformed into estimates P(dx|X~*) which
are functions of the ¢-past X~* = (X_,,..., X_,) and converge weakly almost
surely to P(dx|X™). It suffices to set

(95) P(dx|X™) = P,(dx|X~%) if o, <t <ay,,.

Thus P(dx|X~?) is the most recent estimate P, that is generated before X_,_,
is input. The initial choice of P(dx|X~°) is arbltrary during the startup phrase
when 0 <t < o;.

Ornstein (1978) formulated an algorithm which uses past experience to
learn the conditional distribution of the next outcome given the infinite past of
a stationary ergodic process with values in a finite [e.g., binary] set. This
universal prediction scheme is also described in the thesis of Bailey (1976). We
shall review Ornstein’s algorithm for finite-valued processes and then general-
ize it when the space of possible outcomes is Polish. A random process with
values in the finite set {1,..., m} will be denoted by {J,}, to be consistent with
previous sections.

5.1. Ornstein’s universal prediction scheme. Let {J,} be a stationary er-
godic process with values in the finite set {1, ..., m}. Let P(:{J~) and P(:|J%)
denote the conditional distributions of J = J,, given the infinite past J =
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(J_1,J_g,...) and the t-past J ! = (J_,,...,J_,). Lévy’s martingale conver-
gence theorem for conditional probabilities asserts that
P(jlJ7%) > P(jlJ™) as.ast— o,

The conditional probability P(jlJ ) itself is the limit of empirical estimates.
Indeed, for finite s > 0 let the set of occurrences of the block J~¢ within the
longer block J ¢ be denoted by

(96) It={rl<r<8,(J_rorr .0, d 1) =(J_p...,Jd D}

(Note that the occurrence of J~% at 7 =0 is not counted.) The empirical
estimate of the conditional probability P(jlJ %) based on J ~*~* and some fixed
Jo €11,..., m} is defined as
6;(Jo) + X, er0;(J_,)

1+ 70 ’

(97) B(jlJt) =

where 8;(-) is the indicator function of j € {1, ..., m}. To prove that B(jld~)
converges to P(jlJ ) as s - o, observe that ||I;%||/s is the relative frequency
of past occurrences of the block ¢ within the longer block J~*~¢, and that
X, 19, (J_,)]/s is the relative frequency with which such occurrences are

followed by J. By the ergodic theorem,

[Bj(JO) + ZTEI;tBj(J—T)]/s
[1+1L;71] /s
P{J“, J =j}
P{J 9

Recall that P(-]J~%) —» P(:|J %) a.s. as s » © and P(:|J~%) - P(-|J") as.
as t — . If {J,} is vth-order Markov, then P,(:|J~") converges to P(:|J ") =
P(:|J7) as s - ». However, no fixed (nonrandom) sequences {s,} and {¢,} exist
such that P (lJ7%) > P(:|J7) as. in a universal sense, irrespective of the
stationary ergodlc distribution P. One must rely on the observations them-
selves as a source of evidence to determine how deep one must go back into the
past. Ornstein (1978) proved that P, (1) > P(-|J7) a.s. for some carefully
constructed s, = s,(w) and ¢, = ¢ k(w) which depend on the realization w of
the process {J/,}. The number 0;(w) = s,(w) + ¢,(w) is a stopping time and the
estimate P, (-|J %) depends on w only through J % = (J_,,...,d —o)

Ornsteln s construction of estimates for P(-|J ™) is supported by the follow-
ing rationale. We say that two probability distributions @ and R on the set
{1,..., m} are within ¢ from each other if sup, _; _,|Q(j) — R(j)| < &. Given
€ >0 and &, > 1, suppose a sequence (s;)g.;<; With 2 <s;<s; < -+ <
§; < exists such that all empirical estimates P, ClI™), so<t<s;_ 5, 1<
i <!, are within ¢ from each other. We may regard such (s;)g.;<; as a
certificate of the quality of these empirical estimates. If ¢ is small and &, [ are
large, then the estimates are likely to be close to P(j|J 7). Indeed, P ( IJ “is
an estimate for P(-|J~*), which itself is close to P(:|J~) if £ and hence t>k

B(jlI?) =
(98)
=P(jlJ7*) as.ass—> .



932 P. ALGOET

is large. Furthermore, it appears that we have gone through a number I of
rounds to generate, validate and possibly revise estimates. After generating the
first estimate P, (-1 7%0) durlng the first round i = 1, we went through (I — 1)
confirmation stages i=23,...,1, each of which conferred an additional
degree of confidence. Round : (2 <1 <) certified that all the estimates
P, (1), 89 < £ < 5;_,, are within ¢ from one another and from the previous
estimates P, ClI™), sg<t<s,_;, 1<u<i. During the whole process there
may have arisen a need on several occasions to revise previous estimates in
order to make them consistent with new evidence.

We claim that a certificate (s;)o.;.; with these properties exists almost
surely.

LemMma 3. Let {J,} be a stationary ergodic process with values in the finite
set {1,...,m}. Then for any ¢ > 0 and k > 1, there almost surely exists a
sequence (s Do<i<w With k < sq <s; < -+ such that all the empirical esti-
mates P, G179, sg <t <s;_;, 1 <i<w, are well defined, within £/2 from
P(-|J7), and hence within ¢ from each other

Lemma 3 will follow from the more general Lemma 5 that is stated and
proved in the next section.

Once we have found a certificate (s;) .; ., as above, we may be confident
that all the estimates P, ClJ™), sg <t <s;_y,1<ix<l, areclose to P(:|J7).
How confident we may be will now be quantlﬁed

For real a > 0, integer K > 0 and j € {1,..., m}, let B2x(;j) denote the
entire sample space () and let the “bad” event Bl L k(§) be defined for integer
1> 1 as follows. Event B!.(j) is said to occur if there exists a certificate

(5:)o<i<; With K =5, <s; < +++ <s; <o such that |1l > 0 and
(99) B(jU*) = P(jlJ™") +a forso<t<s,_;,1<i<l

Among all sequences (s;), . ; .; that witness membership in B.(j), we always
select the one that is minimal in the following sense. A sequence (r)o<i<i
precedes a different sequence (s;), ;. if there exists some A in the range
0 <A <1 such that r, <s, and r;=s; for A <i <. This is the standard
lexicographic ordering of sequences read in reverse.
Notice that BL:'(j) c BLg(j) for all I > 0. The event BLE'(j) is “worse”

than the ‘“bad” event B’ ! x(j) but occurs less often. We prove that the
probability of B! (j) decreases exponentially fast with I.

LEMMA 4. Let the “bad” event Bl (j) be deﬁned as above for 0 < a <1,

K>0,l>0andje{l,...,m}. Then P{B.N)IBLL(j)} < (1 — a), and con-
sequently

(100) P(BLy())} = (1 -a).

ProoF. See the Appendix.
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Armed with this insight, we now formulate an algorithm to generate
estimates P, = P,(-|J ) that converge almost surely to P(:|J"). We fix some
sequence {£;}; <1 < Such that &, \ 0. Two measures @, R on the finite set
{1,..., m} are said to be k-close if sup, _ ;. ,|Q(j) — R(j)| < ¢,.

ALGORITHM TO GENERATE THE kTH ESTIMATE P, = P,(|J~%).

1. Find the least integer n for which there exists an integer K and a
certificate (s;)g.;<x such that k <K =5,<s; < -'- <sg=n and all
empirical estimates P, G, sg<t<s;_;, 1<i<K, are well defined
and k-close to each other

2. Choose K smallest possible and choose the certificate (s;),.; . x so that it
is lexicographically smallest when read in reverse.

3. Set 0}, == sg + sg_, and P, == PSK(-IJ‘SK—I).

The estimate P, is well defined for all k£ > 1, since the search for the integers
n and K and for the certificate (s;), .; . x must terminate by Lemma 3. Also,
P, is a function of J~%, where a-k(w) = Sgk, @) T Sk, »)-1(@) is a stopping
time for each fixed k.

THEOREM 10 (Ornstein). Let {J,} be a stationary ergodic process with
values in the finite set {1,...,m}, and let P(-|J~) denote the conditional
distribution of J = J, given the infinite past J "= (J_,,dJ _,,...). The estimate
Pk generated during phase k of the algorithm converges to P(-|J™) with
probability 1.

Theorem 10 will follow by specializing Theorem 11 which is stated and
proved in the next section.

5.2. Generalization when Z" is Polish. Let {X,} be a stationary ergodic
process with values in a Polish space & We generalize Ornstein’s algorithm
and generate estimates P, = P,(dx|X~°*) that converge weakly almost surely
to the conditional distribution P(dx|X~) of X = X, given the infinite past X"
The same algorithm as before is used to generate the estimates Pk, but we
need new definitions of empirical estimates and what it means for two distri-
butions on £ to be k-close.

We consider the conditional distribution P(dx|# %) of X =X, given a
finite field & ~* that approximates o(X~*). Let {£}, ., <. be an increasing
sequence of finite subfields that asymptotically generate the Borel o-field on
2, and define &' as the finite subfield of o(X~*) that is generated by
cylinder sets of the form

F={X_,€B,,...,X_,€B)},

where B,,..., B, are atoms of the finite field . If 2 is finite, then we may
assume that & ‘= ¢g(X™*) for all ¢£. In general ¢ is a finite subfield
approximating o(X~?), and the approximations get better as ¢ increases.
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Indeed, o(X~*) and the finite approximating subfield & both increase to
the limiting o-field o (X7).
It is well known if %! increases to o(X™~) that
P(dx|¥ ') -» P(dx|X~) weaklya.s.ast — «.

Indeed, if h(x) is a bounded continuous (or even a nonnegative measurable)
function on &, then by the martingale convergence theorem for conditional
expectations,

Ph(X)IF '} - P{R(X)IX"} as.
We may approximate the distribution P(dx|% ) by the empirical estimate

. 8¢ (dx) + X, c0x_ (dx)
(101) P (dx|Ft) = Tz ,

where ¢, € & is arbitrary, 8,(dx) is the Dirac distribution that places unit
mass at £ € £, and

(102) I;*={r:1<r<s,T "0 and o belong to the same atom of F*}.

Thus P(dx|# ") is an empirical estimate of P(dx|.% ) based on X~*~*. If

h(X) is integrable, then the empirical estimate

h(E) + Toerh(X)
1+

(103)  P{r(X)F )= [ grh(x)lss(dxly"‘
converges almost surely by the ergodic theorem to the conditional expectation
(104) P{h(X)|F %} = /sz(x)P(de?‘t).

Thus P(dx|F~%) - P(dx|F ") weakly almost surely as s —» ». We now
generalize Lemma 3.

LemMA 5. Let {X,} be a stationary ergodic process with values in a Polish
space X and let # be a finite collection of measurable functions on 2" such
that h(X) is integrable for all h € #. Then for any € > 0 and k > 0, there
exist integers (s)g ; <., With k < s, <s,; < -+ such that for all h € ¥, the
empirical expectations P, {h(X)I.?"“} Sog<t<s;_1,1<i<o,arewithin /2
from the conditional expectation P(h(X)|X~} and hence wzthm ¢ from each
other.

Proor. For s, we can take the least integer s > & such that the condi-
tional expectation P{h(X)|.% %} is within ¢/4 from P{h(X)|X"} for all ¢ > s
and h € #. Such s exists since P{h(X)|F '} converges almost surely to
P{h(X)|X"} by the martingale convergence theorem for conditional expecta-
tions. Given s, s;,...,S;_;, We can inductively define s; as the least integer
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s > s,_, such that the empirical estimate P{h(X)|.F %} is within /4 from
P{h(X)I.?'“} forall h € # and s, <t < s;_,. Such s exists since P  (dx| FY)
converges weakly almost surely to P(dxl?’ ‘) as s —» « by the ergodic theo-
rem. The estimates P, {R(XF7Y), sg<t<s;,_;, 1 <i<w, are all within
e/2 from P{h(X)|X"} and therefore within ¢ from each other

Lemma 5 reduces to Lemma 3 when &  is a finite set equipped with the
discrete topology and &# is the family of indicator functions {§,}, 5. Note
that weak convergence of conditional distributions reduces to ordinary conver-
gence when & is finite.

To generalize Lemma 4, we define events B’ (h) for a >0, K> 0,1 > 0,
and bounded continuous h(x) on Z, as follows. First, B? K(h) will denote the
entire sample space () as before. For I > 1, we say that B..(h) occurs if a
certificate (s;)o<;<; With K=s7<s; < -+ <5 <o exists such that
P {h(X)I? ‘} > P{h(X)Ig*” Y +aforall sp<t<s,_;,1<ix<l

LEmMMA 6. Suppose the continuous function h(x) is bounded between min
and max. Then for K > 0, ] > 0 and 0 < a < (max — min), we have

(105) P{B.X(h)IBig(h)} < (1 - m)

and hence, by induction on ,

(106) P{Blx(Rh)} < (1 - ——a——.—)l.

max — min

ProOF. See the Appendix.

The algorithm of Section 5.1 can be modified to generate estimates P, =
P,(dx|X %) that converge weakly almost surely to P(dx|X™). It suffices to use
the empirical estimates 2] ' (dx| F 1) rather than P( [J~%). Also, a new defini-
tion of what it means for two distributions on £ to be k-close is needed.

A sequence of probability measures @, converges weakly to a distribution @
on & if @,{h} — Q{h} for all bounded continuous functions 2 on Z". Since Z°
is a Polish space, there exists a convergence-determining sequence {%,}o . . <o
of bounded continuous functions on & such that @, converges weakly to @ if
and only if @,(r,} — Q{h,} as £ > » for all 0 < k < ». Given a convergence-
determining sequence {A,}, ..., and a real sequence {¢,} ;.. such that
g, \v 0, we say that two distributions @ and R on & are k-close if

IQ{h.} —R{h} <&, O0<k<Ek.

THEOREM 11. Let {X,} be a stationary ergodic process with values in a
Polish space ', and let P(dx|X~) denote a regular conditional distribution of
X =X, given the infinite past X~. The estimate P, = P,(dx|X~") that is
generated during phase k of the modified algorithm will converge weakly
almost surely to P(dx|X™).
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Proor. Let (s,)g -, < k) denote the certificate found and P, the estimate
of P(dx|X~) that is generated during phase % of the algorithm. [Note: The
sequence (s;)o.; < k), depends on k, but this dependence is left implicit to
keep the notation simple.] It is clear that Isk is well defined for all £ > 1, since
the search for the integers n and K and for the certificate (s;)y.; . x must
terminate by Lemma 5. Furthermore, P, is a function of X~ %, where o,(w) =
Sk, o) @) + Sk, »)-1(®) is a stopping time. .

To prove the theorem, we argue by contradiction. If P, does not converge
weakly almost surely to P(dx|X~), then there exists a bounded continuous
function A(x), equal to either h,(x) or —h,(x) for some 0 < k < =, such that
lsk{h(X )} does not converge to P{h(X)|X~}. In fact there exist constants min,
max and a such that min < h(x) < max. 0 < @ < (max — min), and

P{h(X)} - P{R(X)IX"} = 2a i.o.

If k& > k, then all the empirical estimates Issjh(X)I.?“}, Sg<t<s;,_, 1<
i < K(k), are within ¢, from P,{h(X)}. Consequently, if % is sufficiently large
so that £ > k and ¢, < a/2 and P{h(X)|.# "} is within a/2 from P{h(X)|X"}
for all ¢ > &, then )

PLn(X)NF '} - PR(X)NF Y 2a, so<t<s;_;,1<i<K(k).

It follows that the bad event BX%) (k) must occur for infinitely many values
of k. If K is fixed, then K(k) < K for only finitely many rounds %, since
K(k) > k. Thus BX,(h) must occur for infinitely many values of K. This can
only happen with zero probability, in view of the Borel-Cantelli lemma and
Lemma 6 which implies that

I Aesm) < £ (1= o)
_ (max — min)

< oo, O
44

ReEMARK 1. For any fixed [ > 1 it is possible to learn the conditional
distribution P(dx!|X~) of the next I-block X'=(X,,...,X,_,) given the
infinite past X~. In fact, it is possible to learn these distributions simultane-
ously for different values of . Indeed, let P(dx‘|#~*) denote the conditional
distribution of X! given ¢, and let P(dx!|#~*) denote the empirical
estimate that is computed on the basis of X~ °¢ as

35’_,+1(de) + Efelg'(z)sxi,(dxl)

1+ 175D
Here ¢1,,, denotes the I-tuple (¢é_;, ,,..., &) at the end of a fixed sequence
(.6 1,8, XL =(X_,,...,X__,;_),and I7\(D)=I7"n{r: I <7}. The

following steps for fixed % > 1 yield estimates P,(dx!|X~) of the conditional
distribution P(dx‘|X~), for all values ! in the range 1 <[ < k. We assume

(107) P (dxl|lFt) =
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that ¢, \ 0, and for each k > 1 that A, k%), ... is a convergence-determin-
ing sequence of bounded continuous functions on 2°%.

ALGORITHM TO GENERATE P,(dx!|X~"*)For 1 < < k.

1. Find the least integer n for which there exists an integer K and a
certificate (s;)y_; . x such that k < K =5,<s, < '+ <sg=n and, for
1<l<k and 0 <A <k — 1, all empirical estimates P {h”)(X NFY) =
kPP (x| FY), sg<t<s;_,, 1<i<K, are well defined and
within ¢, from each other.

2. Choose K smallest possible and choose the certificate (s;), . ; . x such that
it is lexicographically smallest when read in reverse.

3. Forl1<l<k,seto,=sg+s, ;and P(dx'|X ) = ISSK(deIX_sK—l).

If 1 is fixed, then the estimate P,(dx!|X~*) will converge weakly almost surely
as k — o« to the true conditional distribution P(dx‘|X~). Thus it is possible to
learn the conditional distribution of the entire future given the infinite past.

REMARK 2. Suppose {(X,,Y,)} is a stationary ergodic pair process with
values 2" X Z, where 2" and % are Polish spaces. It is possible to generate
estimates P, that converge weakly almost surely to the conditional distribu-
tion P(deYY X7) of X =X, given the side information Y =Y, and the
infinite past Y~ X~. The same method works as before, provided % ~ is now
defined as a finite approximating field for the o-field o(YY!X~?) with limit
o(YY " X).

APPENDIX

In this appendix we shall prove Lemma 6. Lemma 4 for finite 2" will follow
as a special case, by setting h equal to the indicator function §, of elements
x € Z. First, we make some preliminary observations.

Recall that B2, (h) =, and for / > 1 that B’ (h) occurs if there exists
a witnessing sequence (s;),.;.; with K=s5,<s; < -+ <s; such that
;I > 0 and

P{n(X)F '} > P{h(X)IF ) +a, so<t<s;,_j,l<ic<l.

Here

h(o) + L. crpth(X_,)
L+

is an empirical estimate for P{h(X)|.% %} = [,-h(x)P(dx| ¥ '), and

P{R(X)\F 1) = [ h(x)Py(dxl ) =

I;'={r:1 <7 <s; o and T "w belong to the same atom of % ‘}.

If (s;)o.; <, is a witness of B (h), then the prefix (s,), ., ., is a witness of
B2 (h), for any A in the range 1 < A < [. Among all witnesses of B’ (h), we
always select the sequence (s;),_; ., that is lexicographically smallest when
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read in reverse. The prefix (s;)o.; ., is then automatically lexicographically
smallest, when read in reverse, among witnesses of B2x(h). In fact, s, is the
smallest integer s for which a sequence (r;)y_; ., With K=ro<r; < -+ <
r, = s exists such that

B h(X)F "} 2 P(h(X)F "} +a forrg<st<r,_;,1<i<A.

[We set s, = if w & B2x(h).] Indeed, s <s, since the lexicographically
smallest (s;) .; ., yields by truncation a sequence (s;)y.; ., that is a candi-
date for (r)g.;<,, and s <r, for all candidate sequences (r;)y_;_.,. The
inequality s < s, cannot be strict, since otherwise there would exist a candi-
date sequence (r;)y_; ., With s = r, <s, that could be padded to a sequence
(rgsTy--+» Ty = 8, 8541, -, S;) Witnessing occurrence of B’ (k). Since we may
assume without loss of generahty that A is smallest possible and hence that
r,=s; for 0 <i <A, this would contradict the minimality of (s;)y.;.; in
reverse lexicographic order.

ProoF oF LEMMA 6. Given a continuous function A on £ that is bounded
between min and max, a number a such that 0 < a < (max — min), and
integers K > 0 and / > 0, we must prove that

P{BLiA(h)BLg(h)} < (1— —a—)

max — nun

We consider a countable partition #,%(h) of B’ .(h) and prove for every atom
W of #,%(h) that

a
l+1 hW ( _—_)
{ & (h)] } max — min
That will establish the desired result since the inequality for each term will

imply the inequality for the weighted average
P{BLi(h)Bix(h)} = L P{BL(R)IW}P{WIB..(h)}.

we ¥.%(h)

The countable pa.rtltlon #,5(h) of Bl x(h) is defined as follows. We say that
two realizations » and ' in B! (h) belong to the same atom of #,%(h) if:

(i) the same certificate (s;)y;.; witnesses membership of w and «' in
BiK(h);

(i)  and o' belong to the same atom of the finite field %!, where
g, 1= S 1 + s -1

Let W = W(w) denote the atom of partition ﬁf(h) that contains the actual
realization w, assuming w € B.g(h). Clearly, W is a cylinder set in &,
since all evidence proving that w € B! x(h) is contained in & .. The atom
W(w) is uniquely determined by the certiﬁcate (8;)0 <; <; and the atoms of the
Zpartition &, in which the successive outcomes X_,,..., X_; happen to
fall. In partlcular if 2 is finite and & = o(X) for all ], then W(w) is
uniquely determined by the sequence X~ .
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An integer 7 > 1 will be called an occurrence of W= W(w) if T 7w € W,
that is, if @ and T~ "w belong to the same atom W of the partition #.%(h). An
occurrence 7 of W is said to be extensible to an occurrence of B!LY(h) if
T 'w € Wn B.iY(h). In this case we designate by o7, the length of the
extension. Thus a,( D, = s{?, +s,, where s{7; is the smallest integer that must
he appended to the certificate (s;);.;.; to get a sequence that witnesses
membership of T "w in W N Bl“(h)

We say that an occurrence 7 of W is covered by an occurrence ¢ of
W N BLiY(h) if the interval [7 + 1,7 + o] is wholly contained in the interval
[t+1,¢t + o9

If w € Wn B.i(h), then the empirical estimate P SJr(X)|F %) exceeds
the conditional expectation P{h(X)| & °} by at least . Thus the empirical
estimate for the shifted sequence T ‘w, computed for each occurrence ¢ of
W N BL3Y(h), exceeds by at least a the long run average P{h(X)| % *}. Since
h is bounded between min and max, it follows that occurrences of Wn
B!%Yh) must occur with limiting frequency less than (1 — a/(max — min))
among occurrences of W. We give a formal justification of this fact, proving
that P{B!}Y(h)IW} < (1 — a/max — min)).

Let E denote the set of occurrences of W and F C E the subset of those
occurrences of W that are extensible to occurrences of B.%'(h). Thus

E={r>1:T"w e W},
F={t>1:T'w € WnBL(h)}.

We use a greedy strategy to extract from F a sequence ¢, <?; <t, <
such that no instance 7 of W is covered by more than one occurrence ¢, of
W N B.LHh). Thus ¢, = inf{t: ¢t € F} and ¢,,, is the first occurrence t of
WnB fx}l( h) such that ¢ > ¢, and the occurrence of W at ¢ is not covered by
the occurrence of W N Bl”(h) at ¢;:

tin=inf{t €Fit >t t+0,> ¢t + o).

Let G denote the set of occurrences of W that are completely covered by one
of the occurrences ¢; of W N B.}3'(h) and let H denote the remaining set:

G={TEE:BiZO:TZtiand1-+a,sti+(r,‘f¢‘)1},
H={reE:r¢G}.

Note that F C G since every occurrence of W N B.%'(h) is an occurrence of
W that is covered by exactly one of the occurrences t; of W N B L (h).

Let E(N)=E n{r: 1 <7 < N} and similarly deﬁne G(N) and H(N) for
1 <N < Let Ai(N), Ao(N)and AL(N) denote the average of h(X_)) as
t ranges over E(N), G(N) and H(N), respectively. Thus

A N) = —— ¥ m(X
S EIC TP
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and similarly for A;(N) and A4(N). Obviously,
IE(N)II = IG(N)II + IH(N)I,
IE(N)IAE(N) =lIG(N)IIAg(N) + IH(N)lIAp(N).
If @ e WnBL(h), then P SR(XOIF ) = PLh(X)|F*} + a. When
this last inequality is applied within the occurrences t; of Wn BLE(h), we

obtain (after summing the numerators and the denomlnators of the empirical
estimates)

Ag(N) = P{h(X)F%) + a.

But AL(N) — P(h(X)| %%} by the ergodic theorem, so liminfy (Ag(N) —
Ag(N)) > a. Since AGg(N), Ayz(N) and Ag(N) are bounded between min and
max, we obtain

IIG( o (Ag —Ay)
PIEI - P (Ag - Ap)

= lim sup (Ag ~ An)
N  (Ag—Ag) + (Ag — Ap)

< lim sup (Ap — An)
T~ at(Ag—Ay)
(max — min — a) ( a )

~ a+ (max — min — a) max — min )’

The first inequality holds since liminfy (A; — Az) > @, and the second in-
equality holds since Z/(a + Z) is monotonically increasing in Z = (Ay — Ay)
and

limsup(Ag — Ay) < limsup(Ag — Ay) — limNinf(AG - Apg)
N N

< (max — min) — a.
Finally, || F(N)|| < IG(N)|| so that, again by the ergodic theorem,
” (N)” < limsu lG(N)“ < (1 . )
||E(N)I| B ||E(N)|| h
This concludes the proof of Lemma 6. O

P(B.i'(h)W} = max — min )’
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