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A NOTE ON THE CONVERGENCE OF SUMS
OF INDEPENDENT RANDOM VARIABLES'

By ApoLr HILDEBRAND
University of 1llinois

Let X,, n > 1, be a sequence of independent random variables, and let
Fy be the distribution function of the partial sums ©¥_, X,. Motivated by
a conjecture of Erdds in probabilistic number theory, we investigate condi-
tions under which the convergence of Fy(x) at two points x = x,, x, with
different limit values already implies the weak convergence of the distribu-
tions Fy. We show that this is the case if £5_,p(X,,c,) = © whenever
L5 -1c, diverges, where p(X, ¢) denotes the Levy distance between X and
the constant random variable c. In particular, this condition is satisfied if
liminf, ,, P(X, = 0)> 0.

1. Introduction. A function f: N > R is called additive if f(nm) =
f(n) + f(m) for any coprime integers n and m. Given an additive function f,
one can define, for each N € N, a distribution function

(1.1) Fy(x) = —llq#{n <N: f(n) <x)

and investigate the behavior of Fy;, as N — «. An old conjecture of Erdoés,
stated as Problem 1 in Elliott [3] (page 330), asserts that in order for the
sequence Fy to be (weakly) convergent, it is sufficient that there exist two
numbers x; < x, such that

(1.2) l\llim (Fy(xy) — Fy(x,)) exists and is positive.

As noted in Elliott [3] (page 331), standard techniques from probabilistic
number theory show that this conjecture is equivalent to the following purely
probabilistic statement.

Let a,, n = 1, be a sequence of real numbers and let X, be a sequence of
independent random variables assuming the values @, and 0 with probabilities
1/p, and 1 — 1/p,, respectively, where p, is the nth prime number. In order
for the distributions

(1.3) Fy(x) =P( f X,,Sx)
n=1

to be weakly convergent, it is sufficient that (1.2) holds for some x; < x,.
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The conjecture remains open to date. Some partial results have been
obtained by Paul [5] and Babu [1] (Chapter 4). In particular, Babu showed that
the conclusion of Erdds’ conjecture holds if (1.2) is replaced by the stronger
condition that the limit lim 5 _, (Fy(2) — Fy(x,)) exists for x; < z < x, and is
not a linear function of z.

It is natural to expect that the probabilistic version of Erdos’ conjecture, if
true, holds for much more general sequences of independent random variables
X, than those arising in connection with additive functions. In this direction,
Paul [5] suggested that the condition
(1.4) lim P(X,=0)=1

n—o

might already be sufficient in order for the conclusion of Erdos’ conjecture to
be valid. On the other hand, without any a priori condition on a sequence of
independent random variables X,, the conclusion is not true in general. A
trivial example is obtained by taking X, to be equal to some constant ¢, with
probability 1. If the series % _;c¢, diverges but has bounded partial sums, then
the distributions F, are not convergent, but (1.2) holds for any sufficiently
large x, and sufficiently small x;. More generally, if

Y (X, c,) <,
n=1

where
(1.5) p(X,c) =infle>0:P(X<c—¢€)<e,P(X>c+e)<¢)
denotes the Lévy distance between X and the constant random variable c,

then the distributions F, converge if and only if the series L% _,c, converges,
but (1.2) may be satisfied in either case. We shall therefore assume that

(1.6) Y o(X,,c,) == if Y c, diverges.
n=1

n=1
Our principal result shows that under this condition the conclusion of Erdos’
conjecture is valid, provided (1.2) is strengthened to

(1.7) L, = 1\1{1_1{1 Fy(x;) existsfori=1,2and L, # L,.

THEOREM 1. Let X,, n > 1, be a sequence of independent random variables
satisfying (1.6). In order for the distributions (1.3) to converge, it is sufficient
that (1.7) holds for some x; < x,.

It is easy to see that p(X,,c,) = min(c,|, P(X, = 0)). In particular, if
re_.p(X,,c,) converges [so that p(X,,c,) = 0 as n — «] and

(1.8) liminf P(X, = 0) > 0,

then p(X,,c,) > Ic,| holds for all sufficiently large n. Thus we see that
condition (1.8), which is slightly weaker than (1.4), implies the hypothesis (1.6)
of the theorem, and we obtain the following corollary.
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CoroLLARY 1. Let X,, n > 1, be a sequence of independent random vari-
ables satisfying (1.8). In order for the distributions (1.3) to converge, it is
sufficient that (1.7) holds for some x, < x,.

By specializing this result to the random variables arising from Erdos’
conjecture and translating it back into a statement about additive arithmetic
functions, we obtain Erdés’ original conjecture in the slightly weaker form
where (1.2) is replaced by (1.7).

CoroLLARY 2. Let f: N - R be an additive function. In order for the
distributions (1.1) to converge, it is sufficient that (1.7) holds for some x, < x,.

While we cannot decide whether Erdos’ condition (1.2) is already sufficient
in Corollaries 1 and 2, we show in our second theorem that under the more
general hypotheses of Theorem 1, (1.7) cannot be replaced by (1.2).

THEOREM 2. There exists a sequence X,, n > 1, of independent random
variables satisfying (1.6) such that (1.2) holds for some x, < x,, but the
distributions (1.3) do not converge.

2. Preliminaries. As is well known, the weak convergence of the distri-
butions of the partial sums of a series L5 _;X, of independent random
variables is equivalent to the almost sure (a.s.) convergence of that series.
Moreover, by Kolmogorov’s three series theorem, L% _; X, converges almost
surely if and only if the series

Y Var(X), Y E(XD), X P(Xl>e),
n=1 n=1 n=1

converge, where ¢ is any fixed positive number and X: denotes the random
variable X, truncated at +¢. We shall need the following related result, which
can be found in Doob [2] (Theorem III1.2.9).

LemMma 1. Let X, n > 1, be a sequence of independent random variables
satisfying, for some constant K,

(2.1) lim sup P( <K|]>0.

N-ox

N
L X,
n=1

Then there exist constants a,, n > 1, such that the series L%_(X, —a,)
converges a.s.

We define the range of a random variable X as the set
(2.2) R(X) ={x € R: P(IX — x| < &) > 0 for every ¢ > 0},
that is, the support of the probability measure on R induced by X. The next
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lemma describes the form of this set when X is given as an a.s. convergent
series of independent random variables.

LemMA 2. Let L5, _, X, be an a.s. convergent series of independent random
variables and let X denote its sum. Suppose that for every ¢ > 0 and n > n, =
no(¢), there exist numbers c, = c,(¢) € R(X,) with |c,| < ¢ such that

N
L c,
=n

n=ng

= 00,

(2.3) lim sup
N-ow

Then R(X) is equal to R or an interval of the form (—x, a] or [a,«) for some
a € R.

Proor. To show that R(X) has the required form, it obviously suffices to
show that if a, € R(X), then [a,, ©) € R(X) or (-, a,] € R(X).

We fix a, € R(X) and a positive number ¢ and we let ¢,, n > ny = ny(e),
be given as in the lemma. By (2.3), the partial sums ©2__ ¢, are then either

unbounded from above or unbounded from below. We shafl show that in the
first case

(2.4) R(X) N [a—5e,a+ 5] + O

holds for every a > a,. A similar argument will give (2.4) in the second case
for every a < a,. Since at least one of the two cases holds for arbitrarily small
values of ¢ and R(X) is a closed set, this will imply that R(X) contains at
least one of the intervals [a,,©) or (=, a,]. It therefore remains to show
that if

N
(2.5) limsup ), ¢, =,

N-ow n=ng

then (2.4) holds for every a > a,,.
By the assumption a, € R(X), we have

P(IX — aol <) > 0.

Since X is the limit in distribution of the partial sums Sy =XN_ X, it
follows that

(2.6) P(lSN - aol < 28) > O, N > No,
and
(2.7) P(IX -8yl <e)>0, N=N,,

with a suitable N, = Ny(&) > ny(e).
Now let @ > a, be given and choose N, > N, + 1 such that
N

Y c,—-(a—agy)|<e.
n=Ny+1
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This is possible by (2.5) and the conditions N, > n(¢) and |c,| < &. Since
¢, € R(X,), we have P(IX, — ¢,| <&/N;) > 0 for each n and thus

N, €
> 1 P(IXn—cnIs—)>O.
n=Ny+1 N1

N,

n=Ny+1

P(|Sy, — Sy, — (a —ap)| < 2¢) = P

Combining this with (2.6) and (2.7), we deduce
P(IX — al < 5¢)
2 P(ISy, — aol < 2¢)P(|Sy, — Sy, — (a — a,)| < 2¢)P(IX — Sy <¢)

>0,
which implies (2.4). O

3. Proof of Theorem 1. Let X,, n > 1, be a sequence of independent
random variables satisfying (1.6) and (1.7) for some x; < x,. By (1.7), the
hypothesis (2.1) of Lemma 1 is satisfied for any K > max(|x,][, [x,|), and it
follows that, with suitable constants a,, the series L% _(X, —a,) is as.
convergent. Let

Y, =X

n —a

n

and set

Gn(x) =P( g Y, sx) =Fy(x+Ay), G(x)=P(Y<x),

n=1

where Fy is defined by (1.3) and Ay = = %_,a,. Since the series =% _,Y, is
a.s. convergent, it converges also in distribution, and we have

(3.1) Gn(x) = G(x), N - o,
at every continuity point of G. On the other hand, from (1.7) we have
(3.2) GN(xl_AN) =FN(xt) _)Li’ N_)w,i= 1,2.

If the limit A = lim, _,, Ay exists, then (3.1) implies that the distributions
Fy(x) = Gy(x — Ay) converge to the distribution F(x) = G(x — A) and we
are done. Therefore, it remains to prove the convergence of the sequence A, .

We first note that the numbers A, must be bounded, for if Ay, — © on
some subsequence { N'}, say, then we have

GNz(xi—AN,) _)O, N’_)m,i=1,2,

and hence, by (3.2), L, = L,, contradicting our assumption in (1.7). We may
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therefore assume that the lower and upper limits

A = liminf A, A = limsup Ay
N-oow N-oox
are finite. We suppose that A, is not convergent, so that A < A, and we shall
show that this leads to a contradiction to our assumption (1.6).
We first show that, for i = 1, 2,

(3.3) G(x)=L,, x,—A<x<x —A.
To this end we fix two increasing sequences { N’} and { N"} of positive integers
such that

A= lim A A= lim A
- Nlin»oo N N}l’—{loo N*

For any & > 0 such that the points x, — A — 6 and x;, — A + 8, i = 1,2, are
continuity points of G(x) we then have by 7 (3.1), (3.2) and the monotonicity of
G and Gy,

L;= lim Gy(x;—Ap) 2 A}lm Gy(x;,—A—-68)=G(x;, —A-9)

i
N -

and similarly

L;<G(x;—A+53),

so that
G(x;,~A+8)>L;>G(x;—A-39).

By the monotonlmty of G, this forces G(x) to be equal to L, on the interval
(x; —A+6,x —A—8), and since 6 may be taken arbltrarlly small, (3.3)
follows.

Next, note that the range R(Y) of Y, as defined in (2.2), is equal to the set
of points of increase of the function G(x). By (3.3) and the hypotheses x; < x,
and L, # L, in (1.7), this set does not contain any points from the in-
tervals (x; — A, x;, — A), i = 1,2, but it must contain at least one point from
the intermediate interval [x; — A, x, — A]. Thus it cannot be of the form
guaranteed in Lemma 2. To obtain the desired contradiction, it suffices
therefore to show that the series L}, _,Y, satisfies the hypotheses of that
lemma.

By construction, X%, _,Y, is an a.s. convergent series of independent random
variables. Thus it remains to show that for every & > 0 there exist numbers
¢, € R(Y,) with |c,| < & for which (2.3) holds. Fix ¢ > 0 and let

=infly e R(Y,): lyl <&}, ¢} =sup{y € R(Y,): Iyl <&}.
The three series theorem implies that

(3.4) Zw‘, P(lY,| > &) <,

n=1

so that in particular P(|Y,| < ¢) > 0 for all sufficiently large n, say n > ny, =
no(e). Hence R(Y,) N [—e¢, €] is nonempty and ¢ is well-defined for n > n,,.
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Note that cfe R(Y,), since R(Y,) is a closed set. If one of the two series
X5-n,Cn and L5 _, c. has unbounded partial sums, then (2.3) holds with

n=ny"n

¢, =c, orc, = c,. Therefore we may assume that

N N
(3.5) limsup ), c¢f<w», liminf Y c¢;> —o.

N-ow p=n, N n=n,
Let
ci+c, A ch—c,
m, = 2 ’ n - 2 ’
so that cf=m, + A,. Then A, > 0, and (3.5) implies that
(3.6) Y A, <o,
n=ng

Moreover, by the definition of ¢ we have for n > n,,
(3.7 P(Y, —m,|l >A,)=P(Y, & [c;,ci]) <P(Y,| > ¢). .
Now let

Pn=p(Xy,a,+m,) =p(Y,,m,).

By (1.5) we have for n > n,,
Y, < P(Y, = m,| = kp,) < (Y, ~m,| > A,)

provided A, < p,/2, and thus in any case

Pn<2(P(Y,—m,|>A,)+A,).
By (3.7), (3.4) and (3.6) it follows that

L ps2 L (P(Y,~m>4,) +4,)

n=ng, n=n,
<2 ) P(IY,I>e)+2 Y A, <o,
n=n, n=ngy

Hence the series in (1.6) converges with ¢, = a, + m, for n > n,. On the
other hand, since by (3.7),

|E(Y;) —m,| <E(Y; —m,l)
<A, + (e +Im,)P(Y, —m,| >A,) <A, +2:P(Y,]| > &)

and, by (3.6) and the three series theorem, the series

Y A, Y. E(Yp), Y. P(Y,|>¢)
n=ng n=ng n=n

are convergent, L5 _, m, converges. Since we assumed that 5 _,a,, diverges,
it follows that % _, c, = L% _, (a, + m,,) diverges also, and we have reached
a contradiction to (1.6). This completes the proof of Theorem 1. O
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4. Proof of Theorem 2. Let Y,, n > 1, be a sequence of independent
random variables satisfying

(4.1) T o(Y,,d,) =
n=1

for every sequence d,, of real numbers and such that the series £%_,Y, is a.s.
convergent and has a continuous limit distribution. We shall show that the
random variables X, = Y, + (—1)" then satisfy (1.2) and (1.6), but the distri-
butions Fj do not converge.

We have
N
Fy(x) = P( Y (v, +(-D") =<«
n=1
Gn(x), if N is even,

" |Gy(x + 1), if Nisodd,
where Gy(x) = P(EN_,Y, < x). Since, by the assumptioné on Y,, Gy(x)
converges to a continuous distribution G(x) as N — «, it follows that
(4.2) Al,im Fon(x) = G(x), Al,im Fonii(x) =G(x+ 1)

for every x € R. This shows that the distributions F), are not convergent.
Next, let

D(x) = G(x + 1) — G(x).

By the properties of G(x) as a continuous distribution function, the function
D(x) is nonnegative, continuous, not identically zero and tends to 0 as |x| — .
It follows that there exists an x, € R such that D(x,) = max, g D(x) > 0.
Moreover, given any x; < x, with 0 < D(x,) < D(x,), there exists a number
Xy > x4 such that D(x,) = D(x,), or equivalently,

G(xy +1) — G(x; + 1) = G(x3) — G(x,).-

From this and (4.2) it follows that the limit lim 5 _, (Fy(x,) — Fy(x,)) exists
and is equal to G(x,) — G(x,) for any such pair x; < x,. Moreover, this limit
must be positive, for otherwise G(x) would be constant and D(x) = G(x + 1)
— G(x) nondecreasing on the interval (x,, x,), contradicting our assumption
that x, < x, and D(x,) > D(x,). Hence (1.2) is satisfied.

Finally we note that condition (1.6) follows from (4.1) and the relation
p(X,,c,) =p¥, +(-1)"¢,) = p(¥,,d,) with d, = (—1)"*! + ¢,. This com-
pletes the proof.

We remark that a sequence of random variables Y, satisfying the above
conditions can easily be constructed. For example, we may take Y, to be 1/n
and —1/n with probabilities ; each. The a.s. convergence of the series L= _,Y,
follows from the three series theorem. The continuity of the limit distribution
is a consequence of a theorem of Lévy [4] which states that an a.s. conver-
gent series L5, _,Y, of independent random variables has a continuous limit
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distribution if and onmly if, for any sequence c¢,, n>1, %_,P(Y, #c,)
diverges. Since p(Y,,c) > 1/2n for any constant c, the condition (4.1) is also
satisfied. O
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